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2 PAOLO D’A LESSANDRO

1. I NTRODUCTION

The purpose of this paper is to lay down a significant part of the theory of polyhedra in infinite
dimensions in separable Hilbert space environment. Naturally there are profound differences
with the finite dimensional case, but also, the theory is in some way more natural. It allows
for countable intersections and includes more general classes of closed convex sets. Other
important differences derive from the fact that the positive cone of the order has a void interior.

To obtain void interior compact polyhedra, a sort of infinite dimensional polytopes, we have
to weaken the underlying topology beyond the weak topology and use the (relativized) product
topology. This requires some preliminary technical work.

In the central part of the paper we use the range space approach to develop a theory of
decomposition of polyhedra. Incidentally, to pull back topologically the results to the domain
space it is needed that the operator defining the polyhedron has closed range. This excludes
convex bodies like the unit ball (which is a polyhedron in our setting), because the positive cone
of the order has void interior.

We prove that in the range space a non-void polyhedron (indeed the slack polyhedron) always
has extreme points, and is the sum of a convex closed proper subset, which is compact in the
product topology and contains all the extreme points of the polyhedron, plus (in the cases we
will specify) a pointed cone, which is always the intersection of the range of the operator defin-
ing the inequality system intersected with the positive cone of the range space. The pull-back
in the domain spaces adds to the inverse image of those components a closed linear subspace
which is always the null space of the operator defining the inequality system

In the final section we give some basic results on LP, based on the dual range space conditions
(in our setting dual means: involving polar cones). Naturally, even in the cases where there are
suprema, we cannot take for granted, as in finite dimensions, that they are attained. However,
some conditions for this to happen are provided.

Finite dimensional concepts along similar lines, are developed in [3], see also [5], [6] and
[4]. However, the infinite dimensional theory, presented here, is selfcontained.

1.1. Notations. N is the set of positive integers
Fory ∈ l2

ip(y) = {i : yi > 0}

iz(y) = {i : yi = 0}

in(y) = {i : yi < 0}
ei is thei-th versor inl2.
Cone means convex cone.
H is a real Hilbert space.
Br is the closed sphere of radiusr.
C(A) andC−(A) are, respectively, the convex and closed convex hull ofA.
Co(A) andCo−(A) are, respectively, the convex and closed conical hull ofA.
Co({x}) = r(x) is the ray generated byx. The setz + r(x) is also called ray.
B(A) is the boundary ofA.
Operator means continuous linear transformation with respect to the specified topologies
iff=if and only if.
ex(C) = the set of extreme points ofC.
xF = PF x = orthogonal projection ofx on the closed convex setF
Primal in the present context means no polarization of cones is involved. Dual means that a

condition is obtained involving some polar cones.
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 3

2. PRELIMINARIES

The lineality spacelin(C) of a coneC in H is the linear subspaceC ∩ −C (the maximal
linear subspace contained inC). A coneC is said to be pointed iflin(C) = {0}. If a cone is
closed, then, obviously, its lineality space is closed as well.

A first technical lemma is:

Lemma 2.1. A closed cone in a Hilbert spaceH is proper if and only if it is contained in a
closed half-space.

Proof. Let C be a closed proper cone. Then there is a singleton{y} disjoint fromC. Singletons
are convex and compact and therefore the Strong Separation Corollary 14.4 in [11] applies. The
rest is immediate.

The well-known decomposition of non-pointed cones [14] extends easily in Hilbert spaces.
We restate it in our context:

Proposition 2.2. LetC be a non-pointed closed cone andF its lineality space then:

C = F + PF⊥C = F + (C ∩ F⊥)

where the coneC ∩F⊥ is pointed and closed. IfC is not closed but its lineality space is closed
the same expression holds and the coneC ∩ F⊥ is pointed.

Next we recall the definition of polar cone of a set:

Definition 2.1. Given an arbitrary subsetS of H, thepolar coneof the set, denoted bySp is
given by:

Sp = {n : (n, y) ≤ 0,∀y ∈ S}
Note thatSp is a closedcone. This is a consequence of continuity of the inner product.

Elementary computations on polarization are similar to their finite dimensional counterpart
(see e.g.[14]). Here are a few , which we mostly state without proof.

