SHARP L^p IMPROVING RESULTS FOR SINGULAR MEASURES ON \mathbb{C}^{n+1}

E. FERREYRA, M. URCIUOLO

Received 18 November, 2009; accepted 25 February, 2010; published 12 October, 2011.

FAAMF-CIEM, UNIVERSIDAD NACIONAL DE CÓRDOBA-CONICET, CIUDAD UNIVERSITARIA, 5000 CÓRDOBA, ARGENTINA

eferrey@famaf.unc.edu.ar
urciuolo@famaf.unc.edu.ar

ABSTRACT. For $j = 1,\ldots,n$, let Ω_j be open sets of the complex plane and let φ_j be holomorphic functions on Ω_j such that φ_j'' does not vanish identically on Ω_j. We consider $\varphi(z_1,\ldots,z_n) = \varphi_1(z_1) + \ldots + \varphi_n(z_n)$. We characterize the pairs (p,q) such that the convolution operator with the surface measure supported on a compact subset of the graph of φ is $p-q$ bounded.

Key words and phrases: L^p improving measures, convolution operators.

2000 Mathematics Subject Classification Primary 42B20. Secondary 42B25.
1. Introduction

For $1 \leq j \leq n$, let Ω_j be open sets of the complex plane and let $\varphi_j : \Omega_j \to \mathbb{C}$ be holomorphic functions on Ω_j such that φ_j'' does not vanish identically on Ω_j. We take $\varphi : \Omega_1 \times \ldots \times \Omega_n \to \mathbb{C}$ given by

$$\varphi (z_1, \ldots, z_n) = \varphi_1 (z_1) + \ldots + \varphi_n (z_n).$$

Let us consider the canonical identification $\mathbb{R}^{2n} \cong \mathbb{C}^n$ given by $(x_1, y_1, \ldots, x_n, y_n) \mapsto (x_1 + iy_1, \ldots, x_n + iy_n)$. Let D_j be bounded open sets such that $\overline{D_j} \subset \Omega_j$ and such that $\varphi_j'' \not\equiv 0$ on ∂D_j. Let $D = D_1 \times \ldots \times D_n$ and let μ be the Borel measure on \mathbb{R}^{2n+2} given by

$$(1.1) \quad \mu (E) = \int_D \chi_E (z, \varphi (z)) \, d\sigma (z),$$

where $z = (x_1 + iy_1, \ldots, x_n + iy_n)$ and $d\sigma (z) = dx_1dy_1 \ldots dx_n dy_n$ denotes the Lebesgue measure on \mathbb{R}^{2n}. We consider the convolution operator given by $Tf = \mu * f$, for $f \in S (\mathbb{R}^{2n+2})$, and the type set

$$E_\mu = \left\{ \left(\frac{1}{p}, \frac{1}{q} \right) \in [0, 1] \times [0, 1] : \|T\|_{p,q} < \infty \right\},$$

where the $L^p (\mathbb{R}^{2n+2})$ spaces are taken with the Lebesgue measure. Our aim is to determine this set. In the case that E_μ does not reduce to the diagonal $\frac{1}{p} = \frac{1}{q}$, we say that the measure μ is L^p improving. A well known result asserts that a necessary condition for a measure μ to be L^p improving is that its support is not contained in any affine submanifold of \mathbb{R}^{2n+2} (see Proposition 1.1 in [7]), so we will only consider the case when φ_j'' does not vanish identically on Ω_j for all $1 \leq j \leq n$.

The case of real hypersurfaces in \mathbb{R}^n has been widely studied (see for example [2], [4], [6], [7], [8]). When the codimension of the surface is greater than one, this matter becomes more complicated.

If for all $1 \leq j \leq n$, $\varphi_j'' (z)$ does not vanish on D_j, with standard techniques we obtain that E_μ is the closed triangle with vertices $(0, 0)$ (1, 1) and $\left(\frac{n+1}{n+2}, \frac{1}{n+2} \right)$. On the other case, if for some $1 \leq j \leq n$, $\{ z \in D_j : \varphi_j'' (z) = 0 \}$ is a finite set $z_{j,1}, \ldots, z_{j,l_j}$, we will prove that E_μ is a closed polygonal region whose vertices depend on the order of each $z_{j,i}, 1 \leq j \leq n, 1 \leq i \leq l_j$, as zero of the function

$$(1.2) \quad \omega_{j,z_{j,i}} (z) = \varphi_j (z) - \varphi_j (z_{j,i}) - (z - z_{j,i}) \varphi_j' (z_{j,i}).$$

In a first step, we study the case $\varphi_j (z) = z^{m_j} g_j (z)$, $m_j \geq 2$, g_j being holomorphic in a neighborhood of the origin and $g_j (0) \not\equiv 0$. We obtain that there exists a neighborhood V of the origin in \mathbb{C}^n such that the associated type set is a closed polygonal region with vertices depending on m_1, \ldots, m_n. Our proof will be based on a suitable adaptation of the argument due to M. Christ, developed in [1], where the author studies the type set associated to the two dimensional measure supported on the parabola. We will derive the general case from this one, with classical arguments.

Throughout this paper c will denote a positive constant not necessarily the same at each occurrence.

