NECESSARY AND SUFFICIENT CONDITIONS FOR CYCLIC HOMOGENEOUS POLYNOMIAL INEQUALITIES OF DEGREE FOUR IN REAL VARIABLES

VASILE CIRTOAJE, YUANZHE ZHOU

DEPARTMENT OF AUTOMATIC CONTROL AND COMPUTERS, UNIVERSITY OF PLOIESTI, ROMANIA
vcirtoaje@upg-ploiesti.ro

HIGH SCHOOL AFFILIATED TO WUHAN UNIVERSITY, CHINA

ABSTRACT. In this paper, we give two sets of necessary and sufficient conditions that the inequality \(f_4(x, y, z) \geq 0 \) holds for any real numbers \(x, y, z \), where \(f_4(x, y, z) \) is a cyclic homogeneous polynomial of degree four. In addition, all equality cases of this inequality are analysed. For the particular case in which \(f_4(1, 1, 1) = 0 \), we get the main result in [3]. Several applications are given to show the effectiveness of the proposed methods.

Key words and phrases: Cyclic Homogeneous Inequality, Fourth Degree Polynomial, Three Real Variables, Necessary and Sufficient Conditions.

2010 Mathematics Subject Classification. 26D05.
1. Introduction

Consider the fourth degree cyclic homogeneous polynomial

\[f_4(x, y, z) = \sum x^4 + A \sum x^2 y^2 + Bxyz \sum x + C \sum x^3 y + D \sum xy^3, \]

where \(A, B, C, D \) are real constants, and \(\sum \) denotes a cyclic sum over \(x, y \) and \(z \).

The following theorem expresses the necessary and sufficient condition that the inequality \(f_4(x, y, z) \geq 0 \) holds for any real numbers \(x, y, z \) in the particular case when \(f_4(1, 1, 1) = 0 \) (see [3] and [4]):

Theorem 1.1. If

\[1 + A + B + C + D = 0, \]

then the cyclic inequality \(f_4(x, y, z) \geq 0 \) holds for all real numbers \(x, y, z \) if and only if

\[3(1 + A) \geq C^2 + CD + D^2. \]

The corollary below gives only sufficient conditions to have \(f_4(x, y, z) \geq 0 \) for any real numbers \(x, y, z \) (see [3]):

Corollary 1.2. If

\[1 + A + B + C + D \geq 0 \]

and

\[2(1 + A) \geq B + C + D + C^2 + CD + D^2, \]

then the cyclic inequality \(f_4(x, y, z) \geq 0 \) holds for all real numbers \(x, y, z \).

In this paper, we generalize the results in Theorem 1.1 to the case where

\[1 + A + B + C + D \geq 0, \]

which is equivalent to the necessary condition \(f_4(1, 1, 1) \geq 0 \).

2. Main Results

We establish two theorems which give necessary and sufficient conditions to have

\[f_4(x, y, z) \geq 0 \]

for any real numbers \(x, y, z \), where \(f_4(x, y, z) \) is a fourth degree cyclic homogeneous polynomial having the form (1.1).

Theorem 2.1. The inequality

\[f_4(x, y, z) \geq 0 \]

holds for all real numbers \(x, y, z \) if and only if

\[f_4(t + k, k + 1, kt + 1) \geq 0 \]

for all real \(t \), where \(k \in [0, 1] \) is a root of the polynomial

\[f(k) = (C - D)k^3 + (2A - B - C + 2D - 4)k^2 - (2A - B + 2C - D - 4)k + C - D. \]

Remark 2.1. For \(C = D \), the polynomial \(f(k) \) has the roots 0 and 1, while for \(C \neq D \), \(f(k) \) has three real roots, but only one in \([0, 1]\). To prove this assertion, we see that \(f(0) = -f(1) = C - D \). If \(C > D \), then

\[f(-\infty) = -\infty, \quad f(0) > 0, \quad f(1) < 0, \quad f(\infty) = \infty, \]

and if \(C < D \), then

\[f(-\infty) = \infty, \quad f(0) < 0, \quad f(1) > 0, \quad f(\infty) = -\infty. \]
From the proof of Theorem 2.1, we get immediately the equality cases of the inequality \(f_4(x, y, z) \geq 0 \).

Proposition 2.2. The inequality \(f_4(x, y, z) \geq 0 \) in Theorem 2.1 becomes an equality if
\[
\frac{x}{t + k} = \frac{y}{k + 1} = \frac{z}{kt + 1}
\]
(or any cyclic permutation), where \(k \in (0, 1] \) is a root of the equation
\[
(C - D)k^3 + (2A - B + C + 2D - 4)k^2 - (2A - B + 2C - D - 4)k + C - D = 0
\]
and \(t \in \mathbb{R} \) is a root of the equation
\[
f_4(t + k, k + 1, kt + 1) = 0.
\]

Theorem 2.3. The inequality \(f_4(x, y, z) \geq 0 \) holds for all real numbers \(x, y, z \) if and only if \(g_4(t) \geq 0 \) for all \(t \geq 0 \), where
\[
g_4(t) = 3(2 + A - C - D)t^4 - Ft^3 + 3(4 - B + C + D)t^2 + 1 + A + B + C + D,
\]
\[
F = \sqrt{27(C - D)^2 + E^2}, \quad E = 8 - 4A + 2B - C - D.
\]

Remark 2.2. In the special case \(f_4(1, 1, 1) = 0 \), when
\[
1 + A + B + C + D = 0,
\]
from Theorem 2.3 we get Theorem 1.1. The condition \(g_4(t) \geq 0 \) in Theorem 2.3 becomes
\[
(2 + A - C - D)t^4 + (5 + A + 2C + 2D)t^2 \geq \sqrt{(2 - 2A - C - D)^2 + 3(C - D)^2} t^3,
\]
and it holds for all \(t \geq 0 \) if and only if
\[
2 + A - C - D \geq 0,
\]
\[
5 + A + 2C + 2D \geq 0,
\]
\[
2\sqrt{(2 + A - C - D)(5 + A + 2C + 2D)} \geq \sqrt{(2 - 2A - C - D)^2 + 3(C - D)^2}.
\]
The last inequality is equivalent to
\[
3(1 + A) \geq C^2 + D^2 + CD,
\]
which involves
\[
2 + A - C - D \geq 1 - (C + D) + \frac{(C + D)^2}{3} - \frac{CD}{3}
\]
\[
\geq 1 - (C + D) + \frac{(C + D)^2}{3} - \frac{(C + D)^2}{12} = \left(1 - \frac{C + D}{2}\right)^2 \geq 0
\]
and
\[
5 + A + 2C + 2D \geq 4 + 2(C + D) + \frac{(C + D)^2}{3} - \frac{CD}{3}
\]
\[
\geq 4 + 2(C + D) + \frac{(C + D)^2}{3} - \frac{(C + D)^2}{12} = \left(2 + \frac{C + D}{2}\right)^2 \geq 0.
\]
Thus, we obtained the necessary and sufficient condition in Theorem 1.1, namely
\[
3(1 + A) \geq C^2 + CD + D^2.
\]
The following proposition gives the equality cases of the inequality \(f_4(x, y, z) \geq 0 \) for \(F = 0 \).
Theorem 2.3 has the following three possible forms:

\[(x + y + z)^2 [x^2 + y^2 + z^2 + k(xy + yz + zx)] \geq 0, \quad k \in [-1, 2],\]

or

\[x^2 + y^2 + z^2 + k(xy + yz + zx)]^2 \geq 0, \quad k \in (-1, 2),\]

or

\[(x^2 + y^2 + z^2 - xy - yz - zx)[x^2 + y^2 + z^2 + k(xy + yz + zx)] \geq 0, \quad k \in [-1, 2).\]

The following proposition gives the equality cases of the inequality \(f_4(x, y, z) \geq 0\) for \(F > 0\).

Proposition 2.4. For \(F = 0\), assume that the inequality \(f_4(x, y, z) \geq 0\) in Theorem 2.3 becomes an equality for at least a real triple \((x, y, z) \neq (0, 0, 0)\). Then, the inequality \(f_4(x, y, z) \geq 0\) in Theorem 2.3 has the following three possible forms:

\[(x + y + z)^2 [x^2 + y^2 + z^2 + k(xy + yz + zx)] \geq 0, \quad k \in [-1, 2],\]

or

\[x^2 + y^2 + z^2 + k(xy + yz + zx)]^2 \geq 0, \quad k \in (-1, 2),\]

or

\[(x^2 + y^2 + z^2 - xy - yz - zx)[x^2 + y^2 + z^2 + k(xy + yz + zx)] \geq 0, \quad k \in [-1, 2).\]

Remark 2.3. The polynomial

\[f(w) = w^3 - 3w^2 + 3(1 - \alpha^2)w + \frac{2E}{F} \alpha^3 + 3\alpha^2 - 1\]

in Proposition 2.5 has three real roots for any given \(\alpha \geq 0\). This is true if \(f(w_1') \geq 0\) and \(f(w_2') \leq 0\), where \(w_1' = 1 - \alpha\) and \(w_2' = 1 + \alpha\) are the roots of the derivative \(f'(w)\). Indeed, we have

\[f(w_1') = 2 \left(1 + \frac{E}{F}\right) \alpha^3 \geq 0,\]

\[f(w_2') = -2 \left(1 - \frac{E}{F}\right) \alpha^3 \leq 0.\]

Thus, for \(F > 0\), the number of distinct non-zero triples \((x, y, z)\) which satisfy \(f_4(x, y, z) = 0\) is equal to the number of distinct nonnegative roots of the polynomial \(g_4(t)\). Since this number is less than or equal to 2, the equality \(f_4(x, y, z) = 0\) holds for \(x = y = z = 0\) and for at most two distinct triples \((x, y, z)\).

In the special case \(f_4(1, 1, 1) = 0\), when \(1 + A + B + C + D = 0\), from Theorem 2.3 and Remark 2.2 it follows that \(3(1 + A) = C^2 + CD + D^2\) is a necessary condition to have \(f_4(x, y, z) \geq 0\) for all real \(x, y, z\), with equality for at least a real triple \((x, y, z)\) with \(x \neq y\) or \(y \neq z\) or \(z \neq x\). Thus, by Proposition 2.5 we get the following corollary.

Corollary 2.6. Let \(f_4(x, y, z)\) be a fourth degree cyclic homogeneous polynomial such that \(f_4(1, 1, 1) = 0\) and \(f_4(x, y, z) \geq 0\) for all real numbers \(x, y, z\). Let us denote

\[E = 12 - 3(C + D) - 2(C^2 + CD + D^2), \quad F = \sqrt{27(C - D)^2 + E^2},\]

\[\alpha = \sqrt[3]{\frac{3(C + D + 4)^2 + (C - D)^2}{3(C + D - 2)^2 + (C - D)^2}}.\]

For \(F > 0\), the inequality \(f_4(x, y, z) \geq 0\) becomes an equality when \(x = y = z\), and also when \(x, y, z\) satisfy

\[(C - D)(x + y + z)(x - y)(y - z)(z - x) \geq 0\]
and are proportional to the roots w_1, w_2 and w_3 of the polynomial equation

$$w^3 - 3w^2 + 3(1 - \alpha^2)w + \frac{2E}{F} \alpha^3 + 3\alpha^2 - 1 = 0.$$

A new special case is the one in which $C = D$, when the homogeneous polynomial $f_4(x, y, z)$ is symmetric. Since $F = |E| = 2|4 - 2A + B - C|$, the polynomial

$$f(w) = w^3 - 3w^2 + 3(1 - \alpha^2)w + \frac{2E}{F} \alpha^3 + 3\alpha^2 - 1$$

in Proposition 2.5 becomes either

$$f(w) = w^3 - 3w^2 + 3(1 - \alpha^2)w + 2\alpha^3 + 3\alpha^2 - 1 = (w - \alpha - 1)^2(w + 2\alpha - 1),$$

or

$$f(w) = w^3 - 3w^2 + 3(1 - \alpha^2)w - 2\alpha^3 + 3\alpha^2 - 1 = (w + \alpha - 1)^2(w - 2\alpha - 1).$$

In both cases, two of the real roots w_1, w_2 and w_3 are equal. Setting $y = z = 1$, the equation $f_4(x, y, z) = 0$ becomes

$$x^4 + 2Cx^3 + (2A + B)x^2 + 2(B + C)x + A + 2C + 2 = 0.$$

So, the following corollary holds.