Proposition 2.3. The following formulas hold for polarization of cones in Hilbert spaces. All
sets in the formulas are cones.

if C1 ⊂ C2 thenCp
1 ⊃ Cp

2

C−p = Cp

Cpp = C−

(C1 + C2)
p = Cp

1 ∩ Cp
2

LetT be an operatorH → H andC a cone inH. Then

(TC)p = T ∗−1Cp

Let{gα : α ∈ A} be an arbitrary family of vectors inH. Then

Co({gα})p = ∩{x : (gα, x) ≤ 0}

and

(∩{x : (gα, x) ≤ 0})p = Co−({gα})
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4 PAOLO D’A LESSANDRO

Proof. Polar ofTC:
(TC)p = {y : (y, Tx) ≤ 0, x ∈ C} =

{y : (T ∗y, x) ≤ 0, x ∈ C} = T ∗−1Cp

Last statement: Takeβ ∈ A, Co({gβ}) ⊂ Co({gα}) implies

{x : (gβ, x) ≤ 0} = (Co({gβ}))p ⊃ (Co({gα}))p

and so:
(Co({gα}))p ⊂ ∩{x : (gα, x) ≤ 0}

because the reverse inclusion is obvious, the first formula is proved. The second follows taking
polars on both sides and applying the elementary computations.

Theorem 2.4. Let C be a closed cone. ThenC+ Cp = H. Moreover∀x, ∃!xC ∈ C and
∃!xCp ∈ Cp with xC⊥xCp , such thatx = xC +xCp . Moreover,xC = PC(x) andxCp = PCP (x).

Proof. If x = 0, it can only be decomposed asx = 0 + 0, by the orthogonality constraint. Thus
in what followsx 6= 0. If PC(x) = 0, thenx ∈ Cp and can be decomposed asx = 0 + x. If we
attempt another decompositionx = w + (x− w), with w ∈ C, then, by orthogonality:

(w, x− w) = (w, x)− ‖w‖2 = 0

and because(w, x) ≤ 0 it follows w = 0. A similar argument applies ifx ∈ C. At this point
we can assume thatx /∈ C ∪ Cp. Thus , PC(x) 6= 0. If we write:

x = PC(x) + (x− PC(x))

by the preceding Proposition,((x−PC(x)), PC(x)) = 0, thusx−PC(x) ∈ Cp and the decom-
position is orthogonal. Next we claim that the projection ofx ontoCp is x− PC(x). In fact for
z ∈ Cp,

(x− (x− PC(x)), z − (x− PC(x))) = (PC(x), z)− (PC(x), (x− PC(x)))

Now the first term is≤ 0 by the definition of polar cone and the second is zero by the Lemma.
Thus in view of the Projection Theorem our claim is proved. It remains to show that there is
no other orthogonal decomposition. Suppose that there is another decomposition in addition to
this one

x = [PC(x)] + [x− PC(x)]

. Clearly we can write the new decomposition in the form

x = [PC(x) + w] + [(x− PC(x)) + z]

with [PC(x)+w] ∈ C and[(x−PC(x))+ z] ∈ Cp. Subtracting these two relations,w + z = 0.
We are assuming that the new decomposition is orthogonal so that, taking the inner product of
the two components and bearing in mind that the former decomposition was orthogonal

(w, (x− PC(x))) + (w, z) + (PC(x), z) = 0

On the other hand, by polarity,((w+ PC(x)), (x−PC(x))) = (w, (x−PC(x))) ≤ 0. Similarly
([(x − PC(x)) + z], PC(x)) = (PC(x), z) ≤ 0 andw + z = 0 implies (w, z) ≤ 0, because
(w, z) = −1‖w‖2 = −1‖z‖2. Hence all terms in the above sum must be zero. In particular,
0 = (w, z) = −1‖w‖2 = −1‖z‖2. It follows w = z = 0 and the proof is finished.

In Hilbert spaces the Induced Map Theorem can be put in a more useful form. We start with
the following:

Proposition 2.5. Assume thatF be a closed subspace of the Hilbert spaceH.ThenH/F is
linearly and topologically isomorphic toF⊥(with the relative topology).
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 5

Proof. Incidentally, recall that the quotient topology is Hausdorff becauseF is closed. Define
the map:

S : H/F → F⊥ by: S(x + F ) = xF⊥

Because∀x, x + F = xF⊥ + F , and because for two vectorsz andw in F⊥:

z + F = w + F ⇒ z = w

it follows thatS is linear one to one and onto. Moreover,

S ◦Q = P
F⊥

and thus, by the Induced Map Theorem,S is continuous. On the other hand:

S−1 = Q ◦ P
F⊥

and soS−1is continuous too. ThusS is a linear topological isomorphism and we are done.

