
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 7, Issue 2, Article 4, pp. 1-21, 2010

SHAPE DIAGRAMS FOR 2D COMPACT SETS - PART II: ANALYTIC SIMPLY
CONNECTED SETS

S. RIVOLLIER, J. DEBAYLE AND J.-C. PINOLI

Received 13 November, 2009; accepted 9 June, 2010; published 13 December, 2010.

ECOLE NATIONALE SUPÉRIEURE DES MINES DE SAINT-ETIENNE, CIS - LPMG, UMR CNRS 5148,
158 COURS FAURIEL, 42023 SAINT-ETIENNE CEDEX 2, FRANCE.

rivollier@emse.fr; debayle@emse.fr; pinoli@emse.fr

ABSTRACT. Shape diagrams are representations in the Euclidean plane introduced to study 3-
dimensional and 2-dimensional compact convex sets. However, they can also been applied to
more general compact sets than compact convex sets. A compact set is represented by a point
within a shape diagram whose coordinates are morphometrical functionals defined as normal-
ized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the
perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum
Feret diameters. They allow twenty-two shape diagrams to be built. Starting from these six
classical geometrical functionals, a detailed comparative study has been performed in order to
analyze the representation relevance and discrimination power of these twenty-two shape dia-
grams. The first part of this study is published in a previous paper [16]. It focused on analytic
compact convex sets. A set will be called analytic if its boundary is piecewise defined by explicit
functions in such a way that the six geometrical functionals can be straightforwardly calculated.
The purpose of this paper is to present the second part, by focusing on analytic simply connected
compact sets. The third part of the comparative study is published in a following paper [17]. It is
focused on convexity discrimination for analytic and discretized simply connected compact sets.
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1 INTRODUCTION

The Santalo’s shape diagrams [18] allow to represent a 2D compact convex set by a point in
the Euclidean 2D plane from six geometrical functionals: the area, the perimeter, the radii of
the inscribed and circumscribed circles, and the minimum and maximum Feret diameters [6].
The axes of each shape diagram are defined from a pair of geometric inequalities relating these
functionals. Sometimes, the two geometric inequalities provide a complete system: for any
range of numerical values satisfying them, there exists a compact convex set with these values
for the geometrical functionals (in other words, a point within the 2D Santalo shape diagram
describes a 2D compact convex set). This is not valid for all the Santalo shape diagrams.

This paper deals with the study of shape diagrams for a wide range of 2D non-empty analytic
simply connected compact sets. The first part [16] of this study focused on the compact convex
sets. This second part generalizes to the simply connected compact sets. The considered simply
connected compact sets are mapped onto points in these shape diagrams, and through dispersion
and overlapping quantifications, the shape diagrams are classified according to their ability to
discriminate the simply connected compact sets.

2 SHAPE FUNCTIONALS

In this paper, the non-empty analytic simply connected compact sets in the Euclidean 2-
space E2 are considered. A set will be called analytic if its boundary is piecewise defined
by explicit functions in such a way that the geometrical functionals enumerated below can be
calculated. These geometrical functionals are determinated in order to characterize the sets.
They are related by the so-called geometric inequalities, which allow to define morphometrical
functionals.

2.1 Geometrical functionals For a simply connected compact set in E2, let A, P, r, R, ω,
d, denote its area, its perimeter, the radii of its inscribed and circumscribed circles, its minimum
and maximum Feret diameters [6], respectively. Figure 1 illustrates some of these geometrical
functionals.

Figure 1: Geometrical functionals of a simply connected compact set: radii of inscribed (r) and circumscribed (R)
circles, minimum (ω) and maximum (d) Feret diameters.

For a simply connected compact set, these six geometrical functionals are greater than zero.
The line curves provide null values for A, r and ω, and the points for P, R and d. The sets with
an infinite perimeter (the fractal sets) are not considered. P must be computed by a line integral.
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SHAPE DIAGRAMS FOR COMPACT SIMPLY CONNECTED SETS 3

2.2 Geometric inequalities For a simply connected compact set in E2, the relationships
between these geometrical functionals are constrained by the geometric inequalities [2, 11–
13, 19–22] referenced in the second column of Table 2.1. Some geometric inequalities are
restricted to convex sets [16], that are not considered in this paper. These inequalities link ge-
ometrical functionals by pairs and determine the so-called extremal simply connected compact
sets that satisfy the corresponding equalities (Table 2.1, fourth column). Futhermore, they allow
to determinate morphometrical functionals.