Corollary 2.7. Let

$$f_4(x, y, z) = \sum x^4 + A \sum x^2 y^2 + Bxyz \sum x + C \sum xy(x^2 + y^2)$$

be a fourth degree symmetric homogeneous polynomial such that $4 - 2A + B - C \neq 0$ and $f_4(x, y, z) \geq 0$ for all real numbers x, y, z. The inequality $f_4(x, y, z) \geq 0$ becomes an equality when $x/w = y = z$ (or any cyclic permutation), where w is a double real root of the equation

$$w^4 + 2Cw^3 + (2A + B)w^2 + 2(B + C)w + A + 2C + 2 = 0.$$

With regard to the distinct nonnegative roots of the polynomial $g_4(t)$, the following statement holds.

Proposition 2.8. Assume that $F > 0$ and $g_4(t) \geq 0$ for all $t \geq 0$. The polynomial $g_4(t)$ in Theorem 2.3 has the following nonnegative real roots:

(i) two pairs of nonnegative roots, namely

$t_1 = t_2 = 0, \ t_3 = t_4 \geq 0$,

if and only if

$$1 + A + B + C + D = 0, \ \ 3(1 + A) = C^2 + CD + D^2;$$

(ii) only one pair of zero roots,

$t_1 = t_2 = 0$,

if and only if

$$1 + A + B + C + D = 0, \ \ 3(1 + A) > C^2 + CD + D^2;$$

(iii) only one pair of positive roots,

$t_1 = t_2 > 0$,

if and only if

$$t = \frac{2\sqrt{2}(2b + \sqrt{b^2 + 12c})}{3\sqrt{b + \sqrt{b^2 + 12c}}},$$

$$a = \frac{2\sqrt{2}(2b + \sqrt{b^2 + 12c})}{3\sqrt{b + \sqrt{b^2 + 12c}}}.$$
where
\[
a = \frac{F}{3(2 + A - C - D)} \geq 0, \quad b = \frac{4 - B + C + D}{2 + A - C - D}, \quad c = \frac{1 + A + B + C + D}{3(2 + A - C - D)} > 0.
\]

Remark 2.4. It is much easier to make a thorough study of a cyclic homogeneous polynomial inequality of degree four \(f_4(x, y, z) \geq 0 \) by applying Theorem 2.3 than by applying Theorem 2.1 especially in the case where \(f_4(1, 1, 1) \neq 0 \). For this reason, Theorem 2.1 is more useful for the study of the inequality \(f_4(x, y, z) \geq 0 \) by means of a computer. For example, let us prove by both Theorems 2.1 and 2.3 the well known inequality ([1], [2])

\[
(x^2 + y^2 + z^2)^2 \geq 3(x^3y + y^3z + z^3x), \quad x, y, z \in \mathbb{R}.
\]

We have
\[
f_4(x, y, z) = (x^2 + y^2 + z^2)^2 - 3(x^3y + y^3z + z^3x);
\]
that is,
\[
A = 2, \quad B = 0, \quad C = -3, \quad D = 0.
\]

According to Theorem 2.1, we need to show that \(f_4(t + k, k + 1, kt + 1) \geq 0 \) for all real \(t \), where \(k \approx 0.445042 \) satisfies the equation

\[
k^3 - k^2 - 2k + 1 = 0.
\]

After many calculation, we get
\[
f_4(t + k, k + 1, kt + 1) = (t - 1)^2[(1 - k)(3 - 2k)t^2 + 2(1 - k)(3k - 1)t + 2 - k - 8k^2]
\]
\[
= (1 - k)(3 - 2k)(t - 1)^2 \left(t + \frac{3k - 1}{3 - 2k} \right)^2 \geq 0.
\]

By Proposition 2.2 equality holds for
\[
\frac{x}{t + k} = \frac{y}{k + 1} = \frac{z}{kt + 1}
\]
(or any cyclic permutation), where \(t \in \left\{ 1, \frac{1 - 3k}{3 - 2k} \right\} \); that is, for \(x = y = z \), and also for
\[
\frac{x}{1 - 2k^2} = \frac{y}{(1 + k)(3 - 2k)} = \frac{z}{3 - k - 3k^2}
\]
(or any cyclic permutation).

According to Theorem 2.3, we need to show that \(g_4(t) \geq 0 \) for all \(t \geq 0 \). Indeed, we have
\[
E = 3, \quad F = 6\sqrt{7}, \quad \text{and hence}
\]
\[
g_4(t) = 3t^2(\sqrt{7} t - 1)^2 \geq 0.
\]

Since \(f_4(1, 1, 1) = 0 \), we apply Corollary 2.6 to find the other equality cases. We get \(\alpha = 1/\sqrt{7} \), and the equality conditions
\[
(x + y + z)(x - y)(y - z)(z - x) \leq 0
\]
and
\[
w^3 - 3w^2 + \frac{18}{7}w - \frac{27}{49} = 0,
\]
which lead to the equality case
\[
\frac{x}{\sin^2 \frac{4\pi}{7}} = \frac{y}{\sin^2 \frac{2\pi}{7}} = \frac{z}{\sin^2 \frac{\pi}{7}}
\]
(or any cyclic permutation).
3. Proof of Theorem 2.1

The main idea is to use the linear cyclic substitution

\[x = a + kb, \quad y = b + kc, \quad z = c + ka, \]

in order to convert the cyclic polynomial \(f_4(x, y, z) \) to a fourth degree symmetric homogeneous polynomial

\[h_4(a, b, c) = f_4(a + kb, b + kc, c + ka). \]

If this is possible for a real constant \(k \in [0, 1] \), then the inequality \(f_4(x, y, z) \geq 0 \) holds for all real numbers \(x, y, z \) if and only if the inequality \(h_4(a, b, c) \geq 0 \) holds for all real numbers \(a, b, c \). According to Lemma [3.1] below, the inequality \(h_4(a, b, c) \geq 0 \) holds for all real \(a, b, c \) if and only if \(h_4(t, 1, 1) \geq 0 \) for all real \(t \); that is, if and only if

\[h_4(t, 1, 1) = f_4(t + k, 1 + k, 1 + kt) \]

for all real \(t \). So, we only need to show that the polynomial \(h_4(a, b, c) \) is symmetric if \(k \) is a real root of the polynomial \(f(k) \).