At this point we use the Open mapping Theorem:

Theorem 2.6. (Open Mapping Theorem) . Consider a continuos mapT : H1 → H2. Then
R(T ) is closed if and onlyT is an open mapping.

Proof. AssumeR(T ) closed. CallIq the topological isomorphismH1/N (T ) → N (T )⊥ of
Proposition 2.5. Then clearly

T = T |N (T )⊥IqQ

Notice thatT |N (T )⊥Iq is, by the preceding proposition, continuous and one to one and onto the
Hilbert spaceR(T ). By the closed graph Theorem its graph is closed and therefore the graph
of its inverse is closed. Hence the inverse is a continuous operator on the Hilbert spaceR(T ).
It follows that T |F⊥Iq is an open map. But, as we know, the quotient map is always open and
henceT is open too. Conversely ifT is open, write according to the Induced Map Theorem
T = T̃ ◦Q. By the same Theorem̃T is a topological isomorphism and henceR(T ) is closed.

Note that, obviouslyIqQ = P |N (T )⊥ and thus we can state the corollary:

Corollary 2.7. Consider a continuos mapT : H1 → H2. Then we can write:

T = T |N (T )⊥P |N (T )⊥

and the mapT |N (T )⊥ is a linear topological isomorphism if and only ifR(T ) is closed

3. THE PRODUCT TOPOLOGY

In our analysis of polyhedra we will assumeH separable, and so we will work directly inl2,
which is isometric toH. Every operator inl2 is represented by an infinite matrix. When we will
need to establish the converse, a simple sufficient condition will be enough. We note in passing
thatl2 is not a closed subset ofR∞.

In l2 we need to consider three topologies: the native (strong) topologyS, the weak topology
W, and the relativized product topology ofR∞, X . Note that:

X ⊂ W ⊂ S
If we consider a linear transformationl2 → l2, it is well known thatS−S continuity⇔W −W
continuity (e.g. [8]). Thus, assuming, ofS − S continuity all the following types of continuity
are implied:

S −W;S − X ;W −W;W −X
We will use the same symbol for a given topology and the same topology relativized to a sub-
space. The space(R∞,X ) is locally convex, but not normable.
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6 PAOLO D’A LESSANDRO

The main motivation for weakening (beyond the weak) the original topology is to facilitate
compactness. In this respect the weak topology is not enough, as we shall see.

If we consider a (matrix) operatorG: (l2,S) → (l2,S), since the adjoint exists, it is obviously
necessary that both its rows and columns are inl2. If we assume that the rows only are inl2
thenG is an operator (is continuous)(l2,S) → (R∞,X ) (because the composition with each
projection on a factor is continuous).

The dual space ofR∞ is the direct sum of duals of the factors. This means that a vectorg is
in this dual if and only if it has finitely many non-zero components (and so alsog ∈ l2).

We next provide a few technical Lemmas involving theX topology forl2.
In connection with the subsequent discussion bear in mind that, as recalled in the preliminar-

ies, in a Hilbert space a closed range operator is necessarily an open map.

Lemma 3.1. Suppose thatG is a (l2,S) → (l2,S) operator. ThenG is open relative to theX
topology in its domain and any vector topology in the space it maps into.

Proof. The open sets in domain are cylinder set with finite dimensional open base. Thus we
may represent and open set as the sumB + L, whereB is an open set in a finite dimensional
coordinate spaceF and andL = F⊥ (also a coordinate space).Thus:

G(B + L) = G|F (B) + G(L) =

∪{y + G|F (B) : y ∈ G(L)}
and this latter set is an union of open sets, becauseG|F is a finite dimensional range transfor-
mation and hence open.

Corollary 3.2. A topological isomorphismT (l2,S) → (l2,S) is a topological isomorphism
(l2,X ) →(l2,X ). If F andΓ are closed subspaces ofl2, a topological isomorphism(F,S)→(Γ,S)
is a topological isomorphism(F,X ) →(Γ,X ).