2. The case $\varphi_j (z) = z^{m_j} g_j (z), 1 \leq j \leq n$.

For $r > 0$, we set $B_r = \{ z \in \mathbb{C} : |z| \leq r \}$. Let $\varphi (z_1, \ldots, z_n) = \sum_{j=1}^n \varphi_j (z_j)$, where $\varphi_j (z) = z^{m_j} g_j (z), 2 \leq m_1 \leq \ldots \leq m_n$, and g_j are holomorphic functions in B_{r_j} for some $r_j > 0$, with
Lemma 2.1. If \(\left(\frac{1}{p}, \frac{1}{q} \right) \in E_\mu \) and \(0 \leq J \leq n \) then \(\frac{1}{q} \geq \frac{J+1+S_{J+1}}{1+S_{J+1}} \cdot \frac{1}{p} - \frac{J+S_{J+1}}{1+S_{J+1}} \).

Proof. We set \(z = (z_1, ..., z_n) \). For \(0 < \delta < 1 \), we set \(f = \chi_{Q_\delta} \) where \(Q_\delta \subset \mathbb{C}^{n+1} \) is given by

\[
Q_\delta = \{(z, w) : |z_j| \leq \delta, 1 \leq j \leq J; |z_j| \leq \delta^{1/m_j}, J + 1 \leq j \leq n; |w| \leq b\delta\}
\]

with \(b = \sum_{j=1}^{n} \left(\sup_{B_1} |\varphi_j'| + 2 \sup_{B_1} |g_j| \right) \). We define \(A_\delta \subset \mathbb{C}^{n+1} \) by \(A_\delta = \{(z, w) : |z_j| \leq 1, 1 \leq j \leq J; |z_j| \leq \delta^{1/m_j}, J + 1 \leq j \leq n; |w - \varphi(z_1, ..., z_n)| \leq \delta\} \).

We first show that there exists a constant \(c > 0 \) such that for \((z, w) \in A_\delta \)

\[
(2.1) \quad |(\mu * f)(z, w)| \geq c\delta^{2J+2S_{J+1}}.
\]

To see (2.1) we take a fix \((z, w) \in A_\delta \). For \(\psi = (\varsigma_1, ..., \varsigma_n) \in z + (\Pi_{j=1}^{J} B_\delta \times \Pi_{j=J+1}^{n} B_{\delta^{1/m_j}}) \)
we have that

\[
(\varsigma, \varphi(\varsigma)) - (z, w) \in Q_\delta,
\]

indeed, we have \(|\varsigma_j - z_j| \leq \delta, \) for \(1 \leq j \leq J, \) and \(|\varsigma_j - z_j| \leq \delta^{1/m_j}, \) for \(J + 1 \leq j \leq n. \) We also have

\[
|\varphi(\varsigma) - w| \leq |\varphi(\varsigma) - \varphi(z)| + |\varphi(z) - w|.
\]

The mean value theorem gives us, for \(1 \leq j \leq J, \)

\[
|\varphi_j(z_j) - \varphi_j(\varsigma_j)| \leq \delta \sup_{B_1} |\varphi_j'|
\]

and for \(J + 1 \leq j \leq n \)

\[
|\varphi_j(z_j) - \varphi_j(\varsigma_j)| \leq |\varphi_j(z_j)| + |\varphi_j(\varsigma_j)| \leq 2\delta \sup_{B_1} |g_j|.
\]

So

\[
|\varphi(\varsigma) - w| \leq \delta \sum_{j=1}^{n} \left(\sup_{B_1} |\varphi_j'| + 2 \sup_{B_1} |g_j| \right).
\]

Then (2.1) follows. Now,

\[
\|\mu * f\|_q \geq \left(\int_{A_\delta} |\mu * f|^q \right)^{\frac{1}{q}} \geq c\delta^{2J+2S_{J+1}} |A_\delta|^{\frac{1}{q}} = c\delta^{2J+2S_{J+1}+(+2S_{J+1})\frac{1}{q}}.
\]

But \(\left(\frac{1}{p}, \frac{1}{q} \right) \in E_\mu \) implies \(\|\mu * f\|_q \leq c \|f\|_p = c\delta^{(2J+2+2S_{J+1})\frac{1}{p}}. \) So, for all \(\delta > 0 \) small enough,

\[
\delta^{J+S_{J+1}+(1+S_{J+1})\frac{1}{q}} \leq c\delta^{(J+1+S_{J+1})\frac{1}{q}}
\]

then

\[
\frac{1}{q} \geq \frac{J+1+S_{J+1}}{1+S_{J+1}} \cdot \frac{1}{p} - \frac{J+S_{J+1}}{1+S_{J+1}}.
\]
and the lemma follows.

