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linear complementarity problem as an unconstrained minimization problem. We describe H-
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functions. We show how, under appropriate P, semimonotone (Eg), P, positive definite, and
strictly semimonotone (E) -conditions on an H -differential of f, finding local/global minimum
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nonlinear complementarity problem. Our results not only give new results but also unify/extend
various similar results proved for C*.
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2 M. A. TAWHID AND J. L. GOFFIN

1. INTRODUCTION

Given a function f : R™ — R". Consider the nonlinear complementarity problem, denoted
by the NCP( f), which can be defined as

find z € R" suchthatz > 0, f(z) >0 and (f(z),z) = 0.

This problem arises in many applications, e.g., in operations research, economic models, and
engineering sciences (such as dynamic rigid- body model, nonlinear obstacle problems, traffic
equilibrium problems, optimal control problems, taxation and subsidies, invariant capital stock,
and spatial price equilibria), see [6]], [14] for a more detail description. One of the popular
approaches to solve the NCP is to reformulate it as an unconstrained minimization problem
whose global minima are coincident with the solution of the NCP and the objective function
of this unconstrained minimization problem is called a merit function for the NCP [4]], [5], [8],
[LO], [16], [L7Z], [IL9]], [20], [30]. Most of the merit functions in these references based on the
implicit Lagrangian function [4], [16], [20], [30], the square Fischer-Burmeister function [3],
(1O}, [16], [17], [19], and for other NCP functions see, e.g., the survey paper [7].

In this paper we consider nonsmooth nonlinear complementarity problem NCP(f) when the
underlying functions are nonsmooth which admit the H-differentiability but not necessarily
locally Lipschitzian or directionally differentiable. By considering an NCP function ® : " —
R™ associated with NCP(f) so that

®(z) =0 < T solves NCP(f),

and the corresponding merit function

(1.1 U(z) = Z@i(x).

We consider the following NCP functions:

(1
1 1 2
61(a,8) = [é5(a,0)]" = 5 |a+b— /(a— b + fab
where ¢, ¢4 : R? — R. NCP function ¢z was proposed by Kanzow and Kleinmichel
(18]
(1.2) ¢s(a,b) == a+b—+/(a—b)%+ Bab

where [ is a fixed parameter in (0,4). We note that when 5 = 2, ¢ reduces to the
Fischer-Burmeister function, while as 5 — 0, ¢4 becomes

¢(a,b) :=a+b—+/(a—b)? (= 2min{a,b}).
Then the merit function associated to ¢, at Z is defined as in (1.1)) where

©;(7) = ¢y (T, fi(@) = § [05(@i, fi(@))]

4 = (1/2) [+ 1(8) — /G~ @P + B 7))
()
(1.4) 62(0,5) = 5 [on(@. D) 1= & Nopn(a,d) + (1~ N b,

where ¢,, ¢, : R* — R. NCP function ¢, is called the penalized Fischer-Burmeister
function [[1]]

(1.5) oy(a,b) == Appp(a,b) + (1 — Nay by
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where ¢ is called Fischer-Burmeister function, a, = max{0,a} and A € (0,1) is a
fixed parameter. Then its merit function associated to ¢, at Z is defined as in (1.1)) where

06 %(@) = ol@ (@) = Lny(@ @)
= 5 [MNopp(Ti, fi(@) + (1= Ny fi(2), ]

In this paper, we describe H-differentials of the square Kanzow and Kleinmichel function
and the square penalized Fischer-Burmeister function, and their merit functions. Also, we show
how, under appropriate P, semimonotone (Eq), P, positive definite, and strictly semimonotone
(E) -conditions on an H -differential of f, finding local/global minimum of ¥ (or a ‘stationary
point’ of W) leads to a solution of the given nonlinear complementarity problem. Our results
unify/extend various similar results proved in the literature for C'! and semismooth functions
(10, (18]