Proof. We observe that as a mapT is invertible and bothT and its inverse map are continuous
in the strong topology and hence open in theX topology. As to the second part it suffices to
remind that closed subspaces are isometric tol2 (or Rn according to the cases) via a the choice
of an orthonormal base.

A closed subspace in theX topology forl2 is also closed in theS topology. The converse is
true: allS - closed subspaces areX - closed.

Lemma 3.3. A closed subspace of(l2,S) is also closed in theX topology. Thus(l2,S)∗ =
(l2,X )∗. Consequently any closed semispace in(l2,S) is also closed in theX topology.

Proof. Note that any closed subspace can be represented as the null space of a projector which a
self adjoint operator. By a change of base and invoking the Toepliz Theorem [8] the matrix of the
operator is transformed (by an unitary equivalence) in a self-adjoint matrix with both finite rows
and columns. Thus in the newl2 space the subspace is the intersection of subspaces closed in
the product topology. But we have just proved that a topological isomorphism(l2,S) → (l2,S)
is a topological isomorphism(l2,X ) →(l2,X ). Thus the original subspace is also closed in the
X topology.

Theorem 3.4. Suppose thatG is a (l2,S) → (l2,S) operator with closed range. Then we can
write:

G = G|N (G)⊥PN (G)⊥

and G|N (G)⊥, is not only a linear isomorphism(N (G)⊥,S) → (R(G),S), but also a linear
isomorphism(N (G)⊥,X ) → (R(G),X ).
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 7

Proof. We know thatG|N (G)⊥ is a linear isomorphism with respect to the native topology and,
by the preceding Corollary, it is also a linear isomorphism(N (G)⊥,X ) → (R(G),X ).

4. POLYHEDRA AND POLYHEDRAL CONES AND THEIR GENERALITY

In Rn a polyhedron is a finite intersection of closed semispaces, that is, a set of the form:

∩{x : (gi, x) ≤ vi, i = 1, .., n} = {x : Gx ≤ v}
whereG is a real matrix formed by the rowsgi, v ∈ Rn has componentsvi and the order≤ is
the product order (and the corresponding positive cone is the non-negative orthant).

We generalize this to a real separable Hilbert spaces in the natural way, substituting countable
intersections to finite intersections. Not only this is natural but it is also indispensable if, for
example, want to make the positive cone itself a polyhedron. For simplicity we may work
directly in l2. In thel2 setting we can consider the natural versors{ei} base and the consequent
matrix representation of(l2,S) → (l2,S) operators.

Definition 4.1. A polyhedronG (in l2) is a countable intersection of closed semispaces:

G = ∩ {x : (gi, x) ≤ vi, i = 1, 2, ...}
wheregi ∈ l2 andgi 6= 0, ∀i. If vi = 0, ∀i thenG is a cone and is called polyhedral cone.

Without restriction of generality we can divide each inequality by‖gi‖, and hence we can
assume, whenever convenient, that‖gi‖ = 1.

We may rewrite the set as:
G ={x : Gx ≤ v}

whereG : is an infinite matrix whose rows are thegi andv ∈ R∞ has componentsvi. Note
thatG is continuous(l2,S) → (R∞,X ) (it is not in general an operator(l2,S) → (l2,S)). The
order≤ denotes the product vector ordering inR∞, andv is called the bound vector.

Remark 4.1. Note that in view of the structure of the dual space ofR∞, polyhedra defined
relative to theX topology forl2 are also polyhedra inl2.

A noteworthy fact about polyhedra is that any closed convex subsets in a separable Hilbert
space is a polyhedron and any closed convex cone is a polyhedral cone.

Theorem 4.1.Consider a non-void strongly closed convex subsetC 6= H in a separable Hilbert
spaceH and letD be a countable dense subset ofH. Then∀ζ ∈ B(C) there exists a se-
quence of support points{zi} such that{zi} → ζ strongly where{zi} is in the same countable
setPC(D\C). Thus there exists a countable set of support points dense inB(C). Moreover,
the countable intersection of supporting semispaces defined by the points of the countable set
PC(D\C) and the corresponding normals (i.e. ify ∈ D\C the normal isy − PCy) coincides
with C. Thus any non-void closed convex setC is a polyhedron and any non-void closed cone
is a polyhedral cone. In particular, any strongly closed convex set inl2 is alsoX -closed and
hence, also, the closed convex extension in all three topologies (X ,W, andS) coincide.