We denote by \(L_J, 0 \leq J \leq n \), the lines given by

\[
\frac{1}{q} = \frac{J + 1 + S_{J+1}}{1 + S_{J+1}} - \frac{J + S_{J+1}}{1 + S_{J+1}}.
\]

Also we denote by \(A_J, 0 \leq J \leq n \), and by \(B_J, 1 \leq J \leq n \) the intersection of \(L_J \) with the non principal diagonal \(\{ \left(\frac{1}{p}, 1 - \frac{1}{p} \right) : 0 \leq \frac{1}{p} \leq 1 \} \) and the intersection of \(L_{J-1} \) with \(L_J \) respectively. A computation shows that, for \(0 \leq J \leq n \),

\[
(2.2) \quad A_J = \left(\frac{J + 1 + 2S_{J+1}}{J + 2 + 2S_{J+1}}, \frac{1}{J + 2 + 2S_{J+1}} \right)
\]

and for \(1 \leq J \leq n \)

\[
(2.3) \quad B_J = \left(\frac{1 + S_{J+1} + (J - 1)m_{J+1}^{-1}}{1 + Jm_{J+1} + S_{J+1}}, \frac{1 - m_{J+1}^{-1}}{1 + Jm_{J+1} + S_{J+1}} \right).
\]

Let \(\psi \) be a \(C_0^\infty (\mathbb{R}) \) function supported in the interval \(\left[\frac{1}{2}, 4 \right] \) such that \(\psi \equiv 1 \) on \([1, 2] \), and \(0 \leq \psi \leq 1 \). We observe that \(1 \leq \sum_{k \in \mathbb{N} \cup \{0\}} \psi (2^k x) \leq 3 \) for \(x \in (0, 2) \). For each \(k_1, \ldots, k_n \in \mathbb{N} \cup \{0\} \) we set

\[
\mu_{k_1, \ldots, k_n} (E) = \int_D \chi_E (z, \varphi (z)) \psi (2^{k_1} |z_1|) \ldots \psi (2^{k_n} |z_n|) \, d\sigma (z).
\]

So \(\mu \leq \sum_{k_1, \ldots, k_n \in \mathbb{N}} \mu_{k_1, \ldots, k_n} \). We also denote by \(T_{k_1, \ldots, k_n} \) the convolution operator given, for \(f \in S(\mathbb{R}^{2n+2}) \), by

\[
(2.4) \quad T_{k_1, \ldots, k_n} f = \mu_{k_1, \ldots, k_n} * f.
\]

Proposition 2.2. If \(\xi = (s_1, t_1, \ldots, s_{n+1}, t_{n+1}) \in \mathbb{R}^{2n+2} \) then

\[i) \quad \left| \left(\mu_{k_1, \ldots, k_n} \right)^\wedge (\xi) \right| \leq c \frac{\prod_{j=1}^{n} 2^{k_j (m_j - 2)}}{(1 + |(s_{n+1}, t_{n+1})|)^n} ;
\]

\[ii) \text{ for } 0 \leq J \leq n - 1 \]

\[
\left| \left(\sum_{k_j+1, \ldots, k_n \in \mathbb{N}} \mu_{k_1, \ldots, k_n} \right)^\wedge (\xi) \right| \leq c \frac{\prod_{j=1}^{J} 2^{k_j (m_j - 2)}}{(1 + |(s_{n+1}, t_{n+1})|)^{J+2S_{J+1}}} ;
\]

\[iii) \text{ for } 1 \leq J \leq n \]

\[
\left| \left(\sum_{k_j \in \mathbb{N}} \mu_{k_1, \ldots, k_n} \right)^\wedge (\xi) \right| \leq c \frac{\prod_{j=1}^{J-1} 2^{k_j (m_j - 2)} \prod_{j=J+1}^{n} 2^{k_j (m_j - 2)}}{(1 + |(s_{n+1}, t_{n+1})|)^{J-1+2m_j + m_j S_{J+1}}} .
\]

Proof. We set

\[
I_{j,k_j} (s, t, s_{n+1}, t_{n+1}) = \int e^{-i(sx + ty + \langle (s_{n+1}, t_{n+1}), \varphi_j (x, y) \rangle)} \psi (2^{k_j} |(x, y)|) \, dx dy,
\]