Our approach relies on the concepts of H-differentiability and H-differential of a function
[13] because of the following reasons: H -differentiability implies continuity, any superset of an
H-differential is an H -differential, and H -differentials enjoy simple sum, product, chain rules, a
mean value theorem and a second order Taylor-like expansion, and inverse and implicit function
theorems, see [11], [12], [13]; a H-differentiable function need not be locally Lipschitzian
function or directionally differentiable; the Fréchet derivative of a differentiable function, the
Clarke generalized Jacobian of a locally Lipschitzian function [2]], the Bouligand differential
of a semismooth function [23], and the C'-differential of Qi [24] are particular instances of
H-differential; moreover, the closure of the H -differential is an approximate Jacobian [15].

For some applications of [ -differentiability to optimization problems, nonlinear comple-
mentarity problems and variational inequalities, see e.g. [29]], [28].

2. PRELIMINARIES

Throughout this paper, we regard vectors in R" as column vectors. We denote the inner-
product between two vectors = and y in R" by either 27y or (x,y). Vector inequalities are
interpreted componentwise. For a matrix A, A; denotes the ith row of A. For a differentiable
function f : R" — R™, V f(z) denotes the Jacobian matrix of f at .

Definition 2.1. A function ¢ : R? — R is called an NCP function if

¢(a,b) =0« ab=0,a>0,b>0.
We call ¢ a nonnegative NCP function if ¢(a,b) > 0 on R2. For the problem NCP(f), we
define

T

2.1) O(x) = [ dla1, fi(®)) - dlas fil@)) -~ d(an, ful)) ]
and, call ®(z) an NCP function for NCP( f). We call ¢ a nonnegative NCP function for NCP( f)
if ¢ is nonnegative.

We need the following definitions from [3]], [22].

Definition 2.2. A matrix A € R™*" is called

(@) Po (P) if Vo € R",x # 0, there exists ¢ such that z; # 0 and z; (Az); > 0 (> 0) or
equivalently, every principle minor of A is nonnegative (respectively, positive).

(b) semimonotone (Eg) (strictly semimonotone (E))-matrix if

Vz € R}, x # 0, there exists ¢ such that z; (Az); > 0 (> 0).

Definition 2.3. For a function f : R" — R", we say that f is a
(i) monotone if
(f(x) = f(y),x—y) >0 forall z,y € R".
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(ii) Po(P)-function if, for any = # y in R",
(22) max (z —y);[f(z) = f(y)li =0 (> 0).
{i:xi#yi}
We note that every monotone (strictly monotone) function is a Py(P)-function.
The following result is from [22], [27].

Theorem 2.1. Under each the following conditions, f : R" — R" is a Po(P)-function.

(a) f is Fréchet differentiable on R" and for every x € R", the Jacobian matrix V f(x) is a
Py(P)-matrix.

(b) f is locally Lipschitzian on R™ and for every x € R", the generalized Jacobian O f(z)
consists of Po(P)-matrices.

(c) f is semismooth on R" (in particular, piecewise affine or piecewise smooth) and for
every x € R", the Bouligand subdifferential Op f (x) consists of Po(P )-matrices.

(d) f is H-differentiable on R" and for every x € R", an H-differential T(x) consists of
Py(P)-matrices.

The following definition and examples from Gowda and Ravindran [13].

Definition 2.4. Given a function f : 2 C R™ — R™ where () is an open set in R" and z* € (2,
we say that a nonempty subset 7'(z*) (also denoted by T;(z*)) of R™*" is an H-differential of
f at z* if for every sequence {z*} C Q converging to z*, there exist a subsequence {z*/} and
a matrix A € T'(z*) such that

(2.3) flah) = f@") = Al —a") = of||lz5 — 2"])).
We say that f is H-differentiable at x* if f has an H-differential at x*.

Remarks
As noted in [29], it is easily seen that if a function f : 2 C R" — R™ is H-differentiable at a
point z, then there exist a constant L. > 0 and a neighbourhood B(z, ¢) of z with

2.4) 1f(x) = f(@)I| < Ll|x — 7[|, Vo € B(z,0).

