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2 PAOLO D’A LESSANDRO

1. INTRODUCTION

The purpose of this paper is to lay down a significant part of the theory of polyhedra in infinite
dimensions in separable Hilbert space environment. Naturally there are profound differences
with the finite dimensional case, but also, the theory is in some way more natural. It allows
for countable intersections and includes more general classes of closed convex sets. Other
important differences derive from the fact that the positive cone of the order has a void interior.

To obtain void interior compact polyhedra, a sort of infinite dimensional polytopes, we have
to weaken the underlying topology beyond the weak topology and use the (relativized) product
topology. This requires some preliminary technical work.

In the central part of the paper we use the range space approach to develop a theory of
decomposition of polyhedra. Incidentally, to pull back topologically the results to the domain
space it is needed that the operator defining the polyhedron has closed range. This excludes
convex bodies like the unit ball (which is a polyhedron in our setting), because the positive cone
of the order has void interior.

We prove that in the range space a non-void polyhedron (indeed the slack polyhedron) always
has extreme points, and is the sum of a convex closed proper subset, which is compact in the
product topology and contains all the extreme points of the polyhedron, plus (in the cases we
will specify) a pointed cone, which is always the intersection of the range of the operator defin-
ing the inequality system intersected with the positive cone of the range space. The pull-back
in the domain spaces adds to the inverse image of those components a closed linear subspace
which is always the null space of the operator defining the inequality system

In the final section we give some basic results on LP, based on the dual range space conditions
(in our setting dual means: involving polar cones). Naturally, even in the cases where there are
suprema, we cannot take for granted, as in finite dimensions, that they are attained. However,
some conditions for this to happen are provided.

Finite dimensional concepts along similar lines, are developed in [3], see alsod![5], [6] and
[4]. However, the infinite dimensional theory, presented here, is selfcontained.

1.1. Notations. 9t is the set of positive integers

Fory € [,
ip(y) ={t:y: >0}
iz(y) ={i:y =0}
in(y) ={i:y; <0}

e’ is thei-th versor inls.

Cone means convex cone.

H is a real Hilbert space.

B is the closed sphere of radius

C(A) andC—(A) are, respectively, the convex and closed convex hufl.of

Co(A) andCo~ (A) are, respectively, the convex and closed conical hul of

Co({z}) = r(x) is the ray generated hy. The set: + r(z) is also called ray.

B(A) is the boundary ofi.

Operator means continuous linear transformation with respect to the specified topologies

iff=if and only if.

ex(C) = the set of extreme points 6f.

rr = Ppx = orthogonal projection af on the closed convex sét

Primal in the present context means no polarization of cones is involved. Dual means that a
condition is obtained involving some polar cones.
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2. PRELIMINARIES

The lineality spacéin(C') of a coneC' in H is the linear subspag@ N —C' (the maximal
linear subspace containedd). A coneC' is said to be pointed ifin(C') = {0}. If a cone is
closed, then, obviously, its lineality space is closed as well.

A first technical lemma is:

Lemma 2.1. A closed cone in a Hilbert spacH is proper if and only if it is contained in a
closed half-space.

Proof. Let C be a closed proper cone. Then there is a singlétdrdisjoint fromC'. Singletons
are convex and compact and therefore the Strong Separation Corollary 14.4 in [11] applies. The
rest is immediateg

The well-known decomposition of non-pointed cones [14] extends easily in Hilbert spaces.
We restate it in our context:

Proposition 2.2. Let C be a non-pointed closed cone afdts lineality space then:
C=F+PpC=F+(CNFY)

where the con€' N F+ is pointed and closed. & is not closed but its lineality space is closed
the same expression holds and the c6he F'+ is pointed.

Next we recall the definition of polar cone of a set:

Definition 2.1. Given an arbitrary subsét of H, the polar coneof the set, denoted by? is
given by:

S*={n:(n,y) < 0,vy € S}

Note thatS? is a closedcone. This is a consequence of continuity of the inner product.
Elementary computations on polarization are similar to their finite dimensional counterpart
(see e.g.[14]). Here are a few , which we mostly state without proof.

Proposition 2.3. The following formulas hold for polarization of cones in Hilbert spaces. All
sets in the formulas are cones.

if ¢, € CythenC? D C%
cr=cr
CcP =C"
(C1+C)P =CTNCY
LetT be an operatorf — H andC' a cone inH. Then
(TO)Y =T**CP
Let{g. : « € A} be an arbitrary family of vectors ifi/. Then
Co({ga})” = N{z : (ga, ) < 0}

and
(N{z : (garx) < 0} =Co™ ({ga})

AIJMAA Vol. 7, No. 2, Art. 24, pp. 1-22, 2011 AJMAA


http://ajmaa.org

4 PAOLO D’A LESSANDRO

Proof. Polar of I'C"
(TCY ={y: (y,Tx) <0,z € C} =
{y: (T*y,z) <0,z € C} =T"'C?
Last statement: Take € A, Co({gs}) C Co({g.}) implies

{z: (95, 2) <0} = (Co({gs}))" D (Co({ga}))”
and so:
(Co({ga}))? € Nz : (ga, z) < 0}

because the reverse inclusion is obvious, the first formula is proved. The second follows taking
polars on both sides and applying the elementary computafgons.

Theorem 2.4.Let C be a closed cone. Thefi+ C? = H. MoreovervVz, dlzc € C and
Alxer € CPwithzo Lz er, Such thate = x¢c +xce. Moreoverze = Po(z) andzer = Por(x).

Proof. If z = 0, it can only be decomposed as= 0 + 0, by the orthogonality constraint. Thus
in what followsx # 0. If Po(x) = 0, thenz € C? and can be decomposedaas- 0 + z. If we
attempt another decompositien= w + (x — w), with w € C, then, by orthogonality:

(w,x - ’U}) = (w>$) - ||u)||2 =0
and becauséw, z) < 0 it follows w = 0. A similar argument applies if € C. At this point
we can assume that¢ C' U C?. Thus, Po(z) # 0. If we write:
v = Po(e) + (¢ = Pe(a))

by the preceding Propositiof,x — Po(x)), Pc(z)) = 0, thusz — Po(z) € C? and the decom-
position is orthogonal. Next we claim that the projectioncantoC? is z — P (x). In fact for
z € (P,
(x = (z = FPo(x)), 2z — (x = Po(x)) = (Pe(x), 2) — (Po(z), (2 — Po(x)))

Now the first term is< 0 by the definition of polar cone and the second is zero by the Lemma.
Thus in view of the Projection Theorem our claim is proved. It remains to show that there is
no other orthogonal decomposition. Suppose that there is another decomposition in addition to
this one

z = [Po(z)] + [z — Po(x)]
. Clearly we can write the new decomposition in the form

v = [Po(z) + wl + [(z = Po(r)) + 2]

with [Po(z) +w] € C and|[(x — Po(x)) + 2] € CP. Subtracting these two relations+ » = 0.
We are assuming that the new decomposition is orthogonal so that, taking the inner product of
the two components and bearing in mind that the former decomposition was orthogonal

(w, (z = Po())) + (w, 2) + (Po(x), 2) = 0

On the other hand, by polarityw+ Po(x)), (x — Po(x))) = (w, (x — Po(z))) < 0. Similarly

([(z — Po(x)) + 2], Po(z)) = (Po(x),2) < 0andw + z = 0 implies (w, z) < 0, because
(w,z) = —1||w||> = —1||z||>. Hence all terms in the above sum must be zero. In particular,
0= (w,z) =—1]jw|]* = —1]|z||*. Itfollows w = z = 0 and the proof is finishedx

In Hilbert spaces the Induced Map Theorem can be put in a more useful form. We start with
the following:

Proposition 2.5. Assume that" be a closed subspace of the Hilbert spdédhenH/F is
linearly and topologically isomorphic té'(with the relative topology).
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Proof. Incidentally, recall that the quotient topology is Hausdorff because closed. Define
the map:
S:H/F — Ftby:S(x+F)=xp.

