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2 YASUO KOMORI-FURUYA

1. INTRODUCTION

Since Coifman, Rochberg and Weiss [2] introduced the commutator of multiplication oper-
ator and singular integral operator, many studies have been done for this commutator (see the
references in[5]). Long and Warng [5] considered the commutator of multiplication operator by
b and Hardy operatoH f(x) = — 2 fo t)dt. Fu and Lul[3] generalized their results Bfi.

They showed that i§ € CMOP(R”) N CMOP (R™), the commutator of multiplication operator
by b and then-dimensional Hardy operator is bounded GHR™).

In this paper we show the converse of their theorem and also prove that the co6difio¥(R™)N
CMO” (R") is optimal by giving a counterexample in Section 5.

The following notation is used: For a setC R" we denote the Lebesgue measuré/dby
|E|. We denote the characteristic functionofby y ;. We write a ball of radius centered at
the origin byB(0,7) = {z;|z| < r}.

2. DEFINITIONS
First we definex-dimensional fractional Hardy operators. l0et G < n.

Definition 2.1.

Hpf(x) ==

and the adjoint operator

o I
H3f(x) = /B(W) st T €RM0)

Wheng = 0, H, is then-dimensional Hardy operator.

| z[=7

/B L W B (o)

Let b be a locally integrable function dR". We define the commutator operator of multipli-
cation byb and the fractional Hardy operator as follows.

Definition 2.2.
Hppf(x) = b(x)Hgf(x) — Ha(bf)(x),  Hp,f(x) :=bx)Hsf(x) — Hi(bf)(@).

Chen and Lau [1] and Garcia-Cuerva [4] introducétl/ O? spaces and Herz-Hardy spaces
H AP, and proved the next duality theorem. et p < cc.

Definition 2.3. A function f € L (R") is said to belong t@'M O?(R™), if

loc

1/p
I lovos = supint (, ] / —c|pd9:) .
0r

Remark 2.1. Whenp, > p,, CMOP* ¢ CMOP? and the John-Nirenberg spaé&V/O is
contained inC'’ M OP.

Definition 2.4. We saya is a centereg-atom if there exists > 0 such that
supa) € B(0,r), [lal <|B(,7)]Y*" and /a(x)dx 0.

Definition 2.5. We sayf is in HA?(R") if f can be written as

E :CJCLJ

7=1
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wherea; are centereg-atoms and 2 | |¢;| < oo, and we define

oo
£l rrar == inf > eyl
j=1

where the infimum is taken over all representationg.of
Remark 2.2. HA?(R") ¢ H'(R") whereH'(R") is the ordinary Hardy space.

Proposition 2.1([4]). Let1 < p < oco. The dual space off A?(R") is C MO (R") where
1/p+1/p =1.
(HAP(R™))* = CMO” (R").
3. THEOREMS
Fu and Lu[[3] showed the following.

Theorem 3.1([3]). Letl < p < 00,0 < f < mnandl/g = 1/p—pF/n > 0. Ifb €
CMOY (R™) N CMOR"), thenH s, and H};, are bounded froni?(R™) to LI(R").

IHppllLe < C(Ibllcaror + 16lloarod)ll fl e,
1Hjplle < C(Ibllcaror + 1blloarod)ll fll e

Throughout this pape¢, is a positive constant which is independent of essential parameters
and not necessarily same at each occurrence.
We obtain the converse of this theorem.

Theorem 3.2.Letl < p < 00,0 < @ <mnandl/qg=1/p—3/n > 0. If Hz, and H}, are
bounded operators froh?(R™) to L?(R™), thenb € CM O (R™) NC' M O4(R"). Furthermore

Wllosror + lblleaor < C(1Haollzns + 11 H3pllio—is).

We also show that the both conditiohs C'MOP (R™) andb € CMO?(R™) are necessary
to obtainHs, : LP — L9 only. We shall prove this by giving a counterexample in Section 5.