Conversely, if condition holds, then 7'(Z) := R™*™ can be taken as an H-differential of
f at z. We thus have, in , an alternate description of H-differentiability. But, as we see
in the sequel, it is the identification of an appropriate H-differential that becomes important
and relevant. Clearly any function locally Lipschitzian at z will satisfy (2.4). For real valued
functions, condition (2.4) is known as the ‘calmness’ of f at z. This concept has been well
studied in the literature of nonsmooth analysis (see [26], Chapter 8).

Example 2.2. Let f : R — R™ be Fréchet differentiable at * € R™ with Fréchet derivative
matrix (= Jacobian matrix derivative) {V f(z*)} such that

f(x) = f(2%) = V(") (2 — ") = o(|lx — z7[]).
Then f is H-differentiable with {V f(z*)} as an H-differential.

Example 2.3. Let f : Q2 C R™ — R™ be locally Lipschitzian at each point of an open set ).
For x* € ), define the Bouligand subdifferential of f at z* by

Opf(z*) = {im Vf(2*) : 2" — 2* 2% € Q;}

where )¢ is the set of all points in {2 where f is Fréchet differentiable. Then, the (Clarke)
generalized Jacobian [2]

Of (") = codp f(z")
is an H-differential of f at x*.
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Example 2.4. Consider a locally Lipschitzian function f : 2 C R™ — R™ that is semismooth
at 2* € Q [211], [23], [25]]. This means for any sequence z* — x*, and for any V}, € 0 f(a"),

f@h) = f(@") = Vi(a® —2%) = o(||2* — 27]).
Then the Bouligand subdifferential
Opf(x*) = {lim Vf(z") : 2% — 2%, 2% € Q).

is an H-differential of f at z*. In particular, this holds if f is piecewise smooth, i.e., there exist
continuously differentiable functions f; : R" — R™ such that

f@) e {hi(@), fol), ... fs(x)} Ve R

Example 2.5. Let f : R* — R" be C-differentiable [24] in a neighborhood D of z*. This
means that there is a compact upper semicontinuous multivalued mapping x — 7T'(x) with
x € Dand T(x) C R™ " satisfying the following condition at any a € D: For any V € T'(z),

f(x) = fa) = V(z —a) = o(||z — al]).
Then, f is H-differentiable at x* with T'(z*) as an H -differential.

Remark 2.1. While the Fréchet derivative of a differentiable function, the Clarke generalized
Jacobian of a locally Lipschitzian function [2l], the Bouligand differential of a semismooth
function [23]], and the C-differential of a C'-differentiable function [24]] are particular instances
of H-differential, the following simple example, taken from [11], shows that an H -differentiable
function need not be locally Lipschitzian or directionally differentiable.

Example 2.6. Consider on R,
1
f(z) = xsin(—) for z # 0 and f(0) = 0.
x

Then f is H-differentiable on R with

T(0) = [~1, 1] and T(c) = {sin(%) _ %cos(%)} for ¢ # 0.

We note that f is not locally Lipschitzian around zero. We also see that f is neither Fréchet
differentiable or directionally differentiable.
3. H-DIFFERENTIALS OF SOME NCP/MERIT FUNCTIONS

In this section, we consider an NCP function ¢ corresponding to NCP( f) and its merit func-
tion U :=>"" ;.

Theorem 3.1. Suppose that ¢ is H-differentiable at T with Te(Z) as an H-differential. Then
U= >" &, is H-differentiable at T with an H-differential given by

Ty(Z) = {e'B: B € Tp(z)}.