For \(C = D \) and \(k = 0 \), the polynomial \(h_4(a, b, c) \) is clearly symmetric. Consider now that \(C \neq D \). It is easy to show that the expressions \(\sum x^4, \sum x^2y^2, xyz \sum x, \sum x^3y \) and \(\sum xy^3 \) contain respectively the following cyclic expressions \(\sum a^3b \) and \(\sum ab^3 \):

\[
\begin{align*}
\sum x^4 & : 4k \sum a^3b + 4k^3 \sum ab^3, \\
\sum x^2y^2 & : 2k^3 \sum a^3b + 2k \sum ab^3, \\
xyz \sum x & : (k^2 + k) \sum a^3b + (k^3 + k^2) \sum ab^3, \\
\sum x^3y & : (k^4 + 1) \sum a^3b + (3k^2 + k) \sum ab^3, \\
\sum xy^3 & : (k^3 + 3k^2) \sum a^3b + (k^4 + 1) \sum ab^3.
\end{align*}
\]

Therefore, \(h_4(a, b, c) \) contains the expression

\[E \sum a^3b + F \sum ab^3, \]

where

\[
\begin{align*}
E & = 4k + 2Ak^3 + B(k^2 + k) + C(k^4 + 1) + D(k^3 + 3k^2), \\
F & = 4k^3 + 2Ak + B(k^3 + k^2) + C(3k^2 + k) + D(k^4 + 1).
\end{align*}
\]

Obviously, if \(E = F \), then \(h_4(a, b, c) \) is a symmetric homogeneous polynomial. From

\[
E - F = (C - D)k^4 + (2A - B + D - 4)k^3 - 3(C - D)k^2 - (2A - B + C - 4)k + C - D = (k + 1)f(k),
\]

it follows that \(f(k) = 0 \) involves \(E = F \).

To complete the proof, we still need to show that the equation \(f(k) = 0 \) has at least a root in \([0, 1]\). This is true since \(f(k) \) is a continuous function and \(f(0) = -f(1) = C - D \neq 0 \).

Lemma 3.1. Let \(h_4(a, b, c) \) be a fourth degree symmetric homogeneous polynomial. The inequality

\[h_4(a, b, c) \geq 0 \]

holds for all real numbers \(a, b, c \) if and only if \(h_4(t, 1, 1) \geq 0 \) for all real \(t \).
Proof. Let \(p = a + b + c, q = ab + bc + ca \) and \(r = abc \). For fixed \(p \) and \(q \), from the known relation
\[
27(a - b)^2(b - c)^2(c - a)^2 = 4(p^2 - 3q)^3 - (2p^3 - 9pq + 27r)^2,
\]
it follows that \(r \) is maximal and minimal when two of \(a, b, c \) are equal. On the other hand, for fixed \(p \) and \(q \), the inequality \(h_4(a, b, c) \geq 0 \) can be written as \(g(r) \geq 0 \), where \(g(r) \) is a linear function. Therefore, \(g(r) \) is minimal when \(r \) is minimal or maximal; that is, when two of \(a, b, c \) are equal. Since the polynomial \(h_4(a, b, c) \) is symmetric, homogeneous and satisfies
\[
h_4(-a, -b, -c) = h_4(a, b, c),
\]
g\(r \) is minimal if and only if \(h_4(t, 1, 1) \geq 0 \) and \(h_4(t, 0, 0) \geq 0 \) for all real \(t \). To complete the proof, it suffices to show that if \(h_4(t, 1, 1) \geq 0 \) for all real \(t \), then \(h_4(t, 0, 0) \geq 0 \) for all real \(t \). Indeed, since \(h_4(a, b, c) \) has the general form
\[
h_4(a, b, c) = A_0 \sum a^4 + A_1 \sum ab(a^2 + b^2) + A_2 \sum a^2b^2 + A_3abc \sum a,
\]
the condition \(h_4(t, 1, 1) \geq 0 \) for all real \(t \) involves \(A_0 \geq 0 \), and hence \(h_4(t, 0, 0) = A_0t^4 \geq 0 \) for all real \(t \). \(\blacksquare \)

4. PROOF OF THEOREM 2.3

Using the substitutions
\[
p = x + y + z, \quad q = xy + yz + zx, \quad r = abc,
\]
we have
\[
xyz \sum x = pr, \quad \sum x^2y^2 = q^2 - 2pq,
\]
\[
\sum x^4 = (\sum x^2)^2 - 2\sum x^2y^2 = (p^2 - 2q)^2 - 2(q^2 - 2pq) = p^4 - 4p^2q + 2q^2 + 4pq,
\]
\[
\sum x^3y + \sum xy^3 = (\sum xy)(\sum x^2) - xyz \sum x = q(p^2 - 2q) - pr,
\]
\[
\sum x^3y - \sum xy^3 = p(x - y)(y - z)(z - x),
\]
\[
27(x - y)^2(y - z)^2(z - x)^2 = 4(p^2 - 3q)^3 - (2p^3 - 9pq + 27r)^2.
\]

Further, we need Lemma 4.1, Lemma 4.2 and Lemma 4.3 below. By Lemma 4.1, the inequality \(f_4(x, y, z) \geq 0 \) holds if and only if
\[
S_4(x, y, z) \geq |(C - D)(x + y + z)(x - y)(y - z)(z - x)|
\]
for all real \(x, y, z \).

Sufficiency. Consider the following two cases: \(p = 0 \) and \(p \neq 0 \).

Case 1: \(p = 0 \). Since \(\sum x^4 = 2q^2, \sum x^2y^2 = q^2 \) and \(\sum x^3y + \sum xy^3 = -2q^2 \), the desired inequality (4.1) becomes
\[
(2 + A - C - D)q^2 \geq 0.
\]
This is true since the hypothesis \(g_4(t) \geq 0 \) for all \(t \geq 0 \) involves \(2 + A - C - D \geq 0 \).