thus

\[
\left(\mu_{k_1, \ldots, k_n} \right)^\wedge (\xi) = \prod_{j=1}^{n} I_{j,k_j} (s_j, t_j, s_{n+1}, t_{n+1})
\]
and
\[
\left(\sum_{k_1 \ldots k_n \in \mathbb{N}} \mu_{k_1 \ldots k_n}\right)^\wedge \left(\xi\right)
\]
\[
= \prod_{j=1}^{J} I_{j,k_j} \left(s_j, t_j, s_{n+1}, t_{n+1}\right) \prod_{j=1}^{n} \sum_{k_j \in \mathbb{N}} I_{j,k_j} \left(s_j, t_j, s_{n+1}, t_{n+1}\right).
\]
Since \(\varphi_j\) is a holomorphic function a computation shows that for \((x, y)\) such that \(2^{k_j} |(x, y)| \in \text{supp} \psi\)
\[
|Hess_{x,y} \left(s x + t y + \langle (s_{n+1}, t_{n+1}), \varphi_j \left(x, y\right)\rangle\right)| = \left|\varphi_j'' \left(x + i y\right)\right|^2 |(s_{n+1}, t_{n+1})|^2 \geq c 2^{-2k_j(m_j-2)} |(s_{n+1}, t_{n+1})|^2,
\]
then using the method of the stationary phase (see proposition 6, p. 344 in [9]) we obtain
\[
(2.5) \quad \left|I_{j,k_j} \left(s, t, s_{n+1}, t_{n+1}\right)\right| \leq \frac{c 2^{k_j(m_j-2)}}{1 + |(s_{n+1}, t_{n+1})|},
\]
thus \(i)\) follows. Now a change of variables shows that
\[
I_{j,k_j} \left(s, t, s_{n+1}, t_{n+1}\right) = 2^{-2k_j} I_{j,0}^k \left(2^{-k_j} s, 2^{-k_j} t, 2^{-k_j} m_j s_{n+1}, 2^{-k_j} m_j t_{n+1}\right),
\]
where
\[
I_{j,0}^k \left(s, t, \tilde{s}, \tilde{t}\right) = \int e^{-i(sx + ty + \langle (\tilde{s}, \tilde{t}), (x + iy)^{m_j} g_j \left(2^{-k_j} x, 2^{-k_j} y\right)\rangle)} \psi \left(|(x, y)|\right) dx dy.
\]
We note that for \((x, y)\) such that \(|(x, y)| \in \text{supp} \psi\)
\[
|Hess_{x,y} \left(s x + t y + \langle (\tilde{s}, \tilde{t}), (x + iy)^{m_j} g_j \left(2^{-k_j} x, 2^{-k_j} y\right)\rangle\right)| = \left|\frac{d^2}{dz^2} z^{m_j} g_j \left(2^{-k_j} z\right)\right|^2 \left|\left(\tilde{s}, \tilde{t}\right)\right|^2 \geq c \left|\left(\tilde{s}, \tilde{t}\right)\right|^2
\]
with \(c\) independent of \(k_j\). Indeed, since \(g_j(0) \neq 0\), there exists \(k_0\) such that for \(k \geq k_0\),
\[
\left|\frac{d^2}{dz^2} z^{m_j} g_j \left(2^{-k_j} z\right)\right| = m_j m_j - 1 z^{m_j - 2} g_j \left(2^{-k_j} z\right) + 2 m_j 2^{-k_j} z^{m_j - 1} g_j' \left(2^{-k_j} z\right) + 2^{-2k_j} z^{m_j} g_j'' \left(2^{-k_j} z\right) \geq c,
\]
and since \(\varphi_j''\) does not vanish on \(B_1 - \{0\}\), if \(k \leq k_0\),
\[
\left|\frac{d^2}{dz^2} z^{m_j} g_j \left(2^{-k_j} z\right)\right| = \left|\frac{d^2}{dz^2} z^{m_j} \varphi_j \left(2^{-k_j} z\right)\right| = \left|2^{k_j(m_j-2)} \varphi_j'' \left(2^{-k_j} z\right)\right| \geq c.
\]
Then
\[
(2.6) \quad \left|I_{j,0}^k \left(s, t, \tilde{s}, \tilde{t}\right)\right| \leq \frac{c}{1 + \left|\left(\tilde{s}, \tilde{t}\right)\right|}.
\]
Now, as in the proof of Lemma 1 in [5],
\[
\left|\sum_{k_j \in \mathbb{N}} I_{j,k_j} \left(s, t, s_{n+1}, t_{n+1}\right)\right| = \left|\sum_{k_j \in \mathbb{N}} 2^{-2k_j} I_{j,0}^k \left(2^{-k_j} s, 2^{-k_j} t, 2^{-k_j} m_j s_{n+1}, 2^{-k_j} m_j t_{n+1}\right)\right|,
\]
respectively. Then

\[\text{Lemma 2.3.} \]

Let \(\parallel T \parallel_{p,q} \) denote the \(p,q \)-norm of \(T \). Define \(C \) as

\[C_j = \left(\frac{2m_j^{-1} + J + m_jS_{j+1}}{1 + J + 2m_j^{-1} + m_jS_{j+1}} \right)^{\frac{1}{1+J+2m_j^{-1} + m_jS_{j+1}}}. \]

\text{Lemma 2.3. Let} \(T_{k_1,...,k_n} \) \text{be defined by (2.4) and let} \(A_j \) \text{and} \(C_j \) \text{be defined by (2.2) and (2.8) respectively. Then}

\[\text{i) } \parallel T_{k_1,...,k_n} \parallel_{A_n} \leq c \prod_{j=1}^{n} 2^{2^{k_j} \frac{m_j^{-2}}{n+2}}, \]

\[\text{ii) for } 0 \leq J \leq n - 1 \]

\[\parallel \sum_{k_j+1,...,k_n \in \mathbb{N}} T_{k_1,...,k_n} \parallel_{A_j} \leq c \prod_{j=1}^{J} 2^{2^{k_j} \frac{m_j^{-2}}{J+2J+S_{J+1}}}, \]
iii) for $1 \leq J \leq n$
\[
\left\| \sum_{k_j \in \mathbb{N}} T_{k_1, \ldots, k_n} \right\|_{C_J} \leq \left(\prod_{j=1}^{J-1} 2^{k_j(m_j-2)} \prod_{j=J+1}^{n} 2^{k_j(m_j-2)} \right)^{\frac{2}{J+1+2m_{J}^{-1}+m_{J}S_{J+1}}}.
\]

