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2 M. A. LATIF

1. INTRODUCTION

A norm inequality for n vectors in a normed linear space obtained by Pécari¢ and Raji¢ in
[L1] is given by

el { A [ - Z 1l - ||ask|||] }
< i .
‘ k(2 {kaH[Z% +Z|||wj|| ||xk|||”

provided x; are nonzero vectors in a normed linear space (X, ||.||) over the filed K (K = C or
R)and j € {1,2,...,n}. In order to provide generalization to the above inequality S.S Dragomir
[4] gave the following inequality for n vectors
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where x; are vectors in a normed linear space (X, ||.||) over the filed K (K = C or R) and
a; € K, j € {1,2,...,n}. Readers can easily verify that the choice of o, = Hx H:ckH # 0,
ke {1,2,...,n},in gives the Pécari¢ and Raji¢ inequality given above by (1 . Pécarié
and Raji¢ inequality also gives the following refinement and reverse established by M. Kato et

al. in [8]]
. - Lj
min x n —
weimin A} [ ,_1\|xj||H]
(1.3) <l - < {kaH} [ u
j=1 H
, ..., n}, in (1.2) gives the following result
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which in turn implies another refinement and reverse of the generalized triangle inequality given
below
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Motivated by the above results (I.I)-(L.5)), the main purpose of the present paper is to establish
all these results in a p-Fréchet space, where 0 < p < 1.

2. PRELIMINARIES

It is well known that an F-space (X, +, ., ||.||) is a linear space (over the field K = R or
K = C) such that ||z + y|| < ||z|+ |ly| for all z,y € X, ||z|| = 0 if and only if z = 0,
| Az|| < |A|||z||, for all scalars A with |A| < 1,2 € X, and with respect to the metric D(z,y) =
|z — y||, X is a complete metric space (see e.g. [3, p. 52] or [7]). Obviously D is invariant
under translations. In addition, if there exists 0 < p < 1 with ||[A\z| = |A|P||z, forall A € K
and x € X, then ||.|| will be called a p-norm and X will be called p-Fréchet space. (This is only
a slight abuse of terminology. Note that in e.g. [2] these spaces are called p-Banach spaces). In
this case, it is immediate that D(A\x, \y) = |A\[PD(z,y), forall x,y € X, A € K. It is known
that F'-spaces are not necessarily locally convex spaces. Three classical examples of p-Fréchet
spaces, non-locally convex, are the Hardy space H, with 0 < p < 1 that consists in the class of
all analytic functions f : D — C, D ={z € C; |z| < 1} with the property

2
111 = 5z supd [ 1Fre)Pat.r € 0.1)) < 400
0

the sequences space P
P ={x = (wa)ns 2| = Y _|wal < 00}
n=1

for 0 < p < 1, and the L?[0,1],0 < p < 1, given by

20,1 = {1 [0,1] — R[] = / FO)Pdt < oo}

More generally, we may consider LP(£2, ¥, i), 0 < p < 1, based on a general measure space
(22, %, u), with the p-norm given by || f|| = [, [f[’du. Some important characteristics of the
F'-spaces are given by the following remark.

Remark 2.1. Three fundamental results in Functional Analysis hold for F'-spaces too : the
Principle of Uniform Boundedness (see e.g. [3, p. 52]), the Open Mapping Theorem and
the Closed Graph Theorem (see e.g. [7, p. 9-10]). But on the other hand, the Hahn-Banach
Theorem fails in non-locally convex F'-spaces. More exactly, if in an F'-space the Hahn-Banach
theorem holds, then that space is necessarily locally convex space (see e.g. [7, Chapter 4]).
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3. MAIN RESULTS

Everywhere in this section, (X, +, ., ||.||) is a p-Fréchet space over the field K = R or C),
0 < p < 1 unless otherwise specified. We use the same technique as in [4] to establish our
results. Following theorem gives another form of (1.2)) in a p-Fréchet space X.

Theorem 3.1. Ifz; € X, a; € K j e {1,2,...,n} and 0 < p < 1, then
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Proof. Forany k € {1,2,...,n} we observe that
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p =1

J=1

Taking the p-norm on both sides, we have
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By using the triangle inequality and properties of p-norm, we get
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Also we observe that
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By utilizing continuity and properties of p-norm, we obtain
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(3.1) and (3.2) together complete the proof of the Theorem. 1

Now we give a Lemma which will be helpful in the sequel.