Becaus&/z, » + F = 2. + F, and because for two vectorsandw in F*:

i+ F=w+F=z=w
it follows that .S is linear one to one and onto. Moreover,

SoQ=P_,
and thus, by the Induced Map Theoreshis continuous. On the other hand:
§t=QoP,,
and soS~lis continuous too. Thus$ is a linear topological isomorphism and we are dane.
At this point we use the Open mapping Theorem:

Theorem 2.6. (Open Mapping Theorem) . Consider a continuos fiapH,; — H,. Then
R(T) is closed if and only" is an open mapping.

Proof. AssumeR(T) closed. Calll, the topological isomorphisn/, /N (T) — N(T)* of
Propositior} 2.6. Then clearly

T =T|nmr)y 1,Q
Notice thatT'| \1). I, is, by the preceding proposition, continuous and one to one and onto the
Hilbert spaceR(T"). By the closed graph Theorem its graph is closed and therefore the graph
of its inverse is closed. Hence the inverse is a continuous operator on the Hilberfs@ace
It follows that 7’|~ I, is an open map. But, as we know, the quotient map is always open and
henceT is open too. Conversely i’ is open, write according to the Induced Map Theorem
T=ToQ. By the same Theoreffiis a topological isomorphism and herg¢T’) is closed.a

Note that, obviously,Q = P| ). and thus we can state the corollary:
Corollary 2.7. Consider a continuos map: H; — H,. Then we can write:

T =T|n)L Plar):
and the mag’| /. is a linear topological isomorphism if and only®(T’) is closed

3. THE PRODUCT TOPOLOGY

In our analysis of polyhedra we will assumieseparable, and so we will work directly i
which is isometric taff. Every operator i, is represented by an infinite matrix. When we will
need to establish the converse, a simple sufficient condition will be enough. We note in passing
that/, is not a closed subset @°.

In [, we need to consider three topologies: the native (strong) topdiothe weak topology
W, and the relativized product topology &f°, X'. Note that:

XCWcCS

If we consider a linear transformatién— [, itis well known thatS —S continuity< W — W
continuity (e.g.[8]). Thus, assuming, §f— S continuity all the following types of continuity
are implied:

S-WS-XAW-WW-X
We will use the same symbol for a given topology and the same topology relativized to a sub-
space. The spagd*>, X) is locally convex, but not normable.
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The main motivation for weakening (beyond the weak) the original topology is to facilitate
compactness. In this respect the weak topology is not enough, as we shall see.

If we consider a (matrix) operat6#: (I, S) — (l2,S), since the adjoint exists, it is obviously
necessary that both its rows and columns arg.inf we assume that the rows only arelin
thenG is an operator (is continuousl,, S) — (R>, X') (because the composition with each
projection on a factor is continuous).

The dual space ok is the direct sum of duals of the factors. This means that a vedtor
in this dual if and only if it has finitely many non-zero components (and so@ésd,).

We next provide a few technical Lemmas involving tkigopology forl,.

In connection with the subsequent discussion bear in mind that, as recalled in the preliminar-
ies, in a Hilbert space a closed range operator is necessarily an open map.

Lemma 3.1. Suppose thatr is a (I, S) — (l2, S) operator. TherG is open relative to ther
topology in its domain and any vector topology in the space it maps into.

Proof. The open sets in domain are cylinder set with finite dimensional open base. Thus we
may represent and open set as the g8im L, whereB is an open set in a finite dimensional
coordinate spacg and andL = F* (also a coordinate space).Thus:

G(B+L)=Glr(B)+G(L) =

U{y+ G|r(B) :y € G(L)}
and this latter set is an union of open sets, bec&tjges a finite dimensional range transfor-
mation and hence opea.

Corollary 3.2. A topological isomorphisii’ (I;,S) — (l2,S) is a topological isomorphism
(lo, X) —(ls, X). If Fandl" are closed subspaceslef a topological isomorphisr¥, S)— (I, S)
is a topological isomorphisr¥’, X)) — (T, X).

Proof. We observe that as a mdpis invertible and botfY" and its inverse map are continuous
in the strong topology and hence open in fhigopology. As to the second part it suffices to
remind that closed subspaces are isometrig {or R™ according to the cases) via a the choice
of an orthonormal basa.

A closed subspace in the topology forl, is also closed in thé topology. The converse is
true: allS - closed subspaces aké- closed.

Lemma 3.3. A closed subspace @f,, S) is also closed in thet topology. Thugi,, S)* =
(I3, X)*. Consequently any closed semispacédnsS) is also closed in thexr' topology.

Proof. Note that any closed subspace can be represented as the null space of a projector which a
self adjoint operator. By a change of base and invoking the Toepliz Thelorem [8] the matrix of the
operator is transformed (by an unitary equivalence) in a self-adjoint matrix with both finite rows
and columns. Thus in the nelw space the subspace is the intersection of subspaces closed in
the product topology. But we have just proved that a topological isomorpliis®) — (I2,S)

is a topological isomorphistti,, X') —(l2, X'). Thus the original subspace is also closed in the

X topology.n

Theorem 3.4. Suppose thatr is a (2, S) — (l2, S) operator with closed range. Then we can
write:

G = Gy Pro):
and G|y g+, is not only a linear isomorphisriV'(G)*+, S) — (R(G),S), but also a linear
isomorphism N\ (G)*, X) — (R(G), X).
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Proof. We know that(| ¢+ is a linear isomorphism with respect to the native topology and,
by the preceding Corollary, it is also a linear isomorphigfi{G)*, X) — (R(G), X). 1

4. POLYHEDRA AND POLYHEDRAL CONES AND THEIR GENERALITY
In R™ a polyhedron is a finite intersection of closed semispaces, that is, a set of the form:
N{z: (¢, 7) <v,i=1,..,n} ={x:Gr <v}

whereG is a real matrix formed by the rowg, v € R™ has components; and the ordeK is
the product order (and the corresponding positive cone is the non-negative orthant).

We generalize this to a real separable Hilbert spaces in the natural way, substituting countable
intersections to finite intersections. Not only this is natural but it is also indispensable if, for
example, want to make the positive cone itself a polyhedron. For simplicity we may work
directly inl,. Inthel, setting we can consider the natural versiarg base and the consequent
matrix representation df,, S) — (ls, S) operators.

Definition 4.1. A polyhedrong (in [,) is a countable intersection of closed semispaces:
G=n{r:(¢"2)<v,i=12..}
whereg’ € I, andg® # 0, Vi. If v; = 0, Vi theng is a cone and is called polyhedral cone.

Without restriction of generality we can divide each inequality||p¥i|, and hence we can
assume, whenever convenient, theft| = 1.
We may rewrite the set as:
G ={z: Gz < v}
whereG : is an infinite matrix whose rows are thh¢ andv € R> has components;. Note
thatG is continuougls, S) — (R>, X) (itis not in general an operatél,, S) — (I, S)). The
order< denotes the product vector orderingitf°, andw is called the bound vector.

Remark 4.1. Note that in view of the structure of the dual spaceff, polyhedra defined
relative to theX' topology forl, are also polyhedra if3.

A noteworthy fact about polyhedra is that any closed convex subsets in a separable Hilbert
space is a polyhedron and any closed convex cone is a polyhedral cone.