Proof. To prove i) we use the complex interpolation theorem. For $Re(z) > 0$ and $(s, t) \in \mathbb{R}^2$ we consider the fractional integration kernel
\[
I_z(s, t) = \frac{2^{-\frac{2}{j}}}{\Gamma(\frac{2}{j})} |(s, t)|^{\frac{4}{j}-2}
\]
and its analytic extension to $z \in \mathbb{C}$. In particular we have $\hat{I}_z = c I_{2-z}$, also $I_0 = c \delta$ where δ denotes the Dirac distribution at the origin. We also define J_z as the distribution on \mathbb{R}^{2n+2} given by the tensor product $J_z = \delta \otimes \cdots \otimes \delta \otimes I_z$. For z such that $-n \leq Re(z) \leq 2$ we consider the analytic family of operators
\[
U_z f = e^{-\frac{z}{2}} \mu_{k_1, \ldots, k_n} * J_z * f.
\]
Taking account of Proposition 2.2 i) we obtain that
\[
\| U_{-n+i\gamma} \|_{2,2} \leq c \prod_{j=1}^{n} 2^{k_j(m_j-2)},
\]
also it is easy to check that
\[
\| U_{2+i\gamma} \|_{1,\infty} \leq c e^{-\gamma} \left| \Gamma\left(\frac{2+i\gamma}{2}\right)\right|^{-1} \leq c,
\]
so by interpolation,
\[
\| T_{k_1, \ldots, k_n} \|_{A_n} \leq c \| U_0 \|_{2,2} = c \prod_{j=1}^{n} 2^{k_j(m_j-2)}.
\]

Now ii) follows similarly, applying the complex interpolation theorem to the operators $U_z f = e^{-\frac{z}{2}} \sum_{k_j \in \mathbb{N}} \mu_{k_1, \ldots, k_n} * J_z * f$, on the strip $-J - 2S_{J+1} \leq Re(z) \leq 2$ and using Proposition 2.2 ii). Also, iii) follows in analogous way, applying the complex interpolation theorem to the operators $U_z f = e^{-\frac{z}{2}} \sum_{k_j \in \mathbb{N}} \mu_{k_1, \ldots, k_n} * J_z * f$, on the strip $-(J - 1 + 2m_{J}^{-1} + m_{J}S_{J+1}) \leq Re(z) \leq 2$ and then using Proposition 2.2 iii).

Following the approach in [1], we recall that for $k_j \in \mathbb{N}$
\[
I_{j,0}^{k_j}(s, t, \tilde{s}, \tilde{t}) = \int e^{-i(sx+ty+(\tilde{s} \tilde{x}, \tilde{t} \tilde{y})m_j g_j(2^{-k_j}x, 2^{-k_j}y))} \psi \left(|(x, y)| \right) dx dy.
\]
If $(x + iy)^m_j g_j(2^{-k_j}x, 2^{-k_j}y) = u(x, y) + iv(x, y)$,
\[
\frac{\partial}{\partial x} \left(sx + ty + (\tilde{s} \tilde{x}, \tilde{t} \tilde{y}) \right) = s + \tilde{s} u_x (x, y) + \tilde{t} v_x (x, y)
\]
and
\[
\frac{\partial}{\partial y} \left(sx + ty + (\tilde{s} \tilde{x}, \tilde{t} \tilde{y}) \right) = t + \tilde{s} u_y (x, y) + \tilde{t} v_y (x, y)
\]
and so if the gradient of the phase function vanishes at some (x, y) with $|(x, y)| \in \text{supp} \psi$ then
Now,
\[
(u + iv)'(z) = m_J z^{m_J - 1} g_J(2^{-k_J} z) + z^{m_J} 2^{-k_J} g'_J(2^{-k_J} z) = 2^{k_J(m_J - 1)} \phi'_J(2^{-k_J} z).
\]

so from the first equality we obtain that there exists \(k_0\) such that for \(k_J \geq k_0\), \(|(u + iv)'|\) is bounded from above and from below uniformly on \(B_1 \setminus \{0\}\), from the second equality we obtain the same assertion for \(1 \leq k_J < k_0\) and so there exist constants \(c_1', c_2' > 0\) such that \((s, t, \bar{s}, \bar{t})\) belongs to the cone
\[
\Gamma_0 = \{(s, t, \bar{s}, \bar{t}) : c_1' |(s, t)| \leq |(\bar{s}, \bar{t})| \leq c_2' |(s, t)|\}.
\]

We define
\[
\Gamma_0 = \{(s, t, \bar{s}, \bar{t}) : c_1 |(s, t)| \leq |(\bar{s}, \bar{t})| \leq c_2 |(s, t)|\}
\]
with \(c_1 = \min_{1 \leq J \leq n} \{c_1'\}\) and \(c_2 = \max_{1 \leq J \leq n} \{c_2', 2c_1\}\).