Table 2.1 synthesizes the geometrical and morphometrical functionals, the geometric in-
equalities and the extremal 2D analytic simply connected compact sets.

Geometrical Geometric Morphometrical Extremal
functionals inequalities functionals sets

r,R r ≤ R r /R C
ω,R ω ≤ 2R ω /2R C
A,R A ≤ πR2 A /πR2 C
d,R d ≤ 2R d /2R Y
r, d 2 r ≤ d 2 r / d C
ω, d ω ≤ d ω / d W
A, d 4A ≤ π d2 4A /π d2 C

R, d
√
3R ≤ d

√
3R / d Z

r,P 2π r ≤ P 2π r /P C
ω,P π ω ≤ P π ω /P W
A,P 4πA ≤ P2 4πA /P2 C
d,P 2d ≤ P 2d /P L
R,P 4R ≤ P 4R /P L
r,A π r2 ≤ A π r2 /A C
r, ω 2 r ≤ ω 2 r / ω X

Extremal sets are the sets for which an inequality becomes an equality.
C the disks
W the constant width compact convex sets
L the line segments
X some compact convex sets
Y some simply connected compact sets
Z every compact convex set of diameter d containing an equilateral triangle of side-length d

Table 2.1: Shape functionals for simply connected compact sets. A, P, r, R, ω, d, denote the area, perimeter, radii
of the inscribed and circumscribed circles, minimum and maximum Feret diameters [6], respectively.

2.3 Morphometrical functionals The morphometrical functionals are invariant under
similitude transformations (consequently, they do not depend on the global size of the sim-
ply connected compact set) and are defined as ratios between geometrical functionals. In these
ratios, the units of the numerator and the denominator are dimensionally homogeneous and the
result has therefore no unit. Moreover, a normalization by a constant value (scalar multipli-
cation) allows to have a ratio that ranges in [0, 1]. For each morphometrical functional, the
scalar value depends directly on the associated geometric inequality. These morphometrical
functionals are referenced in the third column of Table 2.1. These morphometrical functionals
are classified according to their concrete meanings: roundness, circularity, diameter constancy
and thinness [16].
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3 SHAPE DIAGRAMS

From these morphometrical functionals, 2D shape diagrams can be defined. They enable to
represent the morphology of any analytic simply connected compact sets in the Euclidean 2D
plane from two morphometrical functionals (that is to say from three geometrical functionals
because the two denominators use the same geometrical functionals).

3.1 Definition Let be any triplet of the considered six geometrical functionals (A, P, r, R,
ω, d) and (M1,M2) be some particular morphometrical functionals valued in [0, 1]2 (Table 3.1).
A shape diagram D is represented in the plane domain [0, 1]2 where any 2D compact set S is
mapped onto a point (x, y) (except for line curves if M1 or M2 is in {π r2 /A, 2 r / ω}). In other
terms, a shape diagram D is obtained from the following mapping.

D :

{
K(E2) → [0, 1]2

S 7→ (x, y)

where K(E2) denotes the compact sets of the Euclidean 2D plane. Using the morphometrical
functionals listed in Table 2.1, twenty-two shape diagrams are defined, and, by preserving the
notation and indexing using in [16], they are denoted (Dk)k∈J1,30K\(J7,10K∪J17,20K), respectively.
Some geometric inequalities, and consequently some shape diagrams, are restricted to convex
shapes [16], that are not considered in this paper.

Shape diagrams Axes coordinates
D1 : (ω, r,R) x = ω /2R y = r /R
D2 : (ω,A,R) x = ω /2R y = A /πR2

D3 : (r,A,R) x = r /R y = A /πR2

D4 : (A, d,R) x = A /πR2 y = d /2R
D5 : (ω, d,R) x = ω /2R y = d /2R
D6 : (r, d,R) x = r /R y = d /2R