Theorem 4.1.Consider a non-void strongly closed convex subset H in a separable Hilbert
spaceH and let D be a countable dense subsetdf ThenV( € B(C) there exists a se-
quence of support points; } such that{z;} — ¢ strongly where{z;} is in the same countable

set Po(D\C'). Thus there exists a countable set of support points denBgdl). Moreover,

the countable intersection of supporting semispaces defined by the points of the countable set
Po(D\C) and the corresponding normals (i.e.iife D\C' the normal isy — Pry) coincides

with C. Thus any non-void closed convex &&is a polyhedron and any non-void closed cone

is a polyhedral cone. In particular, any strongly closed convex séf is also X-closed and

hence, also, the closed convex extension in all three topologigk{, andS) coincide.

Proof. Observe that, becauggis open and consider an open sphﬁfg (of radiusl /) around

¢. This sphere will contain the open s&n Sf/i and so take a point in this intersection. If this

is not already inD there is another sphef& entirely contained i’ Sf/i, which will intersect
D. Takey; in this intersection. In this way we define a sequefigé which converges td,
and, by continuity of projection, the sequence of support pdints= { P~ (y;) } converges tq.
This proves the first part. As to the second statement assume that there is a wethbergiven
intersection such that ¢ C. Because: € C, arguing in a similar way, we can take;} — z,
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with {z;} in C'N D. By continuity of Po, { Pc(z;)} — Po(z). Definen; = (2, — Po(z;)), and
notice that:

(ni, 2 — Po(2:) = (ni, 2 — 2i) + (4, 20 — Po(2))
Next the second term on the rhs goegjto— P-(2)||> = 6 > 0 while the first term on the rhs
goes to zero. Thus, for sufficiently high

(ni, z) > (ni, Po(2))

It follows that z is outside the supporting semispace corresponding.td his contradiction
completes the proof for polyhedra. The remaining part of the proof is straightforward and is
omitted. n

This Theorem has an important consequence, under the restriction of considering void inte-
rior sets. This is less unusual than it may appear at first sight, considering the well known fact
that the positive cone ify has void interior even in the strong topology (as will be recalled in
the next Section).

Theorem 4.2. Suppose&’' is a a strongly closed convex subset/f which has a voidt-
interior. ThenC' is the X-closure (or equivalentlyS-closure) of the countable subset of its
points P (D\C).

Proof. By the preceding Theorend; convex and strongly closed implies thdtis X'-closed.
Thus, with obvious meaning of symbolsy (C') = C. By the preceding Theorem the countable
subset ofC given by P-(D\C) is dense inC' in the strong topology and hence also in tkie
topology. From this the thesis immediately follovgs.

Proposition 4.3. Finite and countable intersections of polyhedra are polyhedra. Closed sub-
spaces are polyhedra

Proof. For finite intersections the proof is based on block matrix operators. In the case of
countable intersection we have a countable set of block each of which has a countable number
of rows. This results in a matrix with a countable set of rows. Next, expressing a closed
subspacé as the kernel of the projection on the orthogonal complement we obtain:

F={z:Ppz=0}=
{g;:<_PJ§; )xgo}

At this point we introduce a useful technical Lemma:

Lemma 4.4. The translate of a polyhedron is a polyhedron. In particular if we translate a
polyhedrong by the opposite one of its points (so thatd € G —t) then, in the representation
of G — t, the bound vector is non-negative.

Proof. Just note that
—t+G(G,v) =G(G,v — Gt)
|

The following Theorem shows that a large subclass of polyhedra can be represented working
completely withinl,, in the sense that we can takec [, andG a (matrix) operatofly, S) —
(I3, S).
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By what we proved earlier the closed sphése of radiusr around the origin in, is a
polyhedron. However, in the next proof it will be convenient to use the obvious alternative
representation:

B ={z:(g,x) <r gl <1}
Theorem 4.5. The class of polyhedra defined by:
G ={z: Gz <wv}

wherev € I, G a (matrix) operatorl, — I, and < is the product vector ordering restricted
to [,, includes polyhedral cones, closed subspaces and bounded, and hence weakly compact,
polyhedra.

Proof. First we prove the statement for polyhedral cones. Thus consider a polyhedron of the
form: N{y : (¢*,y) < 0} and an arbitrary vector € I, with z; > 0. Then:

My : (g% y) <0} =n{y: (zg',y) <0}

For simplicity use the same symbgl to denote the new vectorsg’, and form the infinite
matrix G whose rows are the new vectays Because) .. g7, = [|2||* < oo, and this is a
sufficient condition foiG to represent a continuous linear operator (see [8]), we are done. Next
consider a closed subspake ThenPr. is a continuous operator and hence can be represented
by a matrix operator. But:

F:{g;;<_P£;)g;§O}

and since the block matrix represent a continuous linear operator, the second statement is proved
too. Finally, letG be a weakly compact closed convex set and, without restriction of generality
suppose thai € G. Then, for some > 0:

G=n{z:(¢",z) <v;} C B
Observe that the closed sphese of radiusr around the origin iri; can be represented as:
B ={z:(g,x) <r gl <1}

Now all v; > 0. If somei, v; > r, we can substitute; with r, without alteringG, thanks to
the above inclusion relation. But this implies that /... At this point, arguing as before, take
z € ly with z; > 0. Then we can write:

G=n{z: (2" 2) < zv}

which is equivalent to say that, @ is the matrix whose rows are the vectefg’ and~ is the
vector defined by, = z;v;, then:

G={z:Gz <~}
with v € I, andG is a(ly, S) — (l2, S) matrix operator since

> g5 =z]? < o0
ij
The proof is now finisheds

It is convenient to extract from the above proof and state formally the following sufficient
condition to represent a polyhedron by means of an ope€atdi,, S) — (I,,S) and a bound
NS lg.
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Proposition 4.6. Consider a polyhedro and assume that the bound vectoe [, then the
polyhedron is representable as

G={x:Tz <~}
wherey € [, andI is an operator(l,, S) — (l2, S). In particular All polyhedral cones (and all
closed subspaces) can be (and will be) represented as
G={z:T'x <0}
wherel is an operator(ly, S) — (I, S).
We single out the class of polyhedra that are representable vidthinthe following:

Definition 4.2. A polyhedrong is called rangé; (briefly rl2) if it admits a representation as
G={x:Gx <v}
whered is an operatofly, S) — (l2, S) andv € l,.

In what follows we study this special class of polyhedra. Thus all polyhedra will be rl2,
unless otherwise specified. We have just shown that polyhedral cones, closed subspaces and
bounded, and hence weakly compact, polyhedra are rl2.

The fact that the polyhedral cones are rI2 immediately provides the fundamental passage from
the external to the internal description (i.e. the pertinent type of Weyl Theorem, as it is called
in finite dimensions [14]). Of course the following result also settles internal representation of
closed subspaces, which are a special class of closed cones.

Corollary 4.7. Any closed cone is countably generated.

Proof. Just apply the computatiaii = CP? and then expresS? as a countable intersection of
semispaces. Now the thesis follows from Theofem A 3.

5. THE PosITIVE CONE OF THE PRODUCT ORDER

The vector ordering ilR>° we are using is the product ordering;linit is the restriction of
the same order th Such orders are uniquely specified by their positive cones:

Pre ={s:s€ R™, s >0}
P,={s:s€lys; >0}

We work mostly onl; and, for simplicity, indicate all positive cones By leaving to the context
to specify the space it is referred to.

Some properties of the finite dimensional case go through, like the fa¢t th@ointed and
closed, but there are fundamental differences as well. First and foremost, as is well known, the
fact thatP has a void interior iri, (and also inR>).

To remedy the absence of interior, we introduce two subsef3, afhich we consider its
guasi-interior and quasi-boundary (this concept has already been used, not only for cones, see

e.g. [16], but also for other kind of sets, seel[17]). They will be referred to as intern and extern
of P.