Proof. Observe that, becauseC is open and consider an open sphereSζ
1/i (of radius1/i) around

ζ. This sphere will contain the open setC∩Sζ
1/i and so take a pointz in this intersection. If this

is not already inD there is another sphereSz
r entirely contained inC∩Sζ

1/i, which will intersect
D. Takeyi in this intersection. In this way we define a sequence{yi} which converges toζ,
and, by continuity of projection, the sequence of support points{zi} = {PC(yi)} converges toζ.
This proves the first part. As to the second statement assume that there is a vectorz in the given
intersection such thatz /∈ C. Becausez ∈ C, arguing in a similar way, we can take{zi} → z,
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8 PAOLO D’A LESSANDRO

with {zi} in C ∩D. By continuity ofPC , {PC(zi)} → PC(z). Defineni = (zi − PC(zi)), and
notice that:

(ni, z − PC(zi)) = (ni, z − zi) + (ni, zi − PC(zi))

Next the second term on the rhs goes to‖z − PC(z)‖2 = δ > 0 while the first term on the rhs
goes to zero. Thus, for sufficiently highi,

(ni, z) > (ni, PC(zi))

It follows that z is outside the supporting semispace corresponding tozi. This contradiction
completes the proof for polyhedra. The remaining part of the proof is straightforward and is
omitted.

This Theorem has an important consequence, under the restriction of considering void inte-
rior sets. This is less unusual than it may appear at first sight, considering the well known fact
that the positive cone inl2 has void interior even in the strong topology (as will be recalled in
the next Section).

Theorem 4.2. SupposeC is a a strongly closed convex subset ofH, which has a voidX -
interior. ThenC is theX -closure (or equivalentlyS-closure) of the countable subset of its
pointsPC(D\C).

Proof. By the preceding Theorem,C convex and strongly closed implies thatC is X -closed.
Thus, with obvious meaning of symbols,BX (C) = C. By the preceding Theorem the countable
subset ofC given byPC(D\C) is dense inC in the strong topology and hence also in theX
topology. From this the thesis immediately follows.

Proposition 4.3. Finite and countable intersections of polyhedra are polyhedra. Closed sub-
spaces are polyhedra

Proof. For finite intersections the proof is based on block matrix operators. In the case of
countable intersection we have a countable set of block each of which has a countable number
of rows. This results in a matrix with a countable set of rows. Next, expressing a closed
subspaceF as the kernel of the projection on the orthogonal complement we obtain:

F = {x : PF⊥x = 0} =

{x :

(
PF⊥

−PF⊥

)
x ≤ 0}

At this point we introduce a useful technical Lemma:

Lemma 4.4. The translate of a polyhedron is a polyhedron. In particular if we translate a
polyhedronG by the opposite one of its points−t (so that0 ∈ G− t) then, in the representation
of G − t, the bound vector is non-negative.

Proof. Just note that
−t + G(G, v) = G(G, v −Gt)

The following Theorem shows that a large subclass of polyhedra can be represented working
completely withinl2, in the sense that we can takev ∈ l2 andG a (matrix) operator(l2,S) →
(l2,S).
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 9

By what we proved earlier the closed sphereBr of radiusr around the origin inl2 is a
polyhedron. However, in the next proof it will be convenient to use the obvious alternative
representation:

Br = {x : (g, x) ≤ r, ‖g‖ ≤ 1}

Theorem 4.5.The class of polyhedra defined by:

G ={x : Gx ≤ v}

wherev ∈ l2, G a (matrix) operatorl2 → l2, and ≤ is the product vector ordering restricted
to l2, includes polyhedral cones, closed subspaces and bounded, and hence weakly compact,
polyhedra.