D11 : (ω, r, d) x = ω / d y = 2 r / d
D12 : (ω,A, d) x = ω / d y = 4A /π d2

D13 : (r,A, d) x = 2 r / d y = 4A /π d2

D14 : (A,R, d) x = 4A /π d2 y =
√
3R / d

D15 : (ω,R, d) x = ω / d y =
√
3R / d

D16 : (r,R, d) x = 2 r / d y =
√
3R / d

D21 : (ω, r,P) x = π ω /P y = 2π r /P
D22 : (ω,A,P) x = π ω /P y = 4πA /P2

D23 : (r,A,P) x = 2π r /P y = 4πA /P2

D24 : (A,R,P) x = 4πA /P2 y = 4R /P
D25 : (ω,R,P) x = π ω /P y = 4R /P
D26 : (r,R,P) x = 2π r /P y = 4R /P
D27 : (A, d,P) x = 4πA /P2 y = 2d /P
D28 : (ω, d,P) x = π ω /P y = 2d /P
D29 : (r, d,P) x = 2π r /P y = 2d /P
D30 : (d,R,P) x = 2d /P y = 4R /P

Table 3.1: Axes coordinate of the twenty-two shape diagrams for 2D simply connected compact sets.
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The property stated in [16] proving the non-injectivity and non-surjectivity of the mapping
that associates a point in a shape diagram (Dk)k∈J1,30K\(J7,10K∪J17,20K) to a compact convex set in
E2, is necessarily truth for the 2D simply connected compact sets. The proof uses the same
examples as in [16].

3.2 Complete systems of inequalities In this subsection, only 2D compact convex sets
are considered. A system of (two) geometric inequalities associated to a shape diagram is com-
plete if and only if for any range of geometrical functionals values satisfying those conditions, a
2D compact convex set with these geometrical functionals values exists [8, 18]. In other words,
such a system is complete if and only if the mapping which associates a 2D analytic compact
convex set in E2 to a point in a shape diagram (Dk)k∈J1,30K\(J7,10K∪J17,20K) can be surjective by
restricting the arrival set. For a shape diagram, each of the two associated inequalities deter-
mines a part of the convex domain boundary (the domain in which all compact convex sets
are mapped). These two inequalities determine the whole boundary of the convex domain if
and only if they form a complete system. The compact convex sets mapped onto the boundary
points are the extremal compact convex sets of each considered inequality.

For sixteen among the twenty-two shape diagrams (D1, D3, D4, D5, D6, D11, D12, D14, D15,
D16, D22, D23, D24, D26, D28, D30), the completness of systems of inequalities has been proved
[3, 7–10, 18]. Figure 3 illustrates the convex domain boundary for seven of them.

Figure 2: Family Fsc
1 of 2D analytic simply connected compact sets.

4 SHAPE DIAGRAMS DISPERSION QUANTIFICATION

4.1 Shape diagrams for simply connected compact sets For the family F sc
1 of nineteen

sets (Figure 2), the morphometrical functionals are straightforwardly computed. Each simply
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connected compact set i ∈ J1, 19K is represented by one point denoted Pi,k, in each shape
diagram Dk, k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K).

These 2D analytic simply connected compact sets are (Figure 2):
- line segments; - "1/2" semi-rings; - equilateral triangles;
- asterisks-3; - semi-disks; - squares;
- asterisks-4; - disks; - regular pentagons;
- asterisks-7; - Reuleaux triangles [5, 15]; - regular hexagons;
- asterisks-8; - dual Reuleaux triangles; - regular pentagrams;
- semi-circles; - dual "Reuleaux" squares; - regular hexagrams;
- regular crosses: they are symmetrical (center) crosses whose the four branch
length and width are equals.

Figure 4 illustrates several of these twenty-two shape diagrams, chosen according to the
results synthetized in section 6. Remember that the shape diagrams are included in [0, 1]2. For
a better visualization of the shapes drawn on a point of abscissa or ordinate equal to 0 or 1, the
shape diagrams are illustrated in [−0.06, 1.04]2. Whatever the morphometrical functional, the
extremal value 1 is reached for extremal simply connected compact sets. Thus, in each shape
diagram, there is at least one simply connected compact set mapped to a point of abscissa or
ordinate equal to 1. Moreover, the extremal value 0 is not always reached.

The dispersion of simply connected compact set locations within each shape diagram will
be studied after the analysis of similarities between shape diagrams.

4.2 Similarity The fact that ω = 2 r for some compact convex sets implies that shape
diagrams (ω, x1, x2) are similar to shape diagrams (r, x1, x2) where x1 ∈ {d,R,P,A} and
x2 ∈ {d,R,P}, that is to say D2 ∼ D3, D5 ∼ D6, D12 ∼ D13, D15 ∼ D16, D22 ∼ D23,
D25 ∼ D26, D28 ∼ D29 where ∼ denotes a strong similarity between shape diagrams.