Definition 5.1. The set of all positive vectorg, : y; > 0, Vi} is denoted byP¥ and called the
intern of P. The setP\ P is denoted by”" and called the extern a?.

We will also need the conE:
P=Co({e; :i=1,..})
which is is properly contained iR. Note thatZ~(P) = l,.
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The vector ordering has all the desirable properties and, in particular the Banach lattice struc-
ture is in place inly, S). Note that pointedness &f implies:

r<yandy<z=x=y

We collect the properties aP and its vector ordering in the following Proposition (well-
known, see e.g.[11], [13] and [15]). We only prove that the strong interior is void (and hence
such is the interior in any weaker topology), because is more directly related to subsequent
work.

Proposition 5.1. The positive coné’ of [, is pointed. In all three topologies it is closed, has
void interior and:

P=P =Co ({e;:i=1,.})
Moreover:
PP =—-pP
and
(=P =P
Finally, the vector ordering defined by is reproducing, Archimedean and defining a Banach
lattice.

Proof. BecauseP contains an orthonormal base it spans the whole space.€IfP\P" it is
obvious that any neighborhood ofintersectP. If = € PV, let Ty be the operatof — Py
where Py is the orthogonal projection on the space spannedehy. e, } and notice that the
sequencdz — 2Ty} is in P and converges to. i

6. FACES OF P

Faces ofP are subcones aP. Among them there are the extreme rays;) and{0}, which
is the only extreme point. These are obviously closed faces.

Although P U {0} is a subcone oP, it is not a face of? and neither subcones & U {0}
can be faces oP. In fact, if f € P¥ andP; is the orthogonal projection ofi({¢;}), then:

1 1
f=52Pf + 520 = P)f
We formalize this and more in the following:

Theorem 6.1. NeitherP¥ U {0} nor any of its subcones are facesfof A closed proper face of
P cannot intersecP”. Consequently, all closed proper facesiofire contained in the extern
P" of P.

Proof. Consider a closed fage and suppos¢ € F N PY # ¢. Then consider any € P.
Because it is immediate that +# ¢ such that:

lg:flClg:2]CP

we can conclude that, z € F (sincef is a face). Therefore th& Cf . But we are talking
of closed proper faces and so, becafse= P, we have a contradiction, and so the proof is
done.g

We will show that the sublattice of the closed faces is complete and has a simple representa-
tion, reminding the finite dimensional case, although this sublattice is not even countable and is
properly contained in the lattice of faces.
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Consider the family of subsets 8f. Associate td)t the positive coneP itself (this is the
upper bound of the lattice of faces) and to the void¢sassociatg 0} (the lower bound of the
lattice). To any other subseX C 91 associate the coneg:

Fo={f:f€Pandip(f) c Q}

There is a one to one correspondence between the subggtamd this family of cones. We
can define lattice operations by union and intersections of subséts ¢formally and with
self-evident symbols

whereV is any family of subsets dft andV indicates the lub. Dually:
where/ indicates the glb. Moreover, we can state:

Theorem 6.2. ExceptP itself, each above defined cong with 2 C 91is a closed proper and
exposed face aP. Moreover:

Fao=Co ({e;:i€Q})
The correspondence between a closed proper faead the set:

QF)=u{ip(f): fer}
is bi-univocal. There are no other closed facesfFinally, the union of proper closed faces
of P is equal to its exter®” of P.

Proof. That eachr , is closed is readily seen. Consider a gt} in F o and suppose that
{fo} — f where, necessarilj € P. Becaus€ f,} — f also weakly{(fa,e:)} = {fai} —
(f,e;) = f;. Thusifi € Q, thenf; = 0 and, thereforef € f . Because if € Q,¢; € Fq,

it follows F o D Co~({e; : i ¢ Q}. The converse is also true becausé¢ i F o thenf; = 0,

Vi ¢ Q, and so, clearlyf € Co~({e; : i ¢ Q}. To show that these faces are exposed, consider
an arbitraryz € P and denote by, the orthogonal projection operator which zeroes all the
components with index if2 (or Pof = fxg). Letn = —Poz € —P = PP. Then(n,.)isa
continuous linear functional separating, and P, becausén, F o) = {0} and(n,y) < 0 for
anyy € P\F o. Hence in particular:

Fa={f:f€Pand(n,f)=0}

It remains to show that there are no other closed faces. Consider a closed facamnaof let it
be F . Define:

Q=uUlip(f): fer}
Takei € Qandf € F with f; > 0. If by chancef = r(e;) thene; € F. Otherwise, iff has
also other nonzero components, reasoning as we did earlier, we see that we ea# firglich
that:

lei: flCles:2z]C P
so that we are forced to conclude tlhat [ . At this point it is readily seen that:
F=Co ({e;:1€Q}
The remaining statements are self-evident and so the proof is finighed.
Remark 6.1. Notice that this Theorem entails that the set of closed facésisihot countable.

Definition 6.1. Consider a closed proper fageof P so that for somé&) C N, f = Fqo. A
vectory such thatip(y) = Q2 is said to belong to the relative intern pf,.
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Notice that
N =¢0=Fqo,LFaq,
In view of this latter it make sense to define orthogonal complementation within the lattice of
closed faces.

Definition 6.2. For any closed facg ¢, the orthogonal complement face ihis
Fa=FgNP

In the sequel if a face is denoted By we briefly denote by\/* its orthogonal complement
face inP.

Note also that, obviously:
Fa=L (Fa)NP
Are there non closed faces 6f? The answer is yes. In fact:
Proposition 6.3. For any non finite subsek of 91 the cone:
Cy =Co({e; :i € U}
is a non-closed face a?.

Proof. The functionip(.) is monotone increasing under convex combinationg.df Cy and is
the convex combination:

f=afi+ 0
with f; € P andf, € P and witha, 8 > 0, thenip(f) = ip(f1) Uip(f2) so thatip(f,) C ip(f)
andip(f2) C ip(f) and this implies that; € Cy and f, € Cy. And we are doneg

7. FEASIBILITY AND FIRST DECOMPOSITION OF POLYHEDRA IN [y
Primal range-space feasibility conditions are formally the same as in finite dimension:
GGv)#peveR(G)+ P&
(W+R(G)NP # o= (v=P)NR(G) # ¢
In view of the first condition, the corB(G) + P is called the cone of feasible bound vectors
(that is, the cone of bound vectors for which the polyhedron is non-void). In contrast to the
finite dimensional case this cone is not necessarily closed. However if we assurRedhas

closed then it is true th&® (G) + P is closed. We state now this important result, postponing
the proof to the Section dedicated to the cone capping theory.

Theorem 7.1.1f a linear subspacé is closed so ig’ + P. Consequently, if" is not closed:
(F+P)"=F +P

The setS = (v + R(G)) N P, which is called theslack set(essentially the slack set is the
polyhedron as viewed from the Range Space side), is of course cloRéd [fis closed.
Another important set, which determines a polyhedron by a suitable inverse image is

Y=w—-P)NR(G)=v—-5
In fact we can write:
G(G,v) =G (%)
Next bear in mind Corollary 27 and write

G - G’N(G’)LPN(G)i
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Where both map are continuous),). is one to one fromV'(G)* to R(G) and also a topo-
logical isomorphism if and only iR (&) is closed.

Even if R(G) is not closed, we can still decompoSe= G| )L Py ()~ in the same way,
G| n () Will be continuousbut not a linear topological isomorphisnsubstituting

G = (Glvr) (X) + N(G)
Bearing in mind:
ST=@w+R(G))NP
YT =(w-P)NR(G)”
as long as we take the above inverse image, it is legal to substitR&¥pits closure.