Proof. To describe an H-differential of U, let #(x) = x1 + - - - + x,,. Then ¥ = 6 o . Now by
the chain rule for H-differentiability, we have Ty (Z) = (1y o T)(Z) as an H-differential of W
at 7. Since Ty(z) = {e’} where e is the vector of ones in R", we have

Ty(7) ={e"'B: B € Ts(z)}.
This completes the proof. 1

Now we describe the H -differentials of the merit functions associated to square Kanzow and
Kleinmichel function and square penalized Fischer-Burmeister function.
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Example 3.2. Suppose that f : R" — R™ has an H-differential 7'(z) at z € R". Consider the
associated square Kanzow and Kleinmichel function

2

(3.1) (@) = (1/2) |7+ f(@) - VE— @V + 02 [@)]

where all the operations are performed componentwise. Let
J(z)=A{i: fi(x) =0=x;}.
Then the H-differential of ® in (3.1)) is given by
Te(z) ={VA+W . (A, VW, d) e T'},

where I is the set of all quadruples (A, V,W.d) with A € T(z), ||d|| = 1, V = diag(v;)
W = diag(w;) are diagonal matrices with

= £ (7 _ —2(Z,—fi (%)) +8%; . =

¢B($“ fz(x)) |:1 2\/(fi—fi(f))2+ﬂiifi(a_:):| when ¢ Q J(.CE)

v = ) ] o 72(di7Aid)+6di . = L . 2 X .
¢s(ds, Aid) [1 W when i € J(Z) and [(d; — A;d)* + Bd;(A;d) > 0
arbitrary when i € J(Z) and (d; — A;d)? + Bd;(Asd) = 0,

3.2)
7. (7 _ 2@~ fi(®)+Bfi(T) . =
Cbﬁ(xw f,(:v)) [1 2\/(fi—fi(f))2+ﬁ:fifi(f):| when i ¢ J($>
W; =

A __ 2(di—Ayd)+BAd . - A2 (A,
Ps(d;i, Aid) [1 W Ry when i € J(Z) and (d; — A;d)* + Bd;(A;d) > 0
arbitrary when i € J(Z) and (d; — A;d)? + Bd;(Asd) = 0.

We can describe the H-differential of ® in a way similar to the calculation and analysis of
Examples 5-7 in [29]. By Theorem[3.1] the H-differential Ty (%) of ¥(Z) consists of all vectors
of the form v7 A + w” with A € T(z), v and w are columns vectors with entries defined by

(3.2).

Example 3.3. Suppose that f : R” — R"™ has an H-differential 7'(Z) at z € R". Consider the
associated square penalized Fischer-Burmeister function

(33) 2(2) = 5 [Mra(E, F(@) + (- Nz, f(7),]°

where ¢ is called Fischer-Burmeister function, a; = max{0,a} and A € (0,1) is a fixed
parameter, and all the operations are performed componentwise. Let

J(x)={i: fi(x) =0=1x;}and K(z) = {i : z; > 0, fi(z) > 0}.
For @ in (3.3)), a straightforward calculation shows that an H-differential is given by
To(z) ={VA+W: (A V,W,d) e I'},

where I is the set of all quadruples (A, V,W,d) with A € T(z), ||d|| = 1, V = diag(v;) and
W = diag(w;) are diagonal matrices with
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- )

oy (d;, Ayd) [/\ (1 — ¢>] when ¢ € J(Z) and d? + (A;d)? > 0
i 1 )
J

v; = VB +(Aid)?
o @) |3 (1 2 )| wheni ¢ s(0) U @)
| arbitrary when i € J(Z) and d? + (A;d)? = 0,
(3.4)
) i
A o di ; = 2 7\2
w0 = oy (d;, Aid) {)\ (1 df+(A¢d)2):| when i € J(z) and d; + (A;d)* >0
o @) 3 (1= s )| wheni ¢ g0 U )
| arbitrary ] when i € J(z) and d? + (A;d)* =

The above calculation relies on the observation that the following is an H-differential of the
one variable function z — 2z, at any Z:

{1} ifz>0
A(z)=<{ {0,1} ifz=0
{0} ifz<O.

Using Theorem 3.1} the H-differential Ty (Z) of ¥(Z) consists of all vectors of the form v’ A +
w’ with A € T(Z), v and w are columns vectors with entries defined by (3.4).