In the same way, the fact that d = 2R for some simply connected compact sets implies that:

• shape diagrams (x1, x2,R) are similar to shape diagrams (x1, x2, d) where x1 ∈ {ω, r,A}
and x2 ∈ {r,A,P} (D1 ∼ D11, D2 ∼ D12, D3 ∼ D13);
• shape diagrams (x1,R,P) are similar to shape diagrams (x1, d,P) where x1 ∈ {ω, r,A}

(D24 ∼ D27, D25 ∼ D28, D26 ∼ D29).

An algorithm of hierarchical classification [4] based on distances between shape diagrams
allows to justify many of these similarities and to find other ones. Let k1, k2 ∈ J1, 30K\(J7, 10K∪
J17, 20K), the distance between shape diagrams Dk1 and Dk2 , based on the Euclidean distance
dE , is defined by Equation 4.1.

dE(Dk1 ,Dk2) =
1

19

∑
i∈J1,19K

dE (Pi,k1 ,Pi,k2)(4.1)

For all k1 ∈ J1, 29K\(J7, 10K∪J17, 20K) and k2 ∈ Jk1+1, 30K\(J7, 10K∪J17, 20K), the distances
dE(Dk1 ,Dk2) are computed. Among them, the minimum distance value gives the best similarity
between two shape diagrams. From these two shape diagrams, a mean shape diagram is built.
To each step of the algorithm, two shape diagrams are similar up to the distance computed and
they are gathered to build a mean shape diagram. The algorithm can be run until all the shape
diagrams are gathered. Figure 5 shows the first fifteen steps of the hierarchical tree resulting
from this algorithm. The remaining steps are not shown because the distance values are too
high and do not present an interest in the study of similarities.
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D1 : (ω, r,R) D3 : (r,A,R)

D4 : (A,d,R) D5 : (ω,d,R) D12 : (ω,A,d)

D23 : (r,A,P) D24 : (A,R,P)

Figure 3: Convex domains of shape diagrams for which complete systems of inequalities have been established.
For a given shape diagram, the bordered region represents the convex domain in which all compact convex sets
lay.
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D1 : (ω, r,R) D3 : (r,A,R)

D4 : (A,d,R) D12 : (ω,A,d) D13 : (r,A,d)

D15 : (ω,R,d) D21 : (ω, r,P) D23 : (r,A,P)

D24 : (A,R,P) D25 : (ω,R,P) D30 : (d,R,P)

Figure 4: Family Fsc
1 of analytic simply connected compact sets mapped into eleven shape diagrams (chosen

according to the results synthetized in section 6).
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Figure 5: The first fifteen steps of an algorithm of hierarchical classification based on distances between the shape
diagrams. To each step, two shape diagrams are similar up to the distance value, whose scale is indicated on the
right.

For instance, if the algorithm is stopped before the distance value reaches 0.2, the following
classification of shape diagrams is obtained:
• D1, D11, D2, D12 • D3, D13, D23 • D4, D6

• D24D27D26D29 • D5D15 • D14D16

• D21D22 • D25D28 • D30

4.3 Dispersion quantification For each shape diagram, the dispersion of the locations of
2D analytic simply connected compact sets of the family F sc

1 is studied.
The spatial distribution of simply connected compact sets locations in each shape diagram

is characterized and quantified from algorithmic geometry using Delaunay’s graph (DG) and
minimum spanning tree (MST) [1]. Some useful information about the disorder and the neigh-
borhood relationships between sets can be deduced. From each geometrical model, it is possible
to compute two values from the edge lengths, denoted µ (average) and σ (standard deviation)
for DG or MST. The simple reading of the coordinates in the (µ, σ)-plane enables to determine
the type of spatial distribution of the simply connected compact set range (regular, random,
cluster, . . . ) [14]. The decrease of µ and the increase of σ characterize the shift from a regular
distribution toward random and cluster distributions, respectively.

Figure 6 represents both values of parameters of the twenty-two shape diagrams for each
model, DG and MST.