Case 2: \(p \neq 0 \). Due to homogeneity, we may set \(p = 1 \), which involves \(q \leq 1/3 \). Since
\[
|(x - y)(y - z)(z - x)| = \sqrt{(x - y)^2(y - z)^2(z - x)^2} = \sqrt{\frac{4(1 - 3q)^3 - (2 - 9q + 27r)^2}{27}},
\]
(4.1) becomes
\[
2 - (8 - C - D)q + 2(2 + A - C - D)q^2 + (8 - 4A + 2B - C - D)r \geq \frac{|C - D|}{3\sqrt{3}} \sqrt{4(1 - 3q)^3 - (2 - 9q + 27r)^2}.
\]
As we have shown above, the inequality (4.1) for actually, it suffices to consider that (4.1) holds for all real x, y, z, holds for all real x, y, z. Lemma 4.1, which is equivalent to g, Choosing the triple t, where t, which is just the hypothesis g. Thus, we only need to prove that we get (4.2), where t. Substituting t, we get (4.2), which implies $q = (1 - t^2)/3$, $t \geq 0$, the inequality turns into $2(2 + A - C - D)t^4 + (16 - 4A + C + D)t^2 - 2 + 2A + C + D + 9Er \geq \geq \sqrt{3}|C - D|\sqrt{4t^6 - (3t^2 - 1 + 27r)^2}$, where $E = 8 - 4A + 2B - C - D$. Applying Lemma 4.2 for (4.2) $\alpha = \sqrt{3}|C - D|$, $\beta = \frac{E}{3}$, $a = 2t^3$, $b = 3t^2 - 1 + 27r$, we get $\sqrt{3}|C - D|\sqrt{4t^6 - (3t^2 - 1 + 27r)^2} \leq \frac{2F t^3}{3} + \frac{E(3t^2 - 1 + 27r)}{3}$. Thus, we only need to prove that $2(2 + A - C - D)t^4 + (16 - 4A + C + D)t^2 - 2 + 2A + C + D + 9Er \geq \geq \frac{2F t^3}{3} + \frac{E(3t^2 - 1 + 27r)}{3}$, which is just the hypothesis $g_4(t) \geq 0$.

Necessity. We need to prove that if (4.1) holds for all real x, y, z, then $g_4(t) \geq 0$ for all $t \geq 0$. Actually, it suffices to consider that (4.1) holds for all real x, y, z such that $p = x + y + z = 1$. As we have shown above, the inequality (4.1) for $p = 1$ has the form $2(2 + A - C - D)t^4 + (16 - 4A + C + D)t^2 - 2 + 2A + C + D + 9Er \geq \geq \sqrt{3}|C - D|\sqrt{4t^6 - (3t^2 - 1 + 27r)^2}$, where $E = 8 - 4A + 2B - C - D$. Choosing the triple (x, y, z) as in Lemma 4.3 we get $2(2 + A - C - D)t^4 + (16 - 4A + C + D)t^2 - 2 + 2A + C + D + 9Er \geq \geq \frac{2F t^3}{3} + \frac{E(3t^2 - 1 + 27r)}{3}$, which is equivalent to $g_4(t) \geq 0$.

Lemma 4.1. The inequality $f_4(x, y, z) \geq 0$ holds for all real x, y, z if and only if the inequality $S_4(x, y, z) \geq |(C - D)(x + y + z)(x - y)(y - z)(z - x)|$ holds for all real x, y, z, where $S_4(x, y, z) = 2 \sum x^4 + 2A \sum x^2y^2 + 2Bxyz \sum x + (C + D)(\sum x^3y + \sum xy^3)$. Proof. It is easy to show that $2f_4(x, y, z) = S_4(x, y, z) + (C - D)(\sum x^3y - \sum xy^3) = S_4(x, y, z) - (C - D)(x + y + z)(x - y)(y - z)(z - x)$. Sufficiency. According to the hypothesis $S_4(x, y, z) \geq |(C - D)(x + y + z)(x - y)(y - z)(z - x)|$, we have $2f_4(x, y, z) \geq |(C - D)(x + y + z)(x - y)(y - z)(z - x)|$
On the other hand, if \(f \) from the hypothesis \(f(x,y,z) \geq 0 \), we get
\[
S_4(x,y,z) \geq (C - D)(x + y + z)(x - y)(y - z)(z - x).
\]

Since \(f(x,y,z) \geq 0 \) for all real \(x, y, z \), then also \(f(x,z) \geq 0 \) for all real \(x, y, z \). Since
\[
2f_4(x,z) = S_4(x,y,z) - (C - D)(x + y + z)(x - y)(y - z)(z - x),
\]
we get
\[
S_4(x,y,z) \geq (C - D)(x + y + z)(x - y)(y - z)(z - x)
\]
for all real \(x, y, z \). Therefore, we have
\[
S_4(x,y,z) \geq |(C - D)(x + y + z)(x - y)(y - z)(z - x)|.
\]

Lemma 4.2. If \(\alpha, \beta, a, b \) are real numbers, \(\alpha \geq 0, a \geq 0 \) and \(a^2 \geq b^2 \), then
\[
\alpha \sqrt{a^2 - b^2} \leq a \sqrt{a^2 + \beta^2} + \beta b,
\]
with equality if and only if
\[
\beta a + b \sqrt{a^2 + \beta^2} = 0.
\]

Proof. Since
\[
a \sqrt{a^2 + \beta^2} + \beta b \geq |\beta|a + \beta b \geq |\beta||b| + \beta b \geq 0,
\]
we can write the inequality as
\[
\alpha^2(a^2 - b^2) \leq (a \sqrt{a^2 + \beta^2} + \beta b)^2,
\]
which is equivalent to the obvious inequality
\[
(\beta a + b \sqrt{a^2 + \beta^2})^2 \geq 0.
\]

Lemma 4.3. Let \(A, B, C, D, E, F \) be given real constants such that
\[
E = 8 - 4A + 2B - C - D, \quad F = \sqrt{27(C - D)^2 + E^2}.
\]
For any given \(t \geq 0 \), there exists a real triple \((x, y, z) \) such that
\[
x + y + z = 1, \quad xy + yz + zx = (1 - t^2)/3
\]
and
\[
\sqrt{3}|C - D|\sqrt{4t^6 - (3t^2 - 1 + 27xyz)^2} = \frac{2Ft^3}{3} + \frac{E(3t^2 - 1 + 27xyz)}{3}.
\]

