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ABSTRACT. Shape diagrams are representations in the Euclidean plane introduced to study 3-
dimensional and 2-dimensional compact convex sets. However, they can also been applied to
more general compact sets than compact convex sets. A compact set is represented by a point
within a shape diagram whose coordinates are morphometrical functionals defined as normal-
ized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the
perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum
Feret diameters. They allow twenty-two shape diagrams to be built. Starting from these six
classical geometrical functionals, a detailed comparative study has been performed in order to
analyze the representation relevance and discrimination power of these twenty-two shape dia-
grams. The two first parts of this study are published in previous papers [8, 9]. They focus
on analytic compact convex sets and analytic simply connected compact sets, respectively. The
purpose of this paper is to present the third part, by focusing on the convexity discrimination for
analytic and discretized simply connected compact sets.
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1 INTRODUCTION

The Santalo’s shape diagrams [10] allow to represent a 2D compact convex set by a point in
the Euclidean 2D plane from six geometrical functionals: the area, the perimeter, the radii of
the inscribed and circumscribed circles, and the minimum and maximum Feret diameters [4].
The axes of each shape diagram are defined from a pair of geometric inequalities relating these
functionals. Sometimes, the two geometric inequalities provide a complete system: for any
range of numerical values satisfying them, there exists a compact convex set with these values
for the geometrical functionals (in other words, a point within the 2D Santalo shape diagram
describes a 2D compact convex set). This is not valid for all the Santalo shape diagrams.

This paper deals with the study of the convexity discrimination for shape diagrams of 2D
non-empty analytic and discretized simply connected compact sets. The two first parts [8, 9]
of this study focus on the analytic compact convex sets and analytic simply connected com-
pact sets, respectively. This third part presents an analysis of the convexity discrimination and
extends the previous work to the discretized simply connected compact sets. The considered
discretized simply connected sets are mapped onto points in these shape diagrams, and through
dispersion quantification and convexity discrimination, the shape diagrams are classified ac-
cording to their ability to discriminate the simply connected compact sets.

2 SHAPE CONVEXITY

The following study on the convexity discrimination first requires the definition of the shape
convexity. A set is convex when the line segment which joins any two points in it lies totally
within the set. In other terms, the shape convexity could be quantified with the probability that
two points in the set lies totally within it.

Convexity parameters are commonly used in the analysis of shapes. The measurement value
of the shape convexity of any set ranges between 0 and 1 (it is a probability). A convex set gives
the value 1. Futhermore, the less the parameter value is high, the less the shape is convex. The
convexity measurement can be computed, for instance, by the ratio A /AC where AC is the area
of the convex hull of the set, but this is not sensitive to boundary small variations (Figure 1).
A second convexity parameter is the ratio PC /P where PC is the Euclidean perimeter of the
convex hull of the set.

(a) A /AC = 1 and PC /P = 1 (b) A /AC close to 1 (c) PC /P far from 1

Figure 1: A /AC gives result values equal to 1 for the set (a) and close to 1 for the sets (b) and (c). Nevertheless,
the set (b) is far to check the convexity definition (the probability that two points in the set lies totally within it is
low). PC /P gives result values equal to 1 for the set (a) and far from 1 for the sets (b) and (c). Nevertheless, the
set (c) is not very far to check the convexity definition.
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Futhermore, a suitable convexity parameter is particularly required for discretized sets. For
that purpose, the convexity parameter of Zunic and Rosin [12] will be used for the following
study on the convexity discrimination. For all polygon S of the Euclidean 2D plane E2, it is
defined by:

c(S) = min
α∈[0,2π]

P2(R(S, α))

P1(S, α)
(2.1)

P1(S, α) denotes the perimeter of the set S, rotated by the angle α with the origin as the center
of rotation, in the sense of the l1 metric (l1(e) equals the sum of the projections of the straight
line segment e onto the coordinate axes). P2(R(S, α)) denotes the Euclidean perimeter of the
minimal bounding rectangle R with edges parallel to the coordinate axes which includes the
rotated set of S by the angle α.

