A NOTE ON THE ULAM STABILITY OF RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS

K. RAVI1, J. M. RASSIAS2, M. E. GORDJI3 AND B. V. SENTHIL KUMAR4

Received 22 February, 2012; accepted 13 March, 2012; published 29 June, 2012.

1PG & RESEARCH DEPARTMENT OF MATHEMATICS, SACRED HEART COLLEGE, TIRUPATTUR-635 601, TAMIL NADU, INDIA
\texttt{shckravi@yahoo.co.in}

2PEDAGOGICAL DEPARTMENT E.E., SECTION OF MATHEMATICS AND INFORMATICS, NATIONAL AND CAPODISTRIAN UNIVERSITY OF ATHENS, 4, AGAMEMNONOS STR., AGHIA PARASKEVI, ATHENS, ATTIKIS 15342, GREECE
\texttt{jrassias@primedu.uoa.gr}
\texttt{jrass@otenet.gr}
\texttt{Ioannis.Rassias@primedu.uoa.gr}

3DEPARTMENT OF MATHEMATICS, SEMNAN UNIVERSITY, P.O. BOX 35195-363, SEMNAN, IRAN
\texttt{madjid.eshaghi@gmail.com}

4DEPARTMENT OF MATHEMATICS, C. ABDUL HAKEEM COLLEGE OF ENGINEERING AND TECHNOLOGY, MELVISHARAM-632 509, TAMIL NADU, INDIA
\texttt{bvssree@yahoo.co.in}

Key words and phrases: Reciprocal Difference functional equation, Reciprocal Adjoint functional equations, Ulam stability.

2000 Mathematics Subject Classification. Primary 39B22,39B52. Secondary 39B72.
In this note, we would like to bring out some more assumptions that should be incorporated in the statement of the Theorems and Proofs of the paper [1].

1. Throughout the paper [1], assume Y is the real Banach space. Therefore, the Cauchy sequences in Theorems 3.1, 4.1, 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 7.1, 7.2, 7.3, 7.4, 8.1 and 8.2 converge.

2. Assume $y \neq -x$, for all $x, y \in X$ in Theorems 2.1, 3.1, 4.1, 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 7.1, 7.2, 7.3, 7.4, 8.1 and 8.2.

3. Also assume $y \neq -x, f(x) + f(y) \neq 0$, for $x, y \in X$ in the equations (1.1), (1.2), (1.3), (2.3), (2.6) and in the inequalities (3.1), (4.1), (5.1), (5.9), (5.15), (5.24), (6.1), (6.9), (7.1), (7.6), (7.11), (7.17), (8.1), (8.6).

4. Further assume $y \neq -x, f(2^{-n}x) + f(2^{-n}y) \neq 0$, for $x, y \in X$ in the inequalities (3.7), (5.7), (5.22) and (6.7).

5. In all the Theorems, assume $f(x) \neq 0$, for all $x \in X$. By this assumption, we can prove the inequality (3.5) [In Theorem 3.1, Page 4, line 6 of [1]].

6. By the above assumption, the inequalities (4.5), (5.5), (5.13), (5.20), (5.29), (6.5), (6.13), (7.5), (7.10), (7.16), (7.22), (8.5) and (8.10) are true.

REFERENCES