Proof. Let \(r = xyz \). From the last relation we get
\[
\left[\sqrt{3}|C - D|\sqrt{4t^6 - (3t^2 - 1 + 27r)^2} - \frac{E(3t^2 - 1 + 27r)}{3} \right]^2 = \left(\frac{2Ft^3}{3} \right)^2,
\]
\[
\left[\sqrt{3}|C - D|(3t^2 - 1 + 27r) + \frac{E}{3} \sqrt{4t^6 - (3t^2 - 1 + 27r)^2} \right]^2 = 0,
that is \(f(r) = 0 \), where
\[
f(r) = \sqrt{3}(C - D)(3t^2 - 1 + 27r) + \frac{E}{3}\sqrt{4t^6 - (3t^2 - 1 + 27r)^2}.
\]
We need to prove that for any given \(t \geq 0 \) there exists a real triple \((x, y, z)\) such that \(x + y + z = 1,\ xy + yz + zx = (1 - t^2)/3 \) and \(f(r) = 0 \). According to Theorem 2.3 and its proof in section 4, we have
\[
27(x - y)^2(y - z)^2(z - x)^2 = 4t^6 - (3t^2 - 1 + 27r)^2 \geq 0,
\]
this is true if \(r \in [r_1, r_2] \), where
\[
r_1 = \frac{1}{27}(1 - 3t^2 - 2t^3), \quad r_2 = \frac{1}{27}(1 - 3t^2 + 2t^3).
\]
Therefore, we only need to show that the equation \(f(r) = 0 \) has a root in \([r_1, r_2]\). Indeed, from
\[
f(r_1) = -2\sqrt{3}|C - D|t^3, \quad f(r_2) = 2\sqrt{3}|C - D|t^3, \quad f(r_1)f(r_2) \leq 0,
\]
the desired conclusion follows.

5. PROOF OF PROPOSITION 2.4

We first see that \(F = 0 \) involves
\[
C = D = 4 - 2A + B
\]
and
\[
\frac{1}{3}g_4(t) = (5A - 2B - 6)t^4 + (12 - 4A + B)t^2 + 3 - A + B.
\]
According to Theorem 2.3 and its proof in section 4, we have \(f_4(x, y, z) \geq 0 \) for all real \(x, y, z \), with equality for at least a real triple \((x, y, z) \neq (0, 0, 0)\), only if \(g_4(t) \geq 0 \) for all \(t \geq 0 \) and \(g_4(t) = 0 \) for at least a nonnegative value of \(t \). In our case, we have \(g_4(t) \geq 0 \) for all \(t \geq 0 \) only if \(5A - 2B - 6 \geq 0 \) and \(3 - A + B \geq 0 \). We need to consider three cases: \(5A - 2B - 6 = 0; 5A - 2B - 6 > 0 \) and \(3 - A + B > 0; 5A - 2B - 6 > 0 \) and \(3 - A + B = 0 \).

Case 1: \(5A - 2B - 6 = 0 \). We get
\[
A = 2k + 2, \quad B = 5k + 2, \quad C = D = k + 2, \quad k \in \mathbb{R},
\]
and hence
\[
f_4(x, y, z) = \sum x^4 + 2(5k + 2)xy^2 + (5k + 2)xyz \sum x + (k + 2) \sum xy(x^2 + y^2)
\]
\[
= (x + y + z)^2[x^2 + y^2 + z^2 + k(xy + yz + zx)].
\]
Clearly, the inequality \(f_4(x, y, z) \geq 0 \) holds for all real \(x, y, z \) if and only if \(k \in [-1, 2] \). The same result follows from the condition \(g_4(t) \geq 0 \) for all \(t \geq 0 \), where
\[
g_4(t) = 9(2 - k)t^2 + 9(1 + k).
\]

Case 2: \(5A - 2B - 6 > 0 \), \(3 - A + B > 0 \). We have \(g_4(t) \geq 0 \) for all \(t \geq 0 \) and also \(g_4(t) = 0 \) for at least a nonnegative value of \(t \) if and only if \(12 - 4A + B < 0 \) and
\[
(12 - 4A + B)^2 = 4(5A - 2B - 6)(3 - A + B);
\]
that is,
\[
B = 2(A - 2 \pm \sqrt{A - 2}), \quad A \geq 2.
\]
Putting \(k = \pm \sqrt{A - 2} \), we get
\[
A = k^2 + 2, \quad B = 2k(k + 1), \quad C = D = 2k,
\]
and hence
\[
f_4(x, y, z) = [x^2 + y^2 + z^2 + k(xy + yz + zx)]^2.
\]
From $12 - 4A + B = 2(k + 1)(2 - k) < 0$, we get $k \in (-1, 2)$.

Case 3: $5A - 2B - 6 > 0$, $3 - A + B = 0$. We get

$$A = 2 - k, \quad B = -1 - k, \quad C = D = k - 1, \quad k < 2,$$

and hence

$$f_4(x, y, z) = \sum x^4 + (2 - k) \sum x^2 y^2 - (1 + k) x y z \sum x + (k - 1) \sum xy(x^2 + y^2)$$

$$= (x^2 + y^2 + z^2 - xy - yz - zx)[x^2 + y^2 + z^2 + k(xy + yz + zx)].$$

The inequality $f_4(x, y, z) \geq 0$ holds for all real x, y, z if and only if $k \in [-1, 2)$. The same result follows from the condition $g_4(t) \geq 0$ for all $t \geq 0$, where

$$g_4(t) = 9t^2[(2 - k)t^2 + 1 + k].$$

6. **Proof of Proposition 2.3**

By the proof of Theorem 2.3, it follows that the main necessary condition to have $f_4(x, y, z) \geq 0$ for all real x, y, z and $f(x, y, z) = 0$ for at least a real triple $(x, y, z) \neq (0, 0, 0)$ is to have $g_4(t) \geq 0$ for all $t \geq 0$ and $g_4(t) = 0$ for at least a nonnegative value of t. Clearly, for $F > 0$, the inequality $g_4(t) \geq 0$ holds for all $t \geq 0$ only if $2 + A - C - D > 0$. We can find all equality cases of the inequality $f_4(x, y, z) \geq 0$ using the above proof of Theorem 2.3. Consider two cases: $x + y + z = 0$ and $x + y + z = 1$.

Case 1: $x + y + z = 0$. The inequality (4.1), which is equivalent to $f_4(x, y, z) \geq 0$, becomes

$$(2 + A - C - D)(xy + yz + zx)^2 \geq 0,$$

with equality for $x + y + z = 0$ and $xy + yz + zx = 0$; that is, for $x = y = z = 0$.