This convexity parameter c has the following desirable properties:
• its value is always a number within (0, 1]
• its value is 1 if and only if the measured set is convex
• there are sets with values arbitrarily close to 0
• it is invariant under similitude transformations
• there is a simple and fast procedure for computing it.

3 CONVEXITY DISCRIMINATION FOR ANALYTIC SIMPLY CONNECTED SETS

Observing the 2D compact set locations in the shape diagrams Dk, k ∈ J1, 30K \ (J7, 10K ∪
J17, 20K) for the families F c1 and F sc1 [8, 9] (Figures 2 and 3), some shape diagrams seem to
better discriminate the convex shapes from the non-convex shapes than others.

Equation 3.1 quantifies (by values ranging between 0 and 1) this convexity discrimination
for each shape diagramDk, k ∈ J1, 30K\(J7, 10K∪J17, 20K). A high (respectively low) resulting
value means a weak (respectively strong) convexity discrimination.

Convexity_discrimination(Dk) =
1

# {F c1 ∪ F sc1 }

#Fc
1∑

i=1

|c(i)(3.1)

−c (argmin {dE(i, j)|j ∈ F c1})|+
#Fsc

1∑
i=1

|c(i)− c (argmin {dE(i, j)|j ∈ F sc1 })|


where c(i) denotes the convexity value of the shape indexed by i in Figure 6, and dE is the
Euclidean distance.

Figure 4 shows the results of this quantification for every shape diagrams Dk, k ∈ J1, 30K \
(J7, 10K ∪ J17, 20K). The stronger convexity discrimination appears in the shape diagrams D24,
D26, D27, and D29, that is in agreement with the visual interpretation [9], and the weaker dis-
crimination appears for the shape diagrams D4 and D14.

These results have to be confirmed with more general sets. This is not easy to conclude with
the restriction to any analytic sets. For this reason, this study is extended to the discrete case.

4 SHAPE FUNCTIONALS FOR A DISCRETIZED SIMPLY CONNECTED SET

In this paper, the non-empty discretized simply connected compact sets in the discrete Eu-
clidean 2-space E2

d are considered. They are represented by points. The inter-point distance is
the step discretization. The discretization is fine enough to preserve the simple connectivity [5].
For the characterization of these sets, six geometrical functionals are used allowing to define
morphometrical functionals from geometric inequalities.

AJMAA, Vol. 7, No. 2, Art. 5, pp. 1-18, 2010 AJMAA

http://ajmaa.org


4 S. RIVOLLIER, J. DEBAYLE AND J.-C. PINOLI

Figure 2: Family Fc
1 of 2D analytic compact convex sets [8].

Figure 3: Family Fsc
1 of 2D analytic simply connected compact sets [9].

4.1 Geometrical functionals For a discretized simply connected compact set in E2
d, let

A, P, r, R, ω, d, denote the estimations of its area, its perimeter, the radii of its inscribed and
circumscribed circles, its minimum and maximum Feret diameters [4], respectively. Figure 5
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Figure 4: Convexity discrimination for the families Fc
1 and Fsc

1 .

illustrates these geometrical functionals for a discretized simply connected compact set repre-
sented in a point lattice [5]. For all non-empty discretized simply connected compact sets, these
geometrical functionals are greater or equal than zero.

Figure 5: Geometrical functionals of a discretized simply connected compact set: radii of inscribed (r) and cir-
cumscribed (R) circles, minimum (ω) and maximum (d) Feret diameters. The area A is given by the point number,
and the perimeter is estimated thanks to the Cauchy-Crofton-Poincaré formula [2, 3, 6].