DG MST

Figure 6: Two dispersion quantifications for all shape diagrams applied on the familyFsc
1 . For each representation

(according to the models DG and MST, respectively), indices k ∈ J1, 30K\(J7, 10K∪J17, 20K) of the shape diagrams
Dk are located according to their µ and σ values.
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Following the two models, the shape diagrams D4, D5, D6, D14, D15, D16 and D30 have a
low average µ. In these shape diagrams, the simply connected compact sets are located within a
restricted domain in [0, 1]2. Their shape discrimination is not strong, especially for D5 and D15

that have a higher standard deviation σ, which is translated visually by several sets at the same
locations.

The shape diagrams D1, D2, D11, D12, D21, D22, D24, D26, D27 and D29 have the highest
averages. In these shape diagrams, the simply connected compact sets are located within a large
domain in [0, 1]2 and are well spaced from each other.

Finally, these statements are in agreement with those obtained for the similarities between
shape diagrams.

A shape diagram with a strong dispersion (both high µ and σ values), for both DG and MST,
guarantees a strong discrimination of shapes: the simply connected compact sets are located
within a large domain in [0, 1]2 and are well spaced from each other. However, remember that
d = 2R and ω = 2 r for some simply connected compact sets. This explains that some simply
connected compact sets of the family F sc

1 are mapped onto a point on a line for some shape
diagrams, namely:

• diagonal line from (0, 0) to (1, 1) on shape diagrams (x1, x2, x3) where (x1, x2) ∈
{(ω, r), (d,R)} and x3 ∈ {A,R, d,P} (D1, D11, D21, D30)
• horizontal line from (0, 1) to (1, 1) on shape diagrams (x1, d,R) where x1 ∈ {ω, r,P,A}

(D4, D5, D6)
• horizontal line from (0,

√
(3)/2) to (1,

√
(3)/2) on shape diagrams (x1,R, d) where

x1 ∈ {ω, r,P,A} (D14, D15, D16)

For a shape diagram, the fact that some simply connected compact sets are mapped onto a point
on a line does not yield to allow a strong discrimination of the simply connected compact sets
as quantified and illustrated in Figure 6.

Following this quantification, the shape diagrams D24, D25, D26, D27, D28 and D29, have a
strong dispersion. During the study restricted to convex sets [16], they appear more moderate.
The other shape diagrams have dispersions quite similar to those obtained with the convex sets.

5 SHAPE DIAGRAMS OVERLAPPING QUANTIFICATION

5.1 Shape diagrams for simply connected compact sets with one degree of freedom Let
two 2D analytic simply connected compact sets of the family F sc

1 , and the simply connected
compact set class allowing to switch from one to the other using one degree of freedom. For
example, the semi-circle goes to the semi-disk through semi-rings whose the cavity radius de-
creases. Therefore, several classes of "simply connected compact sets with one degree of free-
dom" could be defined. Thus, a curve denoted Ci,k from each simply connected compact set
class Ci is created in each shape diagram Dk, k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K). This process
is used for some pairs of simply connected compact sets of the family F sc

1 . The tendency of
various curves are observed.

These analytic simply connected compact sets verify shape properties which are preserved
only under similitude transformations and under the variation of one parameter t ∈ R. For
example, the cavity radius of semi-rings varies between 0 and the radius of the semi-disk. In
other terms, the degree of freedom is the parameter t ∈ R.

Nineteen analytic simply connected compact set classes, gathered in three families, are con-
sidered:

• family F sc
2.1 ⊇ {Ci}i∈J1,4K: four classes of simply connected compact sets with one

symmetrical axis (Figure 7),
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• family F sc
2.2 ⊇ {Ci}i∈{6,8,10,12,14,16,18,19}: eight classes of simply connected compact sets

with an even number of symmetrical axis (Figure 8),
• family F sc

2.3 ⊇ {Ci}i∈{5,7,9,11,13,15,17}: seven classes of simply connected compact sets
with an odd number strictly greater to 1 of symmetrical axis (Figure 9).