Case 2: $x + y + z = 1$. According to Lemma 4.1, a first necessary equality condition is

$$(C - D)(x + y + z)(x - y)(y - z)(z - x) \geq 0.$$

In addition, according to Lemma 4.2, it is necessary to have

$$\beta a + b \sqrt{\alpha^2 + \beta^2} = 0,$$

where α, β, a and b are given by (4.2). This condition is equivalent to

$$2Et^3 + F(3t^2 - 1 + 27xyz) = 0.$$

Since $x + y + z = 1$ and $xy + yz + zx = (1 - t^2)/3$, where t is any nonnegative root of the polynomial $g_4(t)$, the equality $f_4(x, y, z) = 0$ holds when

$$(C - D)(x + y + z)(x - y)(y - z)(z - x) \geq 0,$$

$$x + y + z = 1, \quad xy + yz + zx = \frac{1 - t^2}{3}, \quad 27xyz = 1 - 3t^2 - \frac{2E}{F}t^3;$$

that is, when x, y, z are proportional to the roots of the equation

$$27w^3 - 27w^2 + 9(1 - t^2)w + \frac{2E}{F}t^3 + 3t^2 - 1 = 0$$

and satisfy $(C - D)(x + y + z)(x - y)(y - z)(z - x) \geq 0$. Substituting $w/3$ for w, we get the desired equation

$$w^3 - 3w^2 + 3(1 - t^2)w + \frac{2E}{F}t^3 + 3t^2 - 1 = 0.$$
7. Proof of Proposition [2.8]

Clearly, if \(g_4(t) \geq 0 \) for all \(t \geq 0 \), then \(2 + A - C - D > 0 \).

(i) If the polynomial \(g_4(t) \) has four nonnegative real numbers \(t_1 \leq t_2 \leq t_3 \leq t_4 \), then the condition \(g_4(t) \geq 0 \) for all \(t \geq 0 \) holds if and only if
\[
0 \leq t_1 = t_2 = a \leq b = t_3 = t_4,
\]
where
\[
g_4(t) = 3(2 + A - C - D)(t - a)^2(t - b)^2.
\]
Since the coefficient of \(t \) is 0 in \(g_4(t) \) and is \(2ab(a+b) \) in \((t-a)^2(t-b)^2\), it follows that \(a = 0 \) and \(b \geq 0 \). From \(g_4(0) = 0 \), we get \(1 + A + B + C + D = 0 \), which involves \(3(1 + A) = C^2 + CD + D^2 \) (see Remark [2.2]).

Reversely, if \(1 + A + B + C + D = 0 \) and \(3(1 + A) = C^2 + CD + D^2 \), then
\[
g_4(t) = 3(2 + A - C - D)t^2 \left[t - \frac{F}{6(2 + A - C - D)} \right]^2,
\]
where \(F \geq 0 \).

(ii) The polynomial \(g_4(t) \) has the double root 0 if and only if \(1 + A + B + C + D = 0 \), when
\[
g_4(t) = t^2 g(t),
\]
where
\[
g(t) = 3(2 + A - C - D)t^2 - Ft + 3(4 - B + C + D).
\]
Clearly, \(g_4(t) \) has only two nonnegative roots (that are \(t_1 = t_2 = 0 \)) when \(g(t) \) has either negative real roots or complex roots. Since \(F \geq 0 \), \(g(t) \) can not have negative roots, but can have complex roots, when the discriminant of the quadratic polynomial \(g(t) \) is negative; that is,
\[
3(1 + A) > C^2 + CD + D^2.
\]

(iii) Write the inequality \(g_4(t) \geq 0 \) as \(h(t) \geq 0 \), where
\[
h(t) = t^4 - at^3 + bt^2 + c.
\]
In addition, writing \(h(t) \) in the form
\[
h(t) \equiv (t - t_0)^2(t^2 + pt + q), \quad t_0 > 0,
\]
we find
\[
2t_0 - p = a, \quad t_0^2 - 2pt_0 + q = b, \quad pt_0 - 2q = 0, \quad qt_0^2 = c.
\]
From the last three relation, we get
\[
2t_0^2 = b + \sqrt{b^2 + 12c},
\]
\[
6q = \sqrt{b^2 + 12c} - b,
\]
\[
p = \frac{\sqrt{2}(\sqrt{b^2 + 12c} - b)}{3\sqrt{b + \sqrt{b^2 + 12c}}}.
\]
Since \(p > 0 \) and \(q > 0 \), the quadratic polynomial \(t^2 + pt + q \) has no nonnegative real root. Substituting \(t_0, p \) and \(q \) in \(2t_0 - p = a \), we get
\[
a = 2t_0 - p = 2t_0 - \frac{2q}{t_0} = \frac{2t_0^2 - 2q}{t_0} = \frac{2(2b + \sqrt{b^2 + 12c})}{3t_0} = \frac{2\sqrt{2}(2b + \sqrt{b^2 + 12c})}{3\sqrt{b + \sqrt{b^2 + 12c}}}.
\]
8. APPLICATIONS OF THEOREM 2.3

Application 1. If \(x, y, z \) are real numbers, then (5)

\[
(x^2 + y^2 + z^2)^2 + \frac{8}{\sqrt{7}}(x^3y + y^3z + z^3x) \geq 0.
\]

Proof. We have

\[
A = 2, \quad B = 0, \quad C = \frac{8}{\sqrt{7}}, \quad D = 0, \quad E = -\frac{8}{\sqrt{7}}, \quad F = 16,
\]

and hence

\[
g_4(t) = 12 \left(1 - \frac{2}{\sqrt{7}}\right) t^4 - 16t^3 + 12 \left(1 + \frac{2}{\sqrt{7}}\right) t^2 + 3 + \frac{8}{\sqrt{7}}
\]

\[
= \frac{2}{\sqrt{7}} \left(t - \frac{3 + \sqrt{7}}{2}\right)^2 \left[6(\sqrt{7} - 2)t^2 + 2(3 - \sqrt{7})t + 1\right].
\]

Since \(g_4(t) \geq 0 \) for all \(t \geq 0 \), the inequality is proved (Theorem 2.3).

To find all equality cases, we apply Proposition 2.5. We see that the polynomial \(g_4(t) \) has only the nonnegative double root \(\alpha = \frac{3 + \sqrt{7}}{2} \). Therefore, equality holds when \(x, y, z \) satisfy

\[
(x + y + z)(x - y)(y - z)(z - x) \geq 0
\]

and are proportional to the roots of the equation

\[
w^3 - 3w^2 - 9 \left(1 + \frac{\sqrt{7}}{2}\right) w + \frac{27}{4} \left(1 + \frac{3}{\sqrt{7}}\right) = 0;
\]

that is, \(x/w_1 = y/w_2 = z/w_3 \) (or any cyclic permutation), where \(w_1 \approx 6.0583, w_2 \approx -3.7007, w_3 \approx 0.6424 \).