4.2 Geometric inequalities and morphometrical functionals Geometric inequalities and
morphometrical functionals for analytic simply connected compact sets are referenced in [9].
There exists special cases where a discretized set has geometrical functional values that do not
verify a geometric inequality, due to the estimation error (because of the discretization). This
means that this set is a discretization of an extremal set for the associated geometric inequality.
Consequently, for practical reasons, the morphometrical functional value greater than one is re-
duced to one. Thus, the twenty-two shape diagrams referenced in [9] can be used for discretized
simply connected compact sets.
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5 SHAPE DIAGRAMS FOR A BASIS
OF VARIOUS DISCRETIZED SIMPLY CONNECTED COMPACT SETS

5.1 Shape diagrams Figure 6 illustrates seventy-eight discretized patterns constituting
the family Fdsc1 . It is assumed that the discretization process is fine enough such that each
discretized pattern is a discretized simply connected compact set on the points lattice [5]. Thus,
the morphometrical parameters are computed and located in each shape diagram.

The discretized patterns are numbered from one to seventy-eight. The pattern number is
mapped to its proper point in each shape diagram. Figure 7 illustrates several of these twenty-
two diagrams, chosen according to the synthesized results of [9]. The color of the number is
related to the convexity parameter value c of the associated set (dark red for a high c value, dark
blue for a low c value). Moreover, the black curves indicate the convex domain boundary, if it is
known [8]. Sometimes, a dark red number appears slightly outside this domain. This is mainly
due to the estimation error (discretization) of the geometrical functionals. This convexity range
will enable to analyze the convexity discrimination within shape diagrams.
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Figure 6: Family Fdsc
1 of seventy-eight 2D discretized simply connected compact sets (discretized patterns). The

color of each pattern number is related to the convexity parameter value using non-linear color-tones.
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(f) D13 : (r,A,d)
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Figure 7: Family Fdsc
1 of discretized simply connected compact sets mapped into eleven shape diagrams (chosen

according to the results synthetized in [9]).
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Figure 8: Family Fdsc
2 of discretized simply connected compact sets mapped into eleven shape diagrams (chosen

according to the results synthetized in [9]).
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5.2 Dispersion quantification and convexity discrimination A wider family Fdsc2 of
1370 discretized patterns is considered (Kimia database [11]), not illustrated here. These are
twenty deformations of each of the sixty-eight first sets of the family Fdsc1 , plus the ten last sets
of Fdsc1 ; section 6 shows two examples of these deformations). For each discretized pattern
representing a discretized simply connected compact set, the morphometrical parameters are
computed and located by a point in each shape diagram (Figure 8). The point color is associated
to the convexity parameter value c, and the convex domain boundary, if it is known, is illustrated
with black lines.

5.2.1 Dispersion quantification For each shape diagram, the dispersion of the locations
of the 2D discretized simply connected compact sets of the family Fdsc2 is studied.

The spatial distribution of discretized simply connected compact sets locations in each shape
diagram is characterized and quantified from algorithmic geometry using Delaunay’s graph
(DG) and minimum spanning tree (MST) [1]. Some useful information about the disorder and
the neighborhood relationships between sets can be deduced. From each geometrical model, it
is possible to compute two values from the edge lengths, denoted µ (average) and σ (standard
deviation) for DG or MST. The simple reading of the coordinates in the (µ, σ)-plane enables
the determination of the type of spatial distribution of the discretized simply connected compact
set (regular, random, cluster, . . . ) [7]. The decrease of µ and the increase of σ characterize the
shift from a regular distribution toward random and cluster distributions.

Figure 9 represents both values of parameters of the twenty-two shape diagrams for each
model, DG and MST.
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Figure 9: Two dispersion quantifications for all shape diagrams applied on the family Fdsc
2 . For each represen-

tation (according to the model DG and MST, respectively), indices k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K) of the shape
diagrams Dk is located according to its µ and σ values.

As in [9], the DG model allows to divide the shape diagrams into two groups, mainly ac-
cording to the average µ value: the shape diagrams D4, D5, D6, D14, D15, D16 and D30 have a
low average µ, thus the discretized simply connected compact sets are located within a small
domain in [0, 1]2. In [9], the MST model confirmed this tendency for the average. Figure 9
shows also a distribution of these two groups according to the standard deviation σ. Note that
the constitution of each of the two groups is the same as in [9].