Thus a first level of decomposition of polyhedra, which in the case of cones, reinterprets
differently Propositiofi 2]2 is given by the following:

Proposition 7.2. Any (non-void) polyhedron is the sum of a closed linear subspace, always
given byN (G), plus a closed convex subset/s{G)* given by(G|y):) ' (X), which con-
tains no linear subspaces. A closed cone is the su @) plus the closed pointed cone
contained inV (G)* given by(G|y(g)2) ' (R(G)” N P).

This proposition indicates whether or not there is a linear component in a polyhedron and
who this linear component is. A polyhedron where the linear subspace is present is called a
stripe, the closed convex set containing no subspaces of the decomposition is calbab¢he
of the stripe In the range space, the slack set and hen@annot contain linear subspaces:
it is never a stripe As trivial finite dimensional cases indicates the addition of a subspace to
form a stripe may well destroy the fine structure of the base. Not only extreme points and rays
disappear but we may end up with a polyhedron that has no extreme sets at all, as for example
a sandwich (non void intersection of closed semispaces defined by opposite normals).

If we want a topologically isomorphic pull back we must assume Ti@t) be closed. In
this case both the slack set andre closed and such is the inverse imag& oMoreover such
inverse images will necessarily have void interiors.

8. RELATIVE POSITION OF A SUBSPACE AND P

Next we investigate the structure of the base of the stripe. Such finer structure depends on
the relative position ofR (G) (which for simplicity we will mostly denote by") and P. In
this paper we develop the range space theory of polyhedra that assu(mdsch is usually
identified withR(G)) is closed. The results on the on thetopology fori, are instrumental
and almost all of the finite dimensional results go through, albeit with harder proofs. However,
the optimization results of last Section are general and do not require this hypothesis. The
requirement of closure of range spaces only determines whether or not suprema are attained.

Remark 8.1. In the simplex model the role 0% (G) is taken by the kernel of an linear trans-
formation. Thus all our results apply to this model with much more generality, since we only
need the the transformation in question be continuous.

The present Section is concluded with a few technical Lemmas.
Definition 8.1. We say that a closed linear subspdctes strictly tangent taP, if:
FnP={0}
Dually we say that a closed linear subspates intern toP if
FNPY+¢
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We say that a closed subspaces weakly tangent or extern tB if it is neither strictly tangent
nor intern.

Theorem 8.1. Suppose that’ is intern to P. Then:
F + P = H and this is equivalent to
(F+ PP = F-n(-P) = {0}

ThusF is intern to P if and only if 7+ is strictly tangent taP. Moreover, if a closed subspace
is strictly tangent taP, then it is contained in a closed hyperplane strictly tangen®to

Proof. In this proof bear in mind that, by Theor¢m[7A+ P is closed. Note that; € F' + P,
Vi. By hypothesisiw, w # 0 andw € F N P¥ and also-w € F'+ P. Apply now Lemmag 21
to /' + P. Supposelz # 0 such that:

F+PcCcly:(z,y) <0}

This impliesz; < 0 and that it must exist @ such thatz; < 0. But then(z,w) > 0. This
contradiction shows that” + P = H. This implies(F + P)? = F+ N (—P) = {0}. ThusF+
is strictly tangent taP. Conversely, by taking polars:

FrnP={0=H={0’=(F+P) " =F+P

Finally, if a closed subspack is strictly tangent taP, so thatF+ is intern to P, consider a
vectorn # 0 withn € F+ N PV. Then:

{y:(n,y) =0} D F

and becausg&({n}) is intern toP such an hyperplane is strictly tangenton
Theorem 8.2. If a closed subspack is strictly tangent taP then " + P is a proper cone and:

lin(F+ P)=F
If F'is an hyperplang’ + P is a closed semispace.
Proof. Notice that in general:

lin(F+P)DF
First assume thaft is an hyperplane, which we denote by Then

L+ P=(L+ Py =(L"N—P)=(r(n))

wheren is a unit vector inL* N —P. ThusL + P is closed semispace and its lineality space
is L. For the general case note that, by the preceding Theafem, L whereL is a closed
hyperplane strictly tangent. Thus+ P is a proper cone. Next take € PVn L+, and so it
will be true that

F+PcL+PcC{y:(y,n) >0}

Next note that foy € '+ P C L + P itistrue thaty = w + z withw € F andz € P and
then with obvious meaning of symbols we can wijte- w + z;, + an. Because itv > 0 then
(n,—y) <0,y € F+ Pand—y € F'+ P impliesa = 0. Buttheny € L,y —w = 2z, € P
impliesz;, = 0 and soy = w. Thuslin(F + P) = F. 1

Theorem 8.3. Suppose thak’ is extern toP. Then in the lattice of closed faces®fthere exist
a unique maximal face , whose relative intern is met bfy. Moreover:

FNPCFqg
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Proof. Define the order- on F N P by y = w if ip(y) D ip(w). We now apply the Maximal
Principle (e.g.[[10]). Consider a tower in this set and a vecterP". Also we can normalize
all elements of the tower without any harm to the argument and also assume that the tower is
countable. In fact if it is not simply take the subtower obtained choosing only one element for
each value of the functioip, and our argument will go through anyway. Denote the tower by
{w’}. Define the series:

Z ijj

This series is Cauchy in norm and therefore it converges to some \@eatoF' N P, which
follows in the order any element in the tower. Because for each tower there is veétor in
which follows all vectors in the tower, it follow from the Maximal Principle that there is a
maximal element in F' N P. Such vector identifies the claimed maximal face by means of the
index setip(u). If there were more than one callandrthe vectors for whichip(o) andip()

are maximal. Therip((c + 7)/2) properly contains bottp(o) andip(7). This contradiction
concludes the proof

We now need a technical Lemma, because it is often useful to consider relaxations of the
systemGz < v, which are systems obtained from the original one by deleting some of the
inequalities and/or adding to a vector inP. Dealing with the first case, does the fact that
R(G) is closed imply that, if7, is the matrix obtained frortw deleting some of its rows (which
obviously also represent an operator), the{t) is closed? The answer is affirmative.

Lemma 8.4. If R(G) is closed then, denoting i,z < v, any relaxation oflGz < v, R(G3)
is closed.

Proof. It is clearly equivalent to argue applying to both sides of the system the projector
into the coordinate space individuated by the relaxation. Then write:

Gy = PGy Pl

and notice that all maps on the right hand side are open. &hus open and thus, by virtue of
the Open Mapping Theorem has closed ramge.

Suppose that’ = R(G) is extern toP, and letM «— W be the maximal face oP, whose
relative intern is met by

Theorem 8.5. Suppose that’ = R(G) is extern toP. If in the systentiz < v we delete the
inequalities corresponding t& the ensuing relaxatiotirox < v, is strictly tangent. Moreover
if M < W is the maximal face whose relative intern is metbthen M+ « ¥ is the maximal
face of P, whose relative intern is met kiy-*.

Proof. By the first duality principle " strictly tangent= F intern orF intern<=- F'*strictly
tangent), we deduce that" is extern, and in addition, the maximal face whose relative intern
is met by F-has an index sdt C ¥, for otherwise we would have two vectors ifand F*

with positive inner product. Suppo$ec ¥ properly. Now consider the direct sum (which is
stated by polarity theory):

(FfNnP)® (F - P)
and consider a vector in the relative internidf-. The first set cannot contribute with a vector
with all the positive components and the second set can contribute at most with a vector in the

relative interior of M. Thus the direct sum is contradicted and so it must'be U or the
maximum face whose relative intern is met By is M+. Next, letQ) be the matrix, whose
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rows generate the corfién P. All rows have all zeros for indexes . SinceF+ + P = {xz :
Qz < 0}, then we can write:

Fr+P=F"+L (MY+P
and by polarization:
FNP=[FNL (M)]NnP

thus to the effect of intersecting with P we can use the subspagen £~ (M) in place of .
But this implies that if we projecR (G) on £~ (M+), as we do when we consider the relaxation
individuated by the subscrigt we find a strictly tangent system. Thus the proof is finisheed.