4. PROOF OF THEOREM
To prove Theorerp 3|2 we shall prove the following theorem.

Theorem4.1l.Letl <p <oo,0<p <nandl/q=1/p—3/n>0.If Hg, is bounded from
LP(R™) to L¢(R™), thenb € C MOY (R™). Furthermore

16l caror < CllHppllr—ra-
By using this theorem, we can prove Theoienj 3.2.

Proof of Theorerfi 3]2By the assumption/7};, is bounded fromZ”(R") to L?(R"), therefore

Hg, is bounded fromi? (R™) to L” (R"). Note thatl/p’ = 1/¢' — 3/n. By Theorenj 41 we
obtainb € CMO4(R™), since(q¢’) = q. 1

Now we prove Theorefn 4.1.

Proof of Theorerf 4]1By the duality betweert/ A» andC M O (see Propositi.l in Section
2), it suffices to show the following: For any centeypedtoma,

(4.1) )/a(m)b(x)dw‘ < C||Hpp| Lr—ra-

To prove [(4.11) we need the next lemma.
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Lemma4.2.Let]l < p < 00,0 < < mnandl/q=1/p— (/n. For any centereg-atoma,
there existf and g such that

a(x) = f(z)Hpg(x) — g(z)Hp f(x) and |[fllcr - gl < C.
Proof of Lemma 4]2Let a be a centereg-atom supported i®3 (0, ). We set

f(a) = (log5 -wp—1)ta(z) and g(z) = [z X(a<jai<an (),

wherew,_; is the surface of the unit sphes&—!.
When|z| > r, Hgf(x) = 0, thereforey - Hgf = 0.

When|z| < r,
3r 1

Hgg(x):wn_l/ —dt =log3 - w,_1.

2r 13
Therefore we havg(z) - Hjg(z) = a(x), and obtaimu = fHjzg — gHpf.
Furthermore we have

Ifllr < Cllallr < Cr"A7=D and |lg|l 0 < Cr=+/d = Cp=otn=nia,
and obtain| f||z» |gll . < C. B
By using this Lemma, we provg (4.1).

| [ a@ptaris| = | [ (712) 30 ~ gl Haf (@) oa)da] = | [ 1) 390010
< fllzellH b9l o < 1HG gl por —po | fllzellgll o < CllHppllLo— 1o
We obtain the desired resuk.

5. COUNTEREXAMPLE

In Theoren] 41 we have already showed that the conditierC' M O¥ (R”) is necessary to
obtain the boundedness ff; , from L? to L. In this section we shall show that the condition
b € CMOR") is optimal by giving a counterexample. When> py, CMOP* C CMOP>.
Therefore we need to consider the case g wherel/q = 1/p—(3/n. We prove the following:
For anyp’ < r < g, there exists a functioh such thath € CMO"™ \ CMO? and Hg, is not
bounded froml? to L9.

Counterexample 1.Suppose that/q = 1/p — 3/nandp’ <r < q. LetA; = {zr e R*; 2 <
lz| <27 +1}, A =U2,A; and define

e}

ba) = -2/ xa, (@)
F(@) = (J21" (0g [2)%) "X uysapa().
Thenb € CMO™(R™) \ CMOR") and f € LP(R™), butHg,f ¢ LI(R™).

Proof. It suffices to show that{s;,f ¢ L?(R"). Since the supports df and f are disjoint,
Hppf(x) = b(z)Haf(x). Forz € A;, we have

C n -1 (B /p)
00> 550 [ (Iy/"(log y)2) ™ dy > €211 =20

“1pi<|y|<2i
and
b(z)Hgf(x) > C2W/m+B=1/p) j=2/p — Ci(/r=n/a) j=2/p,
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Therefore we obtain
/ (Hppf(x))%dx > CZ 9ia(1/r=n/a)gi(n=1) j=2a/p _ o
sinceq(1/r —n/q) +n—1>q/r—1>0.
|
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