Let \(M\) be a function belonging to \(C^\infty(\mathbb{R}^d \setminus \{0\})\) homogeneous of degree zero with respect to the euclidean dilations on \(\mathbb{R}^d\) such that \(\text{supp} M \subset T_0\) and for \(1 \leq J \leq n\) and \(k \in \mathbb{Z}\), let \(M_{j,k}(z, w) = M(2^{-k}z, 2^{-km_J}w)\). Moreover, we choose \(M\) such that \(\{M_{j,k}\}_{k \in \mathbb{Z}}\) is a \(C^\infty\) partition of unity in \(\{(z, w) : z \neq 0 \text{ and } w \neq 0\}\). Let \(c_0\) be a constant such that \(M_{j,k} = \sum_{|h| \leq c_0} M_{j,k}\) be identically one on \(\text{supp} M_{j,k}\). Also, for \(\xi_1, \ldots, \xi_{n+1} \in \mathbb{C}^{n+1}\), we set
\[
\mathcal{M}_{j,k}(\xi_1, \ldots, \xi_{n+1}) = M_{j,k}(\xi_j, \xi_{n+1}) \text{ and } \mathcal{M}_{j,k}(\xi_1, \ldots, \xi_{n+1}) = \mathcal{M}_{j,k}(\xi_j, \xi_{n+1}).
\]
Let \(\mathcal{Q}_{j,k}\) be the operator with multiplier \(\mathcal{M}_{j,k}\).

Let \(H \in C^\infty_0(\mathbb{R}^d)\) be identically one in a neighborhood of the origin, and for \(\xi_1, \ldots, \xi_{n+1} \in \mathbb{C}^{n+1}\), let \(\mathcal{H}_{j,k}(\xi_1, \ldots, \xi_{n+1}) = H(2^{-k}x, 2^{-km_J}w)\) and let \(P_{j,k}\) be the Fourier multiplier operator with symbol \(\mathcal{H}_{j,k}\).

The following lemma is the key argument contained in [11], adapted to our \(2n\) dimensional setting. The proof is in [2], p. 37, for the case \(n\) dimensional, but can be straightforward adapted to this case.

Lemma 2.4. Let \(\{\sigma_k\}_{k \in \mathbb{N}}\) be a sequence of positive measures on \(\mathbb{R}^{2n+2}\), and let \(T_k f = \sigma_k * f\) for \(f \in S(\mathbb{R}^{2n+2})\). Suppose \(1 \leq J \leq n, 1 < p \leq 2\) and \(1 \leq q < \infty\). If there exists \(A > 0\) such that
\[
\sup_{k \in \mathbb{N}} \|T_k\|_{p,q} \leq A, \quad \left\| \sum_{1 \leq k \leq N} T_k P_{j,k} \right\|_{p,q} \leq A \quad \text{and} \quad \left\| \sum_{1 \leq k \leq N} T_k (I - P_{j,k}) \left(I - \mathcal{Q}_{j,k} \right) \right\|_{p,q} \leq A
\]
for all \(N \in \mathbb{N}\), then there exists \(c > 0\), \(c\) independent of \(A, N\) and \(\{\sigma_k\}_{k \in \mathbb{N}}\) such that
\[
\left\| \sum_{1 \leq k \leq N} T_k \right\|_{p,q} \leq cA.
\]

Our next aim is to study the operators \(\sum_{1 \leq k \leq N} T_{k_1, \ldots, k_n} (I - P_{j,k_1}) (I - \mathcal{Q}_{j,k_1})\) and \(\sum_{1 \leq k \leq N} T_{k_1, \ldots, k_n} P_{j,k_1}\). As in [2] we obtain the following result

Lemma 2.5. For \(1 < p, q < \infty\) and \(N \in \mathbb{N}\) there exists \(c > 0\) independent of \(N\) such that

\(a)\)
\[
\left\| \sum_{1 \leq k \leq N} T_{k_1, \ldots, k_n} (I - P_{j,k_1}) (I - \mathcal{Q}_{j,k_1}) \right\|_{p,q} \leq c \left\| \sum_{1 \leq k \leq N} T_{k_1, \ldots, k_n} \right\|_{p,q}.
\]
and
\[\left\| \sum_{1 \leq k_j \leq N} T_{k_1, \ldots, k_n} P_{j,k_j} \right\|_{p,q} \leq c \left\| \sum_{1 \leq k_j \leq N} T_{k_1, \ldots, k_n} \right\|_{p,q}. \]

Lemma 2.6. If \(N \in \mathbb{N} \) then

a) the kernel of the convolution operator
\[
\sum_{1 \leq k_j \leq N} T_{k_1, \ldots, k_n} (I - P_{j,k_j}) \left(I - \bar{Q}_{j,k_j} \right)
\]
belongs to weak- \(L^{1+m_{j^{-1}}} \) and its norm is less than \(c2^{-\sum_{j \neq j} 2k_j} \), with \(c \) independent of \(N \),

b) the kernel of the convolution operator
\[
\sum_{1 \leq k_j \leq N} T_{k_1, \ldots, k_n} P_{j,k_j}
\]
belongs to weak- \(L^{1+m_{j^{-1}}} \) and its norm is less than \(c2^{-\sum_{j \neq j} 2k_j} \), with \(c \) independent of \(N \).