5.2.2 Convexity discrimination Observing the colors dispersion in the shape diagrams of
Figure 8, some shape diagrams seem to stronger discriminate the convex shapes from the non-
convex shapes than others. This stronger discrimination is visually highlighted by a color gradi-
ent, from dark red to dark blue. Within a shape diagram, if the colors are irregularly distributed
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according to the color range, this means that convex sets and non-convex sets can not be dis-
criminated.

Equation 5.1 quantifies (by values ranging between 0 and 1) this discrimination for each
shape diagram Dk, k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K). A high (resp. low) resulting value means
a weak (resp. strong) convexity discrimination.

Convexity_discrimination(Dk) =(5.1)

1

#Fdsc2

#Fdsc
2∑

i=1

∣∣c(i)− c (argmin
{
dE(i, j)|j ∈ Fdsc2

})∣∣
where c(i) denotes the convexity value of the shape indexed by i in Figure 6, and dE is the
Euclidean distance.

Figure 10 shows the results of this quantification for every shape diagrams. The stronger
convexity discrimination appears in the shape diagrams D24, D25, D26, D27, D28 and D29, that
is in agreement with the visual interpretation. The weaker discrimination appears for the shape
diagrams D4, D6, D14 and D16. Even if the shape diagram D30 is not strong for the general
shape discrimination [8, 9], it is not weak for the convexity discrimination. In fact, these two
discriminations are independent.
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Figure 10: Convexity discrimination for the family Fdsc
2 .

6 SHAPE DIAGRAMS FOR SIMILAR DISCRETIZED
SIMPLY CONNECTED COMPACT SETS

This section focuses on the discrimination of shapes that are visually similar enough, so that
they can be considered as the same global shape. The shape diagrams D4, D5, D6, D14, D15,
D16 and D30 provide a weak shape discrimination, whatever the visual similarity of the sets.
Thus, they are not considered from this section and until the end of this paper. It remains the
fifteen shape diagrams Dk, k ∈ J1, 29K \ (J4, 10K ∪ J14, 20K).

Let be three families Fdsc3 , Fdsc4 and Fdsc5 ofdiscretized patterns representing triangles (Fig-
ure 11), disks (Figure 12) and crosses (Figure 13), respectively, that have undergone minor
transformations, modifications, deformations. The morphometrical parameters are computed,
and the patterns are located by a point in each shape diagram (Figures 11, 12 and 13). The color
of the number is related to the convexity parameter value c, and the convex domain boundary,
if it is known, is illustrated with black lines.

Figures 14, 15 and 16 give the dispersion quantification representation of the fifteen shape
diagrams for each model, DG and MST (method described in 5.2.1).
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Figure 11: Family Fdsc
3 of twenty 2D discretized simply connected compact sets with ’triangle’ shape, mapped

into nine shape diagrams (chosen according to the results synthetized in [9]). The color of the number is related
to the convexity parameter value.
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Figure 12: Family Fdsc
4 of twenty 2D discretized simply connected compact sets with ’disk’ shape, mapped into

nine shape diagrams (chosen according to the results synthetized in [9]). The color of the number is related to the
convexity parameter value.
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Figure 13: Family Fdsc
5 of twenty 2D discretized simply connected compact sets with ’cross’ shape, mapped into

nine shape diagrams (chosen according to the results synthetized in [9]). The color of the number is related to the
convexity parameter value.
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Figure 14: Two dispersion quantifications for all shape diagrams applied on the family Fdsc
3 . For each represen-

tation (according to the models DG and MST, respectively), indices k ∈ J1, 29K \ (J4, 10K ∪ J14, 20K) of the shape
diagrams Dk is located according to its µ and σ values.
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Figure 15: Two dispersion quantifications for all shape diagrams applied on the family Fdsc
4 . For each represen-