Corollary 8.6. Suppose that’ = R(G) is extern toP, then the cone of feasible bound vectors
R(G) + P is proper and hence contained in a closed semispace.

Proof. Obvious from the fact that the system has a strictly tangent relaxagion.
Lemma 8.7. Given two closed con€s; andC; and two vectorg; andys:

y1+C'1Cy2+C’2<:>y1—yQECQandC’1CC'2

Y1 + C1 =12 + CQ =Y — Y2 € ZZTl(Cg) andC1 = CQ

Proof. The second statement is an immediate consequence of the first one. As to this latter
sufficiency is obvious. Next suppose that although

-y +C =y+Cy CCy

there is a vector in C that does not belong 10,. Thuskz is in Cy but notinC,. By hypothesis
y + kz € Cy, for any positive integek. Therefore{(y/k) + z} is in Cy. But this sequence
converges ta and so, being’; closedz € 5. This contradiction concludes the proaf.

The following Lemma is the essential tool to determine who is the conical component of a
slack polyhedron.

Lemma 8.8. Suppose that’ is either intern or extern ta and that(v + F') N P is non-void.
Then

Vwe (v+F)NP,w+ (FNP)C(v+F)NP
and for any closed con€
Vwe v+ F)NP,w+CC v+ F)NP<CC(FNP)

Proof. First statement. Suppose a vectdselongs to the Ihs. Then=v + y + v withy € F,
v+y € Pandy € FNP,sothat: € P. But,alsop+y € v+ Fandy € Fimplyz € v+ F.
Second statement. It must beC P. For otherwise there would be a vecton C with at least
a negative component. Then for sufficiently large> 0, w + «z cannot be inP, which is a
contradiction. On the other hand

w+CCv+F=CCF

in view of the Lemma on inclusion of translated closed cones. ThasF N P as statedy
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9. POLYHEDRA IN RANGE SPACE, GENERALITIES

A major goal is to prove that the slack polyhedfen- F')N P is either a generalized polytope
(a convex set that is compact in thAé topology) or a cup, that is, the sum of a generalized
polytope plus a closed pointed cone (containeé’)n

There are also major differences though, especially in the approach. In finite dimension
polytopes have a finite set of extreme points and the convex hull of a finite set is always compact.
This fails in infinite dimension, where the set of extreme points can even be uncountable.

Our approach is first to settle the case where- R(G) is a closed hyperplane, which is an
easier case, and then use the result as a Lemma to settle in turn the general case. In this way we
will be able to show that the finite dimensional classification goes through: in fact in the strictly
tangent case we can only have polytopes; all other cases generate cups. The cone of the cups is
alwaysF' N P. Their compact components always contain theséfv + F') N P).

However, as we know, both the cofen P and the compact base are countably generated,
whereas extreme points and rays might be uncountable. Internal descriptions by extreme rays
and extreme points remain a fundamental theoretical issue, but might loose some appeal espe-
cially from the numerical point of view. There might be special cases, where countability is
preserved, but this goes beyond the present purposes.

10. COMPACT POLYHEDRA : THE STRICTLY TANGENT CASE

In this Section we investigate the case in which= R(G) is strictly tangent toP. We
show that the slack polyhedron is compact in fi@opology. This is the infinite dimensional
counterpart of the concept of polytope. For brevity, we make only the statements relative to the
range space, from which the statements on domain spaces follow immediately via Thegrem 3.4.

Theorem 10.1.Suppose thak (G) is strictly tangent taP. Then:
S=@w+F)NP

is compact in theY topology. Assume, without restriction of generality, F'. If F'is an
hyperplane, then the set of extreme points§' ds:

[Jv]|?
A= ' =12 ..
(e i=12.
and so
S=C(A)

If F'is any closed subspace, letbe a closed strictly tangent hyperplane, which contdingn
the definition of\, substitutev by P, v. Then(v + F') N P is a convex closed subset®f(A),
and hence it ist-compact. It follows that has extreme points and :

S =C (ex(9))
Proof. If F'is an hyperplane then

v+ F={y:(v,y) = lv[l*}
The ith coordinate axis (extreme ray) Bfintersecty + F' only onceat the points

N L
) v;
and it easy to verify that these points are extreme(for F') N P and that there are no other
extreme points. At this point notice that:
2
(v+ F)n P c X{[0, @]}
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which, by the Tychonoff Theorem is a compact set in the product topology. Thus the statement
dealing with hyperplanes is now proved. Afis not an hyperplane, by Theordm 8.1, it is
contained in a closed hyperplapestrictly tangent taP. Thus

v+ FCuv+F =FPrv+F
From this the remaining part of the thesis follows at orge.

Theorem 10.2. The orthogonal projection aP on a a closed linear subspaceintern to P is
closed.

Proof. We know thatF' + P is closed and thdin(F+ + P) = F*. The application of decom-
position of cones yields:

F+P=F+Pp.(F+P)=F+ Pp.(P)

Because this last expression is uniquePjf. (P) were not closed we would contradict that
F + Pisclosed.x

11. THE CoNE CAPPING TOOL

There is a connection between the last Theorem and the theory of cone capping. These
concepts are also instrumental in the sequel and so we briefly outline them. We follow [12], in
which more details as well as references can be found.

In fact we have used a special instance of universal caps for pointed convex cones in locally
convex spaces. These concepts have been introduced by Choquet, to the purpose of extending
The Krein-Milman Theorem in a framework of Measure Theory.

If C'is a convex pointed cone, theti C C'is a cap ofC' if it is compact and convex and
C\K is convex. The cap is universaldf = U{nK : n = 1,2,..}. Once a cone is cappe@l
its closed subcones are obviously capped as.well

In our specific technique faP in (l5, X'), we indeed used faP the universal cap:

N(a, f)=K={y:(f,y) <a}nP
with somea > 0 andf € PY. To avoid confusion, we change a little bit Phelp’s terminology,
and call the compact set
Lla, f)={y: (f,y)=a}nP
the roof (at leveh) of the capped cone. The fact that the hyperplane strictly tangent ta”?

means thatV is a cap and. is a roof. Note that we can also express the capping of the cone
using the roofs instead. For example we can write:

P = N(a, [)U(U{L(B, ) : 8> a})

We can rephrase Proposition 13.1[0f|[12] in our context:

Proposition 11.1. A pointy is an extreme point of a roof if and only if it lays on an extreme ray
of the cone.

Naturally, this result provides the internal description (in terms of extreme rays, for all the
closed subcones @?, and in particular those of the forim N P, whereF' is a closed subspace,
either internal or extern t®.

In the sequel we will use in a self-evident way the same terminology relative to cone capping
for subset ofP called cups, which are sum of @at+compact subset af plus a closed subcone
of FNP.