Proof. a) A computation shows that the kernel \(K_{k_1, \ldots, k_n} \) of the convolution operator
\[
T_{k_1, \ldots, k_n} (I - P_{j,k_j}) \left(I - \bar{Q}_{j,k_j} \right)
\]
is the function given by
\[
K_{k_1, \ldots, k_n} (z_1, \ldots, z_{n+1}) = 2^{k_j m_j} G_J \left(-2^{k_j} z_j, 2^{k_j m_j} \left(-z_{n+1} + \sum_{j \neq j} \varphi_j (-z_j) \right) \right) \prod_j \psi \left(2^{k_j} |z_j| \right)
\]
where \(G_J = \left(I_{j,0}^k (1 - H) \left(1 - \bar{M}_{j,0} \right) \right)^{\wedge} \). Now, as in the proof of (2.3) in \([3]\) we obtain that the functions \(G_J \) belong to \(S (\mathbb{R}^4) \) and that they are uniformly (with respect to \(k_j \)) rapidly decreasing at infinity. So, as in the proof of Lemma 2.6 in \([2]\) we get a). Now b) follows similarly after noting that the kernel of the operator \(T_{k_1, \ldots, k_n} P_{j,k_j} \) is of the form (2.9) with \(G_J = \left(I_{j,0}^k H \right)^{\wedge} \).

Let \(J_0 \) be defined by \(J_0 = 0 \) if \(m_1 > 2 \) and \(J_0 = \max \{ j : 1 \leq j \leq n, \ m_j = 2 \} \) if \(m_1 = 2 \). These previous lemmas allows us to prove the following result

Proposition 2.7. If \(J > J_0 \) then there exists \(c > 0 \), independent of \(k_1, \ldots, k_{j-1} \), such that for \(N \in \mathbb{N} \)

a)
\[
\left\| \sum_{1 \leq k_j \leq N} T_{k_1, \ldots, k_n} (I - P_{j,k_j}) \left(I - \bar{Q}_{j,k_j} \right) \right\|_{B_J} \leq c2^{-\sum_{j=1}^{J-1} 2k_j \left(m_j^{-1} - m_{j-1}^{-1} \right) \left(1 + s_{j+1} + s_j m_j^{-1} \right)}
\]

and

b)
\[
\left\| \sum_{1 \leq k_j \ldots, k_n \leq N} T_{k_1, \ldots, k_n} P_{j,k_j} \right\|_{B_J} \leq c2^{-\sum_{j=1}^{J-1} 2k_j \left(m_j^{-1} - m_{j-1}^{-1} \right) \left(1 + s_{j+1} + s_j m_j^{-1} \right)}.
\]
Proof. We denote by $E_J = \left(1, \frac{1}{1 + m_j^2} \right)$. Since $B_J = tC_J + (1 - t) E_J$ with $t = \frac{m_j + Jm_j^3 S_{j+1}^2}{m_j + m_j^3 S_{j+1}^2}$, Lemma 2.3 (iii), Lemma 2.6 (a) and the Marcinkiewicz interpolation theorem imply that
\[
\left\| \sum_{1 \leq k \leq n} T_{k \ldots k_n} (I - P_{jk}) \left(I - \tilde{Q}_{jk} \right) \right\|_{B_J} \leq c \left(\prod_{j=1}^{n} 2^{k_j(m_j-2)} \prod_{j=J+1}^{n} 2^{k_j(m_j-2)} \right) \left(J + J + m_j S_{j+1} \right) \left(2 - \sum_{j \neq J} 2(2k_j)(1-t) \right).
\]
Now if t is defined as above,
\[
t = \frac{2(m_j - 2)}{J + 1 + 2m_j^{-1} + m_j S_{j+1}^2} - 2(1-t) = -\frac{2(m_j + m_j^3 - m_j m_j - 2)}{m_j (J + m_j + m_j S_{j+1})},
\]
so a) follows. Analogously, b) follows. \(\blacksquare \)

At this point we have already proved all the results needed to follow straightforward the proof of Theorem 3.12 in [2] to obtain the next

Theorem 2.8. E_μ is the closed convex polygonal region with vertices $(1, 1), B_n, ..., B_{J_0 + 1}, A_{J_0}$ and the symmetric points with respect to the non principal diagonal $(\frac{1}{p}, \frac{1}{p'})$.

Remark 2.1. We observe that E_μ is the closed convex polygonal region with vertices $(1, 1)$, $B_n, ..., B_1$ and the symmetric points with respect to the non principal diagonal $(\frac{1}{p}, \frac{1}{p'})$.

3. The General Case

For $1 \leq j \leq n$, let Ω_j be open sets of the complex plane and let $\varphi_j : \Omega_j \to \mathbb{C}$ be holomorphic functions on Ω_j such that φ_j'' does not vanish identically on Ω_j. We take $\varphi : \Omega_1 \times ... \times \Omega_n \to \mathbb{C}$ given by
\[
\varphi (z_1, ..., z_n) = \varphi_1 (z_1) + ... + \varphi_n (z_n).
\]
Let D_j be bounded open sets such that $\overline{D_j} \subset \Omega_j$ and such that $\varphi_j'' \neq 0$ on ∂D_j. Let $D = D_1 \times ... \times D_n$ and let μ be the Borel measure on \mathbb{R}^{2n+2} given by (1.1). If φ_j'' does not vanish on D_j, let $l_j = 0$. On the other case, let $\{ z_{j,i} \}_{1 \leq i \leq l_j}$ be the zeros of φ_j'' in D_j and let $m_{j,i}$ be the order of $z_{j,i}$ as a zero of $\omega_{j,i}$.