4. MINIMIZING THE MERIT FUNCTION

For a given H-differentiable function f : R" — R", consider the associated NCP function
® (as in Examples and the corresponding merit function ¥ := 3" | ®,. It should be
recalled that

Z solves NCP(f) < &(z) =0« U(z) =0.

The following lemma will be needed in our results. The proof is similar to Lemma 3.1 in
[LO].

Lemma 4.1. Suppose that  : R" — R"™ is H-differentiable at T with T'(Z) as an H-differential.
Suppose that ® is defined as in Examples H -differentiable with an H-differential To(T)
is given by

4.1) To(z) ={VA+W: AcT(z),V = diag(v;) and W = diag(w;)},

and VU is H-differentiable with an H-differential Ty (). Then ® is nonnegative and the follow-
ing properties hold:

) solves NCP(f) < P(z) =
(ii) Forie{l,...,n}, v w; >
) Forie{l,...,n}, ®;(z) =0< (v;,w;) = (0,0).

4.2) =
(iv) If0 e Ty(z ) then@( )=0& 0=

In the subsequent subsections, we show that under appropriate conditions on an /{ -differential
of f, a vector 7 is a solution of the NCP( f) if and only if zero belongs to Ty (Z).
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4.1. Under F,-conditions.

Theorem 4.2. Suppose that f : R™ — R" is H-differentiable at & with an H-differential T'(Z).
Assume that © is defined as in Examples ?? Suppose that V := >"" | &, is H-differentiable
at x with an H -differential given by

Ty(Z) = {vTA+w” : (A,v,w) € Q, withv; w; > 0 whenever ®;(z) # 0}

where () is the set all triples (A, v, w) with A € T(Z), v and w vectors in R" satisfying proper-
ties (iii) and (iv) in ({.2)).

Further suppose that T'(Z) consists of Po-matrices. Then
O(z) =0« 0¢€ Ty(z).

Proof. Suppose that 0 € Ty (7), so that for some v’ A + w” € Ty(7),

0=v"A+w’
yielding ATv + w = 0. Note that for any index i, ®;(Z) # 0 < wv; # 0 (by property (iv) in
(4.2) and v;w; > 0 when ®,(Z) # 0) in which case v;(ATv); = —v; w; < 0 contradicting the
Py-property of A. We conclude that $(z) = 0. Conversely, suppose that &(z) = 0. Then by
property (i) in (4.2)) and the description of Ty (%), we have Ty (Z) = {0}. §

As consequences of the above theorem, we state the results for the square penalized Fischer-
Burmeister function for simplicity. However, it is possible to state a general result for any NCP
function satisfying the assumptions of Theorem 4.2

Corollary 4.3. Let f : R" — R" be differentiable and ®(x) be the square penalized Fischer-
Burmeister function and ¥ := Y | ®,. If f is Po-function, then T is a local minimizer to U if
and only if & solves NCP(f).

In view of Example 2.4] if f is locally Lipschitzian with T'(Z) = 0 f(z), the above theorem
reduces to the following result.

Corollary 4.4. Let f : R™ — R" be locally Lipschitzian. Let ® be the square penalized Fischer-
Burmeister function and ¥ := """ | ®,. Further suppose that O f(Z) consists of Po-matrices.
Then

U(z) =0« 0¢€ 0V¥(T).