Lemma 3.2. Let 0 < p < land a = (a1, as, ..., a,), b = (b1, ba, ..., b,) € R, a; >0, b; > 0.

Then . . .
D olaj+b)f <y i+ W
j=1 j=1

j=1
Proof. Here we can prove that the inequality holds for only one j. That is
(3.3) (a; +b;)" <af + 8§

whenever 0 < p < 1and a; > 0, b; > 0, and then get the result by taking the finite sum over
all 7 = 1,2,...,n. When p = 4, then the result is obviously true. So assume that 0 < p < 1.
Consider the function

FO) =14+ — (142, ¢t>0
Then
&)y =ptr —p(l+tP "t >0
Since p — 1 < 0, hence f’ (t) > 0,t > 0. Thus
ft)>0,t>0
That is
L4+t <t t>0
If b; = 0 then (a; 4 b;)" < af + b is true with equality sign, so let b; > 0 and take ¢ = Z—j in

(3.3), we have
Q. p—1 a; p—1
(1+b—7) < (b—J) b >0
J J

(aj +bj)p S CL?"‘b‘?

Summing over j = 1,2, ..., n, we obtain

so that

n

D olaj+b)f <y di+ Y
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The following corollary gives another form of generalized triangle inequality (I.I]) and its
reverse, developed by Pécari¢ and Rajic¢, in a p-Fréchet space X.

,2,..,n}and 0 < p < 1, then
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Proof. If we replace oy, by III_I;CH’ |lzk|| # 0, k € {1,2,...,n} in the first inequality of Theorem

B.Twe get

n
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Similarly if we replace ay by m, llzkll # 0, k € {1,2,...,n} in the second inequality of

Theorem 3.1 we get
min
' hef1 2., n}{HIka[

Combining (3.4) and (3.5) complete the proof of the corollary. §

(3.5

+ Z ;1 = sl ;| _p] }

Now we give a slight different but almost the similar refinement and reverse of generalized
triangle inequality and its reverse obtained by M. Kato et al in a p-Fréchet space X.

.yn}and 0 < p < 1, then
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Proof. From the second inequality of Corollary [3.3] we have
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Another refinement and reverse of generalized triangle inequality in a p-Fréchet space X is
given in the following corollary

1

[l

and therefore we get

G Y gl =D
j=1 i=1

If we combine (3.6)) and (3.7) then proof of the corollary is complete. §

= oy Ulel” }[ ZH%H1 -
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Proof. If we replace oy, by ||z], [|zx]| # 0, k € {1,2,...,n} in the first inequality of Theorem

3.1 we get
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From the above inequality we obtain
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n
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Now by taking the second inequality of Theorem [3.1| and replacing oy, by ||xk||, ||zx| # O,
ke {l,2,..,n}, we get
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Therefore we have

n
z Lo P = 1 sl
257 ||y
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n
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If we combine (3.8)) and (3.9) then proof of the corollary is complete. §

Now if in the following corollary:

Corollary 3.6. [6, Corollary 4.4, p.30] Let A1, Ao, ..., A\, be positive numbers and x1, xs, ..., T,
be nonzero elements in a normed space X. Then

B2 R

if we take \; = Ay = ... = A\, = 1 the we have the following result:

(3.10)
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)1@12 H%ll] < (ZAJ) >
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(3.11)

n S
>
j=1

= (zw,s> s aes
j=1

for all nonzero elements z1, x5, ...,z, € X, where X is a normed space. By using the above
result now we give the more general form of the generalized triangle inequality

seanh,n>2,8>1and0 < p < 1, then

(3.12)

: psy | qs(t=p)
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n s
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Proof. Since
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Therefore, by taking p-norm and using the properties of p-norm, we have
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Therefore we have
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And from the above inequality we get
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Which implies the second inequality in (3.12)
Also we observe that

= e~ 2 ()
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Taking p-norm and by using the continuity and properties of p-norm we have
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From this inequality we obtain
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Which implies the first inequality in([3.12]) This completes the proof of the theorem as well.
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