In any case, let $m_{j,0} = 2$. Let
\[
\mathcal{M} = \{(m_{1,i_1}, ..., m_{n,i_n}) : 0 \leq i_j \leq l_j, 1 \leq j \leq n \}.
\]
For $i = (i_1, ..., i_n)$ we denote $m_i = (m_{1,i_1}, ..., m_{n,i_n})$. If $m_i \in \mathcal{M}$ we take the multiindex
\[
\sigma (m_i) = (\sigma (m_{1,i_1}), ..., \sigma (m_{n,i_n})) \text{ where } \sigma \text{ is a permutation of the set } \{m_{1,i_1}, ..., m_{n,i_n}\} \text{ such that } \sigma (m_{1,i_1}) \leq ... \leq \sigma (m_{n,i_n}).
\]
We denote with E_{m_i} the closed convex polygonal region with vertices $(1, 1)$,
\[
B_{j,i,j} = \left(\frac{1 + S_{j+1}^i + (J - 1) (\sigma (m_{j,i,j}))^{-1}}{1 + J (\sigma (m_{j,i,j}))^{-1} + S_{j+1}^i}, \frac{1 - (\sigma (m_{j,i,j}))^{-1}}{1 + J (\sigma (m_{j,i,j}))^{-1} + S_{j+1}^i} \right).
\]
Theorem 3.1. E_μ is the closed convex polygonal region given by

$$E_\mu = \bigcap_{m_i \in \mathcal{M}} E_{m_i}.$$

Proof. For each $z_j \in \overline{D}_j$ we have a ball $B_r(z_j) \subset \Omega_j$ such that for $z \in B_r(z_j)$, we have:

$$\omega_{j,z_j}(z) = \varphi_j(z) - \varphi_{j}(z_j) - \varphi_j^\prime(z_j) = (z - z_j)^{m_j} g_{j,z_j}(z)$$

with $g_{j,z_j}(z_j) \neq 0$, $m_j \geq 2$ and $\omega_{j,z_j}, (\omega_{j,z_j})', ..., (\omega_{j,z_j})^{(m_j)}$ different from zero on $B_r(z_j) \setminus \{z_j\}$. We note that if $z_j = z_i$ for some $1 \leq i \leq l_j$ then $m_j \geq 2$. On the other case $m_j \geq 2$. Since \overline{D}_j is a compact set, there exists a finite set $F \subset \prod_{1 \leq j \leq n} \overline{D}_j$ such that D can be covered with a finite collection of sets of the form

$$D_{z_1, \ldots, z_n} = \prod_{1 \leq j \leq n} B_r(z_j) \quad (z_1, \ldots, z_n) \in F.$$

We denote by $T_{D_{z_1, \ldots, z_n}}$ the operator of convolution with $\mu_{D_{z_1, \ldots, z_n}}$ defined by (1.1) with D replaced by D_{z_1, \ldots, z_n}.

Now,

$$\|T\|_{p,q} \leq \sum_{(z_1, \ldots, z_n) \in F} \|T_{D_{z_1, \ldots, z_n}}\|_{p,q}.$$

We note that $(m_1, z_1, \ldots, m_n, z_n) \in \mathcal{M}$, thus $(m_1, z_1, \ldots, m_n, z_n) = m_i$ for some $i = (i_1, \ldots, i_n)$, $0 \leq i_j \leq l_j, 1 \leq j \leq n$. After a linear change of variables (if necessary) we can apply the results of the previous paragraph to obtain that the type set associated to $T_{D_{z_1, \ldots, z_n}}$ is E_{m_i}. So

$$\bigcap_{m_i \in \mathcal{M}} E_{m_i} \subseteq E_\mu.$$

Now we take $m_i \in \mathcal{M}$. If $m_{j,i_j} > 2$ for every $1 \leq i_j \leq l_j, 1 \leq j \leq n$, we observe that since φ_j'' does not vanish on ∂D_j, we can take $B_r(z_{j,i_j}) \subset D_j$ so

$$D_i = B_r(z_{1,i_1}) \times \ldots \times B_r(z_{n,i_n}) \subset D_1,$$

and then

$$\|T_{D_i}\|_{p,q} \leq \|T\|_{p,q}.$$

Now the type set associated to D_i is E_{m_i}, so $E_\mu \subseteq E_{m_i}$. Finally, if some $m_{j,i_j} = 2$, we take any point $\tilde{z}_j \in D_j$ and a ball B_j with center \tilde{z}_j, contained in D_j such that $\omega_{j,\tilde{z}_j}, \omega'_{j,\tilde{z}_j}$ and ω''_{j,\tilde{z}_j} be different from zero on $B \setminus \{\tilde{z}_j\}$. For the other j’s we take $B_r(z_{i,j})$. Since E_{m_i} is the type set associated to the cartesian product of these balls, we proceed as before.

REFERENCES