We now use the cone capping standpoint to show the anticipated[result 7.1 asserting that, if
a subspacé’ is closed, then the congé + P is also closed. Here is a proof:
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Proof. It is immediate that if we capP at a certain leveb and denote by’; the capped cone,
we can write:
F+P=F+P;3+P

MoreoverF + P is X-closed, because it is the sum of &rcompact set plus af'-closed set.
But X'- is also convex, and hence by what we stated regardind’th@pology, we can affirm
that /' + Pj is strongly closed. Consider a converging sequen¢g in F + P . using the
increments with respect td, we can write:

vi=00 4+ = w2+ 8T 0T
wherew € F, z € P andé = 6" + 6'" is the unique decomposition defined by the pair
and its polar cone-P. We choose3 sufficiently large so that € P;. Because thgd'"} is
defined by a projection, which is continuous, it converges to a limfin Consequently the
sequencdw + 2+ 6"~ } also converges. We claim that each veetor > + '~ isin F + P;. For
if it were not so, it would evidently have some negative component of indéx(id~), which

cannot compensated by the corresponding componeiit pbecause this must be zero. But
then the limit of this sequence is i + P and the Theorem is proved.

12. THE INTERN CASE

We will prove that in the intern case the slack polyhedfon- F') N P has extreme points
and is the sum oft’-compact proper subset containi@g(ex((v + F') N P)) plus the closed
pointed cond’ N P. This kind of polyhedron is called cup. The closed set is called the base of
the cup.

Definition 12.1. A setC' C P is called a cup ifex(C') # ¢ andC' is the sum of a proper
X-compact convex subsét containingC— (ex(C)) plus a closed pointed N P. The setB
called the base of the cup.

We start showing that in this definitiar:(C') cannot be void.
Lemma 12.1. A cupC has extreme points.

Proof. If 0 € C, then obviously) is an extreme point. Otherwise take a capping functional
(f,.) for P (so thatf € PV). For some sufficiently high level > 0 the corresponding cap
intersect the cup. The intersection¥scompact and on such intersection the functional has a
minimum. By a, by now usual, argument the minimum is attained on an extreme point of the
roof corresponding to the minimum and such an extreme point is also extreme for the cup.

First we examine the structure of the slack set in the case in which the sulispmaelosed
hyperplane.

Theorem 12.2.Suppose that’ = R(G) is a (closed) hyperplane and thét is intern to P.
Then(v + F) N P is a non-void cup with¥’-compact basé&s = C~({¢;}) and coneF' N P.
More precisely, assuming without restriction of generalitg F'+:

(v+F)NP=C ({{}H)+(FNP)=

where:
v

2
| ej: j €ip(v)}
Uj

{6y =1

Remark 12.1. We remind once more that the closure in the preceding formula can be taken in
any of the three topologies we are working with.
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Proof. As usual we can takel F'. The hyperplane has the form:

v+ F={y:(v,y)=|v]*}

ThenL({v}) must be strictly tangent and sanust have both positive and negative components.
Let, for the present purpose3,= in(v) Uiz(v). We claim:

(v+F)NPINFq=2¢

This follows from the fact that for all vectors ihq, the inner product in the expression Bf
is negative or zero. Thus all vectors(im+ £') N P have either all zero components{or, if
not, they must have some positive components.iivioreover,v 4+ F intersect all and only the

coordinate axes with inde in the pointss; = ”Z—‘,‘er and only once for each axis, as follows
J

from the expression af + F'. Our remarks on components of vectorgir4- F') N P imply

that the; are all extreme points and that there are no other extreme poigatsHd) N P. The

same argument used for the strictly tangent case proves that
B=C"({§})
is X-compact. At this point, in view of Lemmja .8, we can claim that
CHEH+FNP)Cw+F)NP

Note thatB + (F' N P) is convex and closed in th&-topology (becaus® is compact). Next
supposélz with z € (v+F)NP butz ¢ C~({¢,})+(FNP). Then{z} (whichis compact) can
be strongly separated froév ({{;}) + (F'N P), by a continuous functiongl. Let’s look at this
issue from the point of view of th&'-topology. The image oB is a closed bounded interval,
and the image of'N P is (without restriction of generality}), +o0), so that the resulting image
has the formd, +oc0). It is easy to show that the values attained in an extreme poigf (in
fact, briefly, f~1(9) is a closed and hence compact facesoénd thus it has an extreme point).
Next notice that, because the null space of the functional is closed, the functional is also strongly
continuous so thatg € [, such thatf = (g,.). Moreover, itmustbg € —(FNP)? = F-+P

or g = av + p, with obvious meaning of symbols. But the componentassumes the same
valuea?||v||* on both¢, andv + F. Thus we may assumge P. Next we can add tg a
vectorg’, obtained from a vector iV zeroing thekth component. Clearly for this sum (still
denoted by)), § = (g,¢;,) is again the infimum of the functional @i ({¢;}) + (F'N P) and the
perturbation can be taken small enough to ensyre)(< 6. Note that now we are dealing with
a capping functional for the sét + F') N P. By the strictly tangent theory we have developed
in the preceding Section, the intersection:

U={r:(9,2) < (9,2)}N(v+F)NP

is X-compact and hence has extreme points. The functignal attains its minimum (in¥

and hence also ofv + F') N P) at an extreme poirt. We claim that] is extreme for the whole
(v+ F) N P. For this cannot evidently contradicted neither using test points in the bottom roof
{z : (9,2) = (g, 2)} and neither using points in roofs of higher level, because this case it would
contradict minimality. But this new extreme poijitannot belong t§¢, } = ex((v+ F) N P).

This contradiction concludes the progf.

Theorem 12.3.Suppose that’ = R(G) is a (closed) subspace and thatis intern toP. Then
(v+ F) N Pis non-void, has extreme points and is a cup:

(v+F)NP=T+(FNP)

wherel" (which containsz((v + F) N P) is defined as follows. Lét be a closed hyperplane
with L O F so thatL is intern too. Thus we know thét + L) N P is a cupB + (F N P).
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Then:
I'=BnNn((v+F)NP)

Proof. First note that non-voidness is a consequence of the obvious conditor < v €
F+P andin the present case Theolen] 8.1 ensuresthhdt = H. Next consider a continuous
linear functionalf € F' N PV. For some capping level the set:

[(v+F)nPIn{z: (f,z) <o}

must be non-void and it ist-compact. (These sets are the cups (for+ ') N P and the
corresponding roofs are denoted still by, f)). Thus it has extreme points. Becayge.) is

(by Lemmd 3.B) continuous in th¥ topology, it has a minimum on this compact set (which

is attained in an extreme poig}. All the extreme points of the roof at levélare clearly also
extreme for(v + F') N P. Thus the first part of the statement is proved. Next bearing in mind
Lemm& 8.8 we can write:

r+(FNP)c(v+F)NPCB+(FNP)

From this we see that an extreme point(@f+ F') N P must belong tad3 and hence, also, such
an extreme point must be inby the very definition of" itself. In formula:

I'Dex((v+F)NP)

Next suppose there is a vector (in + F') N P that is not in" + (F N P). At this point a
replication (mutatis mutandis) of the separation argument in the proof for the hyperplane case
leads to a contradiction and so the proof is finishged.

13. THE WEAKLY TANGENT CASE

In the extern case there exists the maximal fat®f P whose relative intern is met by.
The faceM is determined by the corresponding sub¥etf tand N P C L~ (M) = 9.
Deleting the rows of7 in T (and doing the same on the components Jofve obtain a block
G, out of G. This corresponds to redefiigas the column of two blocks:

N Gy (%1
orse=(8)e=(2)

Recall that, by Lemma 8.4R(G;) and R(G>) are closed. Moreover, by Theor¢m|8.5, the
systemGyr < v, IS a strictly tangent. We call it thstrictly tangent relaxationThe system
G,z < vy is anintern system, by the very definitionf. We call it theintern relaxation In
dealing with these systems, if needed, we inject vectors of their range spaces suitably adding a
zero column block and viceversa make projections , but without explicit notice.

In the extern case we have a results similar to the preceding one: we still haixe@mpact
base plus the conE N P. The expression of the base is derived from the bases of an internal
and a strictly tangent case.