There are:

• Family F sc
2.1:

C1 - Semi-rings: They are the complementary sets of a semi-disk in a larger semi-disk.
The ratio between the radius of the small and the large semi-disks varies in [0, 1]. When
it reaches the lower and upper bounds, the semi-ring becomes a semi-disk and a semi-
circle, respectively.
C2 - Semi-disks minus ungula: They are the complementary sets of an ungula [16] in a
semi-disk. The ratio between the height of the ungula and the radius of the semi-disk
varies in [0, 1]. When it reaches the lower and upper bounds, the semi-disk minus un-
gula becomes a semi-disk and a semi-circle, respectively.
C3 - Semi-disks minus semi-symmetrical disks with two peaks: They are the comple-
mentary sets of a semi-symmetrical disk with two peaks [16] in a semi-disk. The ratio
between the height of the semi-symmetrical disk with two peaks and the radius of the
semi-disk varies in [0, 1]. When it reaches the lower and upper bounds, the semi-disk
minus semi-symmetrical disk with two peaks becomes a semi-disk and a semi-circle,
respectively.
C4 - Arrows: They are the complementary sets of an isosceles triangle in an equilateral
triangle. The ratio between the height of the isosceles and the equilateral triangles varies
in [0, 1]. When it reaches the lower and upper bounds, the arrow becomes an equilateral
triangle and a shape with two line segments forming an angle whose the value is equal
to π/3, respectively.
• Family F sc

2.2:
C6 - Dual "Yamanouti" squares: They are defined in a similar way as the "Yamanouti"
squares [16]. The extremal simply connected compact sets are the square and the dual
"Reuleaux" square.
C8 - Four-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (square).
C10 - Six-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular
hexagon).
C12 - Eight-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular
octogon, not illustrated here).
C14 - Even-stars, minimal filiformity: Their area value is null. They are asterisks with a
branch even number.
C16 - Regular even polygrams: They are regular polygrams (the filiformity coefficient is
"perfect", involving parallelism between the edges) with a positive even edges number.
In the shape diagrams, the real positions of these sets do not describe a curve because it
is not continuous (the edge number is necessarily an integer) but they are along a curve,
and this is drawn.
C18 - Even-stars, maximal filiformity: They are regular even polygons [16].
C19 - Crosses: They are symmetrical (center) crosses whose the four branch length
varies in [0,+∞[. When this length value reaches the lower bound, the resulting simply
connected compact set becomes a square. When it tends to infinity, the resulting simply
connected compact set tends to the asterisk-4.
• Family F sc

2.3:
C5 - Dual Yamanouti triangles: They are defined in a similar way as the Yamanouti
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triangles [23]. The extremal simply connected compact sets are the equilateral triangle
and the dual Reuleaux triangle.
C7 - Three-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (equilateral
triangle).
C9 - Five-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular
pentagon).
C11 - Seven-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular
heptagon, not illustrated here).
C13 - Odd-stars, minimal filiformity: Their area value is null. They are asterisks with a
branch odd number.
C15 - Regular odd polygrams: They are regular polygrams (the filiformity coefficient is
"perfect", involving parallelism between the edges) with a positive odd edges number.
In the shape diagrams, the real positions of these sets do not describe a curve because it
is not continuous (the edge number is necessarily an integer) but they are along a curve,
and this is drawn.
C17 - Odd-stars, maximal filiformity: They are regular odd polygons [16].

For the simply connected compact sets of each class, the morphometrical functionals are
computed. In each shape diagram Dk, k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K), a simply connected
compact set class i ∈ J1, 19K is represented by a parametric curve Ci,k(t) since the class is
infinite and bounded by the two extremal sets. For the considered simply connected compact
set classes, the extremal simply connected compact sets are sets that would be able to be in
the family F sc

1 (Figure 2). For example, up to a similitude transformation, an infinite class of
semi-rings exists, from the semi-circle to the semi-disk.

Figures 10, 11 and 12 illustrate some of these shape diagrams, chosen according to the results
synthetized in section 6.

5.2 Overlapping quantification An overlapping of curves is visible in some shape di-
agrams. Its quantification is based on a discretization of the spatial domain [0, 1]2 of shape
diagrams, depending on the discretization level n ∈ N∗ [16].

Equation 5.1 quantifies (by a measurement ranging between 0 and 1) the overlapping of all
curves for each shape diagramDk, k ∈ J1, 30K\(J7, 10K∪J17, 20K). A high (resp. low) value for
this ratio means a strong (resp. weak) overlapping. When the computation is done for various
discretization parameter n values, not only the curves overlapping is considered but also their
the curves (small n value).