tation (according to the models DG and MST, respectively), indices k ∈ J1, 29K \ (J4, 10K ∪ J14, 20K) of the shape
diagrams Dk is located according to its µ and σ values.
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Figure 16: Two dispersion quantifications for all shape diagrams applied on the family Fdsc
5 . For each represen-

tation (according to the models DG and MST, respectively), indices k ∈ J1, 29K \ (J4, 10K ∪ J14, 20K) of the shape
diagrams Dk is located according to its µ and σ values.
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The results obtained allows to reveal that the shape diagramsD2 andD12 do not discriminate
the sets in each family Fdsc3 , Fdsc4 and Fdsc5 . This discrimination appears little stronger for the
shape diagrams D1 and D11. From a global vision, the shape diagrams D21 and D22 strongest
discriminate these sets.

7 SYNTHESIS

To obtain a strong discrimination of 2D discretized simply connected compact sets, it is
necessary to have both a strong dispersion and a strong convexity discrimination.

• The shape diagram D4, D5, D6, D14, D15 and D16 are excluded due to their weak dis-
persion and convexity discrimination results.
• The shape diagram D30 presents a strong convexity discrimination although its weak

dispersion result.
• The dispersion quantification of the shape diagrams D1, D2, D3, D11, D12, D13, D21,
D22, D23, D24, D25, D26, D27, D28 and D29 gives strong values.
• The convexity discrimination is stronger for D24, D25, D26, D27, D28 and D29.
• The similar sets discrimination appears stronger for D21 and D22.

Futhermore, among the shape diagrams D24, D25, D26, D27, D28 and D29 that obtain the best
results for dispersion quantification and convexity discrimination, only D24, D26 and D28 are
based on known complete systems of inequalities. Observing in details the representation of
quantifications for these three shape diagrams,D24 retained for shape discrimination of analytic
simply connected compact sets, is also retained for shape discrimination of discretized simply
connected compact sets.

This analysis is summarized in Table 7.1.

Complete system Non-complete system
of inequalities of inequalities

Strong D24 , D26, D28 D25 , D27, D29discrimination

Moderate D1 , D3 , D11, D12 , D22,
D23

D2, D13 , D21discrimination

Weak D4 , D5, D6, D14, D15 ,
D16, D30

discrimination

Table 7.1: Shape diagrams classification according to their quality of shape discrimination of discretized simply
connected compact sets and according to the completness of associated systems of inequalities.

8 GLOBAL SYNTHESIS FOR THE THREE PARTS OF THIS STUDY

For each part of this study [8, 9], the synthesis gives the shape diagrams that provide the
strongest shape discrimination. These are D12 and D24. Table 8.1 gathers the syntheses.
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9 CONCLUSION

This paper has dealed with shape diagrams of 2D non-empty analytic and discretized sim-
ply connected compact sets built from six geometrical functionals: the area, the perimeter,
the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret
diameters. Each set is represented by a point within a shape diagram whose coordinates are
morphometrical functionals defined as normalized ratios of geometrical functionals. From ex-
isting morphometrical functionals for these sets, twenty-two shape diagrams can be built. A
detailed comparative study has been performed in order to analyze the representation relevance
and discrimination power of these shape diagrams. It is based on the dispersion quantification
and convexity discrimination from compact set locations in diagrams. Among all the shape
diagrams, six present a strong convexity discrimination of sets, whose three are based on com-
plete system of inequalities. Among these three diagrams, the shape diagram D24 : (A,R,P) is
retained for its representation relevance and discrimination power.

The purpose of this paper was to present the third part of a general comparative study on
shape diagrams. The focus was placed on convexity discrimination of analytic and discretized
simply connected compact sets. The two first parts [8, 9] was restricted to the analytic compact
convex and simply connected compact sets, respectively. For an analytic set, the geometrical
functionals were accurately calculated. For a discretized set, they are estimated. Thus, in the
discrete case, the shape diagrams are based on estimated morphometrical functionals.

Actually, the authors work on the case of hollowed sets (analytic and discretized) which is
not specifically considered in this paper.
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