Proof. First we prove the statement for polyhedral cones. Thus consider a polyhedron of the
form: ∩{y : (gi, y) ≤ 0} and an arbitrary vectorz ∈ l2 with zi > 0. Then:

∩{y : (gi, y) ≤ 0} = ∩{y : (zig
i, y) ≤ 0}

For simplicity use the same symbolgi to denote the new vectorszig
i, and form the infinite

matrix G whose rows are the new vectorsgi. Because
∑

ij g2
ij = ‖z‖2 < ∞, and this is a

sufficient condition forG to represent a continuous linear operator (see [8]), we are done. Next
consider a closed subspaceF . ThenPF⊥ is a continuous operator and hence can be represented
by a matrix operator. But:

F = {x :

(
PF⊥

−PF⊥

)
x ≤ 0}

and since the block matrix represent a continuous linear operator, the second statement is proved
too. Finally, letG be a weakly compact closed convex set and, without restriction of generality
suppose that0 ∈ G. Then, for somer > 0:

G = ∩ {x : (gi, x) ≤ vi} ⊂ Br

Observe that the closed sphereBr of radiusr around the origin inl2 can be represented as:

Br = {x : (g, x) ≤ r, ‖g‖ ≤ 1}

Now all vi ≥ 0. If somei, vi > r, we can substitutevi with r, without alteringG, thanks to
the above inclusion relation. But this implies thatv ∈ l∞. At this point, arguing as before, take
z ∈ l2 with zi > 0. Then we can write:

G = ∩ {x : (zig
i, x) ≤ zivi}

which is equivalent to say that, ifG is the matrix whose rows are the vectorszig
i andγ is the

vector defined byγi = zivi, then:

G = {x : Gx ≤ γ}

with γ ∈ l2, andG is a(l2,S) → (l2,S) matrix operator since∑
ij

g2
ij = ‖z‖2 < ∞

The proof is now finished.

It is convenient to extract from the above proof and state formally the following sufficient
condition to represent a polyhedron by means of an operatorG: (l2,S) → (l2,S) and a bound
v ∈ l2.
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10 PAOLO D’A LESSANDRO

Proposition 4.6. Consider a polyhedronG and assume that the bound vectorv ∈ l∞, then the
polyhedron is representable as

G = {x : Γx ≤ γ}
whereγ ∈ l2 andΓ is an operator(l2,S) → (l2,S). In particular All polyhedral cones (and all
closed subspaces) can be (and will be) represented as

G = {x : Γx ≤ 0}
whereΓ is an operator(l2,S) → (l2,S).

We single out the class of polyhedra that are representable withinl2 by the following:

Definition 4.2. A polyhedronG is called range-l2 (briefly rl2) if it admits a representation as

G = {x : Gx ≤ v}
whereG is an operator(l2,S) → (l2,S) andv ∈ l2.

In what follows we study this special class of polyhedra. Thus all polyhedra will be rl2,
unless otherwise specified. We have just shown that polyhedral cones, closed subspaces and
bounded, and hence weakly compact, polyhedra are rl2.

The fact that the polyhedral cones are rl2 immediately provides the fundamental passage from
the external to the internal description (i.e. the pertinent type of Weyl Theorem, as it is called
in finite dimensions [14]). Of course the following result also settles internal representation of
closed subspaces, which are a special class of closed cones.

Corollary 4.7. Any closed cone is countably generated.

Proof. Just apply the computationC = Cpp and then expressCp as a countable intersection of
semispaces. Now the thesis follows from Theorem 2.3.

5. THE POSITIVE CONE OF THE PRODUCT ORDER

The vector ordering inR∞ we are using is the product ordering; inl2 it is the restriction of
the same order tol2 Such orders are uniquely specified by their positive cones:

PR∞ = {s : s ∈ R∞, si ≥ 0}

Pl2 = {s : s ∈ l2, si ≥ 0}
We work mostly onl2 and, for simplicity, indicate all positive cones byP , leaving to the context
to specify the space it is referred to.

Some properties of the finite dimensional case go through, like the fact theP is pointed and
closed, but there are fundamental differences as well. First and foremost, as is well known, the
fact thatP has a void interior inl2 (and also inR∞).

To remedy the absence of interior, we introduce two subsets ofP , which we consider its
quasi-interior and quasi-boundary (this concept has already been used, not only for cones, see
e.g. [16], but also for other kind of sets, see [17]). They will be referred to as intern and extern
of P .

Definition 5.1. The set of all positive vectors{y : yi > 0,∀i} is denoted byP∨ and called the
intern ofP . The setP\P∨ is denoted byP∧ and called the extern ofP .