Overlappingn(Dk) = 1−
∑

(x,y)∈J0,nK2 D
max
k (x, y)∑

(x,y)∈J0,nK2 D
sum
k (x, y)

(5.1)

where Dmax
k : J0, nK2 → {0, 1} and Dsum

k : J0, nK2 → N are defined ∀(x, y) ∈ J0, nK2 by:

Dmax
k (x, y) = max

i∈J1,23K
Ci,k(x, y)

Dsum
k (x, y) =

∑
i∈J1,23K

Ci,k(x, y)

Ci,k denotes the discretization of the curve Ci,k [16]. Figure 13 illustrates the discretized
shape diagrams (n = 100) with overlapping intensities, and Figure 14 shows the quantification
of curves overlapping (representing the simply connected compact set classes) for some shape
diagrams, according to the n values 100 and 1000.

Several informations can be extracted from these graphs:
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• The graphs representing the 2D analytic simply connected compact set classes of the
family F sc

2.1 show a strong overlap (from n = 1000) for the shape diagrams D1, D2, D4,
D5, D6, D11, D12, D14, D15, D16, D25, D28 and D30.
• The graphs representing the 2D analytic simply connected compact set classes of the

family F sc
2.2 show a strong overlap (from n = 1000) in the shape diagrams D4, D6, D14,

D16 and D30. They are close to each other (strong overlap from n = 100) in the shape
diagrams D5 and D15.
• The graphs representing the 2D analytic simply connected compact set classes of the

family F sc
2.3 show a strong overlap (from n = 1000) in the shape diagrams D5 and D15.

They are close to each other (strong overlap from n = 100) in the shape diagram D13.

Figure 7: Family Fsc
2.1 of 2D analytic simply connected compact sets with one degree of freedom and one symmet-

rical axis.

Figure 8: Family Fsc
2.2 of 2D analytic simply connected compact sets with one degree of freedom and an even

number of symmetrical axes.

Figure 9: Family Fsc
2.3 of 2D analytic simply connected compact sets with one degree of freedom and an odd

number (strictly greater to 1) of symmetrical axes.
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D1 : (ω, r,R) D3 : (r,A,R)

D4 : (A,d,R) D12 : (ω,A,d) D13 : (r,A,d)

D15 : (ω,R,d) D21 : (ω, r,P) D23 : (r,A,P)

D24 : (A,R,P) D25 : (ω,R,P) D30 : (d,R,P)

Figure 10: Family Fsc
2.1 of analytic simply connected compact sets with one degree of freedom and one symmetrical

axis mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).
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D1 : (ω, r,R) D3 : (r,A,R)

D4 : (A,d,R) D12 : (ω,A,d) D13 : (r,A,d)

D15 : (ω,R,d) D21 : (ω, r,P) D23 : (r,A,P)

D24 : (A,R,P) D25 : (ω,R,P) D30 : (d,R,P)

Figure 11: Family Fsc
2.2 of analytic simply connected compact sets with one degree of freedom and an odd number

of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).
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D1 : (ω, r,R) D3 : (r,A,R)

D4 : (A,d,R) D12 : (ω,A,d) D13 : (r,A,d)

D15 : (ω,R,d) D21 : (ω, r,P) D23 : (r,A,P)

D24 : (A,R,P) D25 : (ω,R,P) D30 : (d,R,P)

Figure 12: Family Fsc
2.3 of analytic simply connected compact sets with one degree of freedom and an even number

(strictly greater to 1) of symmetrical axes mapped into eleven shape diagrams (chosen according to the results
synthetized in section 6).
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Overlapping intensities Dsum
1 : (ω, r,R) Dsum

3 : (r,A,R)

Dsum
4 : (A,d,R) Dsum

12 : (ω,A,d) Dsum
13 : (r,A,d)

Dsum
15 : (ω,R,d) Dsum

21 : (ω, r,P) Dsum
23 : (r,A,P)

Dsum
24 : (A,R,P) Dsum

25 : (ω,R,P) Dsum
30 : (d,R,P)

Figure 13: "Intensity" discretized shape diagramDsum
k (n = 100) with the nineteen curves representing the simply

connected compact set classes with one degree of freedom.
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Overlapping quantification for the family Fsc
2.1 of

simply connected compact sets with one degree of
freedom and one symmetrical axis.

Overlapping quantification for the family Fsc
2.2 of

simply connected compact sets with one degree of
freedom and an even number of symmetrical axes.