Proof. In fact, by taking Ty(z) = df(x) in Theorem §.2] and noting 0¥ (z) C Ty (x) for all z,
we have the proof. 1

4.2. Under semimonotone (Eg)-conditions.

Theorem 4.5. Suppose that f : R" — R" is H-differentiable at T with an H-differential
T(z). Assume that ® is defined as in Examples Suppose that ¥ := >  ®,(Z) is
H-differentiable at T with an H-differential given by

Ty(Z) = {v" A+ w” : (A v,w) € Q, withv; > 0, w; > 0 whenever ®(z); # 0}.}

where € is the set all triples (A, v, w) with A € T'(Z), v and w vectors in R" satisfying proper-
ties (1i1) and (iv) in .F urther suppose that T () consists of semimonotone (Eq)-matrices.
Then

O(z) =04 0€ Ty(x).
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Proof. Suppose that ®(z) = 0. Then by property (i7i) in (4.2)and the description of Ty (), we
have Ty (z) = {0}. Conversely, suppose that 0 € Ty (). Then v” A+w? =0 = ATv+w = 0.
We claim that ®(z) = 0. Suppose, if possible, ®(z) # 0. Then by property (iv) in (4.2),
v # 0. Since T'(z) consists of Eg-matrices and A € T'(Z), there exists an index ¢ such that
0# ®;,0 # v; > 0and 0 < v;(Av);. By the fact, v; w; > 0, we have 0 < v;(Av); = —v; w; < 0
which is a contradiction. Hence ®(z) = 0. 1

Remark 4.1. We note that in Examples if Z is a strictly feasible point of NCP(f), i.e.,
T; > 0and f(Z;) > 0foralli € {1,...,n}, then we have v; > 0 and w; > 0.

4.3. Under P-conditions.

Theorem 4.6. Suppose that f : R™ — R" is H-differentiable at T with an H-differential
T(z). Assume that ® is defined as in Examples Suppose that ¥ := > ®,(T) is
H-differentiable at T with an H-differential given by

Ty(7) = {vT A+ w" : (4,0,w) € Q}

where € is the set all triples (A, v, w) with A € T'(Z), v and w vectors in R" satisfying proper-
ties (i1), (iii), and (iv) in ({.2).

Further suppose that T (Z) consists of P-matrices. Then
B(z) = 0o 0 € Ty(3).

Proof. To see this, suppose that 0 € Ty (7). Then v7' A + w? = 0 = ATv +w = 0. We
claim that ®(z) = 0. Suppose, if possible, ®(z) # 0. Then by property (iv) in @.2), v # 0.
Since T'(Z) consists of P-matrices and A € T'(Z), there exists an index 7 such that v; # 0 and
0 < v;(Av);. By property (ii) in (4.2), v; w; > 0. But 0 < v;(Av); = —v; w; < 0 which is a
contradiction. Hence ®(z) = 0. Conversely, suppose that ®(Z) = 0. Then by property (iii) in
and the description of Ty (Z), we have Ty (z) = {0}. 1

4.4. Under positive-definite-conditions.

Theorem 4.7. Suppose that f : R" — R" is H-differentiable at * with an H-differential
T(z). Assume that ® is defined as in Examples Suppose that ¥ := Y7  ®,(Z) is
H-differentiable at x with an H-differential given by

Te(z) = {vTA+w : (A,v,w) € Q}

where € is the set all triples (A, v, w) with A € T(Z), v and w vectors in R" satisfying proper-
ties (i), (i11), and (iv) in ([{.2).

Further suppose that T'(Z) consists of positive-definite matrices. Then
O(z) =0« 0¢€Ty(2).

Proof. Suppose that ®(z) = 0. Then by property (zii) in (4.2)) and the description of Ty (Z), we
have Ty (z) = {0}. Conversely, suppose that 0 € Ty (7). Then v’ A+w? =0 = ATv+w = 0.
We claim that ®(z) = 0. Suppose, if possible, ®(z) # 0. Then by property (iv) in {@.2)), v # 0.
Since T'(Z) consists of positive definite matrices and A € T'(z),

0 < (v, Av). By property (i7) in (4.2), (v, w) > 0. But 0 < (v, Av) = —(v,w) < 0 which is
a contradiction. Hence ®(z) = 0. &

Remark 4.2. Since every positive definite matrix is also a P-matrix, the proof of Theorem
follows from Theorem [4.6] However, we gave a general proof of Theorem
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4.5. Under strictly semi-monotone (E)-conditions.