Application 2. Let \(x, y, z \) be real numbers. If \(-3 \leq k \leq 3\), then (6)

\[
4 \sum x^4 + (9 - k^2)xyz \sum x \geq 2(1 + k) \sum x^3y + 2(1 - k) \sum xy^3.
\]

Proof. Applying Theorem 2.3 for

\[
A = 0, \quad B = \frac{9 - k^2}{4}, \quad C = -\frac{1 - k}{2}, \quad D = -\frac{1 + k}{2},
\]

we get \(E = \frac{27 - k^2}{2}, F = \frac{27 + k^2}{2} \) and

\[
4g_4(t) = (t - 1)^2[36t^2 + (9 - k^2)(2t + 1)] \geq 0.
\]

If \(-3 < k < 3\), then the polynomial \(g_4(t) \) has only the nonnegative double root \(t = 1 \). By Proposition 2.5, we get that equality holds when \(x, y, z \) satisfy

\[
k(x + y + z)(x - y)(y - z)(z - x) \leq 0
\]

and are proportional to the roots of the equation

\[
w^3 - 3w^2 + \frac{108}{27 + k^2} = 0.
\]

If \(|k| = 3 \), then the polynomial \(g_4(t) \) has also the double root \(t = 0 \), which leads to the equality case \(x = y = z \).

For instance, if \(k = 1 \), then we get the inequality

\[
x^4 + y^4 + z^4 + 2xyz(x + y + z) \geq x^3y + y^3z + z^3x, \quad x, y, z \in \mathbb{R},
\]
with equality for
\[
\frac{x}{\sin \frac{8\pi}{7}} = \frac{y}{\sin \frac{4\pi}{7}} = \frac{z}{\sin \frac{2\pi}{7}}
\]
(or any cyclic permutation). Also, if \(k = 3\), we get the known inequality (see [1])
\[
x^4 + y^4 + z^4 + xy^3 + yz^3 + zx^3 \geq 2(x^3y + y^3z + z^3x), \quad x, y, z \in \mathbb{R}.
\]
with equality for \(x = y = z\), and also for
\[
x \sin \frac{\pi}{9} = y \sin \frac{7\pi}{9} = z \sin \frac{13\pi}{9}
\]
(or any cyclic permutation).

Application 3. Let \(m\) and \(n\) be real numbers. The inequality (17)
\[
\sum x^4 + (m + 3) \sum x^2 y^2 \geq (2 - n) \sum x^3 y + (2 + n) \sum x y^3
\]
holds for all real numbers \(x, y, z\) if and only if \(m \geq 0\) and
\[
|n| \leq \frac{2}{3} \sqrt{(m + 9) \sqrt{m(m + 9)} - m^2}.
\]

Proof. We have
\[
A = m + 3, \quad B = 0, \quad C = n - 2, \quad D = -n - 2, \quad E = -4m, \quad F = 2\sqrt{27n^2 + 4m^2},
\]
\[
g_4(t) = 3(m + 9)t^4 - 2\sqrt{27n^2 + 4m^2} t^3 + m.
\]
According to Theorem 2.3, the desired inequality holds if and only if \(g_4(t) \geq 0\) for all \(t \geq 0\). From \(g_4(0) \geq 0\), we get \(m \geq 0\), and by the AM-GM inequality, we have
\[
3(m + 9)t^4 + m \geq 4\sqrt{m(m + 9)^3 t^{12}} = 4\sqrt{(m + 9) \sqrt{m(m + 9)} t^3}.
\]
Therefore, we have \(g_4(t) \geq 0\) for all \(t \geq 0\) if and only if
\[
4\sqrt{(m + 9) \sqrt{m(m + 9)} - 2\sqrt{27n^2 + 4m^2} \geq 0,
\]
which is equivalent to
\[
|n| \leq \frac{2}{3} \sqrt{(m + 9) \sqrt{m(m + 9)} - m^2}.
\]

Application 4. If \(x, y, z\) are real numbers, then (18)
\[
(x^2 + y^2 + z^2)^2 + 2(x^3 y + y^3 z + z^3 x) \geq 3(xy^3 + yz^3 + zx^3).
\]

Proof. We have
\[
A = 2, \quad B = 0, \quad C = 2, \quad D = -3, \quad E = 1, \quad F = 26,
\]
and hence
\[
g_4(t) = 15t^4 - 26t^3 + 9t^2 + 2 = (t - 1)^2(15t^2 + 4t + 2).
\]
Since \(g_4(t) \geq 0\) for all \(t \geq 0\), the proof is completed (Theorem 2.3).

To analyse the equality cases, we apply Proposition 2.5. Since the polynomial \(g_4(t)\) has the nonnegative double roots 1, we get the equality conditions
\[
(x + y + z)(x - y)(y - z)(z - x) \geq 0
\]
and
\[w^3 - 3w^2 + \frac{27}{13} = 0, \]
which lead to the equality case \(x/w_1 = y/w_2 = z/w_3 \) (or any cyclic permutation), where \(w_1 \approx -0.7447, w_2 \approx 1.0256, w_3 \approx 2.7191. \)

Application 5. If \(x, y, z \) are real numbers, then
\[
10 \sum x^4 + 64 \sum x^2 y^2 \geq 33 \sum xy(x^2 + y^2).
\]

Proof. We have
\[
A = \frac{32}{5}, \quad B = 0, \quad C = D = \frac{-33}{10}, \quad E = F = 11,
\]
and hence
\[
5g_4(t) = 225t^4 - 55t^3 - 39t^2 + 4 = (5t + 2)^2(9t^2 - 5t + 1).
\]
Since \(g_4(t) \geq 0 \) for all \(t \geq 0 \), the proof is completed (Theorem 2.3).

Since \(C = D \), according to Corollary 2.7, equality holds when \(x/w = y = z \), where \(w \) is a double real root of the polynomial
\[
h(w) = w^4 + 2Cw^3 + (2A + B)w^2 + 2(B + C)w + A + 2C + 2
= \frac{1}{5}(5w^4 - 33w^3 + 64w^2 - 33w + 9)
= \frac{1}{5}(w - 3)^2(5w^2 - 3w + 1).
\]
Therefore, equality occurs for \(x/3 = y = z \) (or any cyclic permutation).

REFERENCES