Theorem 13.1.Suppose that' = R(G) is extern toP and thatS = (v + F') N P is non-void.
ThensS is a cup given by:

(Wv+F)NP=X4+(FNP)
Y=UxB)Nn[v+ F)NP]

where B is the (injected) polyhedron defined by the strictly tangent relaxationnsl the
(injected) base of the cup defined by the intern relaxation.
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Proof. Consider a feasible slack vectpre (v + F') N P. If we projecty on the two coordinate
spaced and2 we obtain two feasible coordinate vectors for systeand systen2. Thus the
slack set of the system is contained in a product of the form:

W+ F)NPC[V+(FNP)xB=(¥xB)+(FNP)

with self-evident symbols that take into account the previous results on the strictly tangent and
internal cases. Next we show that:

E=UxB)N[v+F)NP]#¢
In fact if we take any vectog in (v + F') N P it has the form:

()

with i, € B, y; = 21 + (with z; € ¥ and{ € F n P. This follows from the fact thag, andy,
are of slack vectors in their respective relaxations. Now can takeimthe domain such that

()

and hence we can also obtain the slack vector:

Z1
= )y
= (5
as we wanted to show. At this point we know, by Lenjma 8.8, that:

Y+ (FNnP)Cc(w+F)NP

On the other hand we have just shown that a point in the rhs is the sum of a veEtptus a
vector in ' N P and hence the reverse inclusion holds as well. Clearly the Tychonof Theorem
applies to show thall is X-compact. Next, by a by now usual argument, because the cup is
formed adding to the base a cone, the extreme points, af any, belong necessarily ta.

That there are extreme points.$his deduced in the same way as in the previous case, taking a
functional(f,.) with f € P¥ and showing that it has a minimum ihand that such minimum

is necessarily attained at an extreme poin$ ol

14. DUAL RANGE SpPACE CONDITIONS

With the hypothesis tha® (G) be closed in force, we easily generalize the finite dimensional
dual feasibility condition as follows:

Theorem 14.1.There exists a non negative matéx> 0 (inequality here intended entry-wise)
such that
VER(G)+P<=Qu>0

Proof. Because, as we have proved, the c®{€7) + P is closed and hence a polyhedral cone,
we can write for some matrix operator.

R(G)+ P ={z: Qx <0}
at this point note that for any row of @ it is true that(¢;, z) < 0, Vz € R(G) + P and hence:
¢ € (R(G) + P)" = =[(R(G))" N P]

Thereforeg; € —P. To complete the proof changgin —@Q and, at the same time. change the
sign of the inequalitys
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Remark 14.1. If R(G) is not closed a similar condition holds for its closure. That is there
exists a matrix) > 0 such that:

veE(R(G)+P) " =R(G)™"+P<Qu=>0
15. APPLICATION TO INFINITE DIMENSIONAL LP

The linear optimization problem (LP) is defined as follows.
max(f, z) on the polyhedro = {z : Gx < v}

Note that, assuming # ¢, this is equivalent to look at the maximum of the set of redig),
which is convex and hence an interval. If and only if the interval has a finite right extremum,
there is asup in f(G). Thus three cases are possible. First, the polyhedron may be void (unfea-
sible problem). Second the polyhedron is non-void, gt f(G)) = oo (feasible unbounded
problem). Third the polyhedron is non-void, anch(f(G)) < oo (feasible bounded problem).
These possibilities, and the value of the, whenever it exists, are settled by our last Theorem
below.

However, by contrast to the finite dimensional case, it is not assured that, whep #pdsts,
it is also attained. Therefore we give a sufficient condition for this to happen.

To begin with define:
2 By B WP ey
G = ( ek v(h) = y
where clearly— f is disposed as a row aridis a real parameter. So the problem LP becomes:

max{h : G(G,5(h)) # ¢}
Then we can state the following:

Theorem 15.1.For a rl2 polyhedron, assume thg{G) is bounded from above. Therﬂ‘t’f(@
is closed the maximum of the LP problem exists. MoredRéf;) closed, andf € R(G*)~

~

imply thatR(G) is closed.

Proof. Actually we have to look if there exists the:

~

max{h : v(h) € R(G) + P}
but in this way, as the parametewaries, we intersect a line:

{—h61+(2):heR}

with the setR(G) + P. Note that if R(G) is not closed and so neith&(G) is closed, the
intersection of the line:

{—hel+<g):heR}

with the coneR(G) + P is anyway an interval, whose closure is the intersection of the same
line with R(G)~ + P. If R(G) is closed (which implieRR(G) + P closed by Theorem 7.1)

then the interval is closed and the maximum is attained. As to the second part, consider a net
{a} = {Gz,} in R(G) such that{zi,} — 7. Partitioning thej, as above, the first block yields
anetinR, {t,} = {(—f,z,)} — t, and the second block a neti {y.} = {Gz.} — v.
Applying the strong topology part of the induced map Theofem 3.4, we know that the net
{Prics)-Ta} = {za} In R(G*)” is such that{z,} — z, and{Gz,} — Gz = y. Next
feR(G) & {fI =N((~Ff,.) DN(G). ThusVa, (—f,x,) = (—f, zo) and therefore
{(—=f,22)} — (—f,z) = t. And this shows thaR (G) is closed.

AJMAA Vol. 7, No. 2, Art. 24, pp. 1-22, 2011 AJMAA


http://ajmaa.org

GENERALIZING POLYHEDRA TO INFINITE DIMENSION 25

Using the dual conical condition we can now solve the LP problem.@.be the matrix
whose rows are the generators®fG)+ N P, and partition the matrix as

Q=(p S)
Then we have to find:
sup{h : @i)\(h) >0}
or equivalently:
sup{h : hp < b}

whereb = Sv. Note that the vectgs is non-negative.
If R(G)+ P is closed the Theorem below give us thex of the problem. If not it gives the
sup, and such sup may or may not be attained according to the circumstances.

At this point we can state the following Theorem, which is proved by direct inspection.

Theorem 15.2.DefineJ = {i : p(i) = 0}. Then the following mutually exclusive and exhaus-
tive cases are possible.

ea)/=0¢.If inf{;%} > —oo then the problem is feasible and

- . . b(7)
h = su ,r):x € G} =inf{—=
pl(f0) s € G =t}
Otherwise the problem is unfeasible.
e b) J # ¢ andJ # M. This case is partitioned in:
e b1)3j € J suchthab(j) < 0. In this case the problem is unfeasible.
e b2)#j € J such thab(j) < 0. If inf{;’% 11 ¢ J} > —oo then the problem is feasible

and:

h=sup{(f,z):2€G} = inf{@ ci g J}
p(i)
Otherwise the problem is unfeasible.
e C)J = M This case is partitioned in:
e cl)dj € DM such thab(j) < 0. In this case the problem is unfeasible.
e C2)Vj € M such thab(j) > 0. In this case the problem is feasible unbounded.

16. CONCLUSIONS

We conclude with an important observation, that indicate a possible orientation of future
research. As is clear the extension of theory of polyhedra is twofold: first the environment is
infinite dimensional, but also we intersect countable families of closed semispaces in a separable
space. Such an extension allows to encompass not only, as required, the positive cone but also
any closed convex set, although along the way we chose to deal only with closed subspaces (and
closed affine spaces). The fact of encompassing a large class of closed convex sets, suggests
that the optimization results presented could be adapted to included a special class of Convex
Programming Problems, by representing epigraphs as polyhedra. Moreover, in finite dimension,
the polar conical conditions have been used to prove linear programming problems duality. If
we extend this results in our setting, we could possibly prove a version of such duality in infinite
dimension and even obtain a corresponding Convex Programming interpretation.
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