Theorem 4.8. Suppose that f : R" — R" is H-differentiable at * with an H-differential
T(z). Assume that ® is defined as in Examples Suppose that ¥ := "  ©,(Z) is
H-differentiable at x with an H-differential given by

Ty(7) = {vT A+ w” : (A, v,w) € Q, withv; >0, w; > 0 whenever ®(z); # 0}.}

where ) is the set all triples (A, v, w) with A € T(Z), v and w vectors in R" satisfying proper-
ties (1ii) and (iv) in (4.2)).

Further suppose that T (Z) consists of E-matrices.Then
O(z) =0«<0¢€ Ty(z).

Proof. Suppose that 0 € Ty(Z). Then v7 A + w? = 0 = ATv + w = 0. We claim that
®(z) = 0. Suppose, if possible, ®(z) # 0. Then by property (iv) in (@.2)), v # 0.

Since T'(z) consists of E-matrices and A € T(z), there exists an index 4 such that 0 <
v;(Av);. By property (i) in (4.2), v;w; > 0. But 0 < v;(Av); = —v;w; < 0 which is a
contradiction. Hence ®(z) = 0. Conversely, suppose ®(z) = 0. Then by property (i) in (4.2)
and the description of Ty (%), we have Ty (Z) = {0}. 1

Remark 4.3. Note that in Examples if = is a feasible point of NCP(f), i.e., z; >
Oand f(z;) > Oforalli € {1,...,n}, then we have v; > 0 and w; > 0.

Remark 4.4. We note that we can use the so-called derivative-free descent method which does
not need any explicit derivative of the function f involved in NCP to solve nonsmooth NCP.
When f is C'!, Yamashita and Fukushima [30] and Geiger and Kanzow [10] proposed a descent
method for minimizing the unconstrained minimization which does not require to compute the
derivative of f and V. Fischer [8] obtained similar results when f is locally Lipschitzian and the
authors in [9] proved the global convergence when the underlying functions admit approximated
Jacobians. Since H-differentiability implies continuity [13]], we beleive that the algorithm in [9]
will be applicable to our nonsmooth NCP when NCP function is based on Fischer-Burmeister
function.

Concluding Remarks

We considered a nonlinear complementarity problem corresponding to H -differentiable func-
tions, with an associated NCP function ¢ and a merit function ¥(z) := > | ®;(Z). First, we
described the H-differential of the squared Kanzow and Kleinmichel function, the squared pe-
nalized Fischer-Burmeister function and their merit functions. We gave conditions under which
every global/local minimum or a stationary point of W is a solution of NCP( f).

For nonlinear complementarity problem based on the squared Kanzow and Kleinmichel func-
tion/the squared penalized Fischer-Burmeister function, our results not only give new results
but also recover/extend various results stated for nonlinear complementarity problem when
the underlying functions are continuously differentiable (locally Lipschitzian, semismooth, C-
differentiable) functions. Moreover, we considered NCP function on the basis of the squared
penalized Fischer-Burmeister function and ® in Example [3.3] which appeared to be new. Our
results are applicable to any nonnegative NCP functions satisfying Lemma.1]in the paper and
we can state a very general result for any nonnegative NCP function satisfying Lemma 4.1}
but for simplicity, we consider the squared Kanzow and Kleinmichel function and the squared
penalized Fischer-Burmeister function. The NCP functions in this paper are called unrestricted
NCP functions. The restricted NCP functions (subject to some constraints such as x > 0) and
their merit functions will be considered by the author as a future work.

We note here that similar methodologies under H-differentiability can be carried out for the
following NCP functions:
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(1) 1
¢y (a,b) = EmiHQ{a,b}.
(2) 1
0n(a,0) = 5[(ab)” + min{0, a} + min{0, b}].
(3)

1
¢5(a,b) :=ab-+ %0 [max®{0,a — ab} — 2* + max*{0,b — aa} — b*]
a

where o > 1 is any fixed parameter.
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