Overlapping quantification for the family Fsc
2.3 of

simply connected compact sets with one degree of
freedom and an odd number strictly greater to 1 of
symmetrical axes.

Overlapping quantification for the nineteen
classes of simply connected compact sets with one
degree of freedom.

Figure 14: Overlapping quantification for the twenty-two shape diagrams Dk, k ∈ J1, 30K \ (J7, 10K ∪ J17, 20K),
with n = 100 in red, and n = 1000 in blue.

Generally speaking, the results obtained with this quantification are quite different from
those obtained during the study restricted to convex sets [16].

6 SYNTHESIS

To obtain a strong discrimination of 2D analytic simply connected compact sets, it is neces-
sary to have both a strong dispersion and a weak overlapping.

• The shape diagrams D5 and D15 are excluded due to their weak dispersion and overlap-
ping results, whatever the considered simply connected compact sets.
• In the shape diagrams D4, D6, D14, D16 and D30, only the family F sc

2.3 shows a weak
overlapping. Futhermore, their dispersion quantification is weak.
• In the shape diagramsD25 andD28, the family F sc

2.1 shows a strong overlapping. Futher-
more, their dispersion quantification is moderate.
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• In the shape diagramsD1,D2,D11 andD12, the family F sc
2.1 shows a strong overlapping.

Futhermore, their dispersion quantification is strong.
• In addition to their strong dispersion, the shape diagrams D3, D13, D21, D22, D23, D24,
D26, D27 and D29 provide a weak overlapping of the simply connected compact set
classes considered in this paper.

Futhermore, among the shape diagrams D3, D13, D21, D22, D23, D24, D26, D27 and D29

that obtain the best results for dispersion and overlapping quantifications, only D3, D22, D23,
D24 and D26 are based on known complete systems of inequalities. Observing in details the
representation of quantifications for these five shape diagrams, D24 is retained for shape dis-
crimination of analytic simply connected compact sets.

This analysis is summarized in Table 6.1.

Complete system Non-complete system
of inequalities of inequalities

Strong D3 , D22, D23 , D24 , D26 D13 , D21 , D27, D29discrimination

Moderate D1 , D11, D12 , D28 D2, D25discrimination

Weak D4 , D5, D6, D14, D15 ,
D16, D30

discrimination

Table 6.1: Shape diagrams classification according to their quality of shape discrimination of analytic simply
connected compact sets and according to the completness of associated systems of inequalities.

In this paper, only some shape diagrams have been illustrated. The choice was based on
the results of shape discrimination (dispersion and overlapping studies) and on the results of
similarities between shape diagrams (subsection 4.2). The aim was to illustrate dissimilar shape
diagrams with different qualities of shape discrimination, and shape diagrams with different
completness of associated systems of inequalities. The framed shape diagrams of Table 6.1 are
those illustrated throughout this paper.

7 CONCLUSION

This paper has dealed with shape diagrams of 2D non-empty analytic simply connected
compact sets built from six geometrical functionals: the area, the perimeter, the radii of the in-
scribed and circumscribed circles, and the minimum and maximum Feret diameters. Each such
a set is represented by a point within a shape diagram whose coordinates are morphometrical
functionals defined as normalized ratios of geometrical functionals. From existing morphomet-
rical functionals for these sets, twenty-two shape diagrams can be built. A detailed comparative
study has been performed in order to analyze the representation relevance and discrimination
power of these shape diagrams. It is based on the dispersion and overlapping quantifications
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from simply connected compact set locations in diagrams. Among all the shape diagrams, nine
present a strong shape discrimination of sets, five are based on complete system of inequalities.
Among these five diagrams, the shape diagram D24 : (A,R,P) is retained for its representation
relevance and discrimination power.

This paper reports the second part of a general comparative study of shape diagrams. The
focus was placed on analytic simply connected compact sets. The first part [16] was restricted
to the analytic compact convex sets. The main difference between the study of shape diagrams
for the simply connected compact sets and those for the compact convex sets lies in the fact that
some are not defined in the simply connected case. Moreover in this case, if the shape diagram
is defined, the zone gathering the sets locations is necessarily larger in the simply connected
case. The third part [17] of the comparative study is published in a following paper. It focuses
on convexity discrimination for analytic and discretized simply connected compact sets.
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