We will also need the coneP:

P = Co({ei : i = 1, ..})
which is is properly contained inP . Note thatL−(P ) = l2.
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 11

The vector ordering has all the desirable properties and, in particular the Banach lattice struc-
ture is in place in(l2,S). Note that pointedness ofP implies:

x ≤ y andy ≤ x ⇒ x = y

We collect the properties ofP and its vector ordering in the following Proposition (well-
known, see e.g.[11], [13] and [15]). We only prove that the strong interior is void (and hence
such is the interior in any weaker topology), because is more directly related to subsequent
work.

Proposition 5.1. The positive coneP of l2 is pointed. In all three topologies it is closed, has
void interior and:

P = P− = Co−({ei : i = 1, ..})
Moreover:

P p = −P

and
(−P )p = P

Finally, the vector ordering defined byP is reproducing, Archimedean and defining a Banach
lattice.

Proof. BecauseP contains an orthonormal base it spans the whole space. Ifx ∈ P\P∨ it is
obvious that any neighborhood ofx intersectP . If x ∈ P∨, let TN be the operatorI − PN

wherePN is the orthogonal projection on the space spanned by{e1,..,en} and notice that the
sequence{x− 2TNx} is in P and converges tox.

6. FACES OF P

Faces ofP are subcones ofP . Among them there are the extreme raysr(ei) and{0}, which
is the only extreme point. These are obviously closed faces.

AlthoughP∨ ∪ {0} is a subcone ofP , it is not a face ofP and neither subcones ofP∨ ∪ {0}
can be faces ofP . In fact, if f ∈ P∨ andPi is the orthogonal projection onL({ei}), then:

f =
1

2
2Pif +

1

2
2(I − Pi)f

We formalize this and more in the following:

Theorem 6.1.NeitherP∨∪{0} nor any of its subcones are faces ofP . A closed proper face of
P cannot intersectP∨. Consequently, all closed proper faces ofP are contained in the extern
P∧ of P .

Proof. Consider a closed facez and supposef ∈ z ∩ P∨ 6= φ. Then consider anyg ∈ P.
Because it is immediate that∃z 6= g such that:

[g : f ] ⊂ [g : z] ⊂ P

we can conclude thatg, z ∈ z (sincez is a face). Therefore thatP ⊂z. But we are talking
of closed proper faces and so, becauseP− = P , we have a contradiction, and so the proof is
done.

We will show that the sublattice of the closed faces is complete and has a simple representa-
tion, reminding the finite dimensional case, although this sublattice is not even countable and is
properly contained in the lattice of faces.
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12 PAOLO D’A LESSANDRO

Consider the family of subsets ofN. Associate toN the positive coneP itself (this is the
upper bound of the lattice of faces) and to the void setφ associate{0} (the lower bound of the
lattice). To any other subsetΩ ⊂ N associate the conezΩ:

zΩ = {f : f ∈ P andip(f) ⊂ Ω}
There is a one to one correspondence between the subsets ofN and this family of cones. We
can define lattice operations by union and intersections of subsets ofN. Formally and with
self-evident symbols

∨{zΩ : Ω ∈ Ψ} = z∩Ψ

whereΨ is any family of subsets ofN and∨ indicates the lub. Dually:

∧{zΩ : Ω ∈ Ψ} = z∪Ψ

where∧ indicates the glb. Moreover, we can state:

Theorem 6.2.ExceptP itself, each above defined conezΩ with Ω ⊂ N is a closed proper and
exposed face ofP . Moreover:

zΩ = Co−({ei : i ∈ Ω})
The correspondence between a closed proper facez and the set:

Ω(z) = ∪{ip(f) : f ∈ z}
is bi-univocal. There are no other closed faces ofP . Finally, the union of proper closed faces
of P is equal to its externP∧ of P .

Proof. That eachzΩ is closed is readily seen. Consider a net{fα} in zΩ and suppose that
{fα} → f where, necessarilyf ∈ P . Because{fα} → f also weakly,{(fα, ei)} = {fαi} →
(f, ei) = fi. Thus if i ∈ Ω, thenfi = 0 and, therefore,f ∈ zΩ. Because ifi ∈ Ω, ei ∈ zΩ,
it follows zΩ ⊃ Co−({ei : i /∈ Ω}. The converse is also true because iff ∈ zΩ thenfi = 0,
∀i /∈ Ω, and so, clearly,f ∈ Co−({ei : i /∈ Ω}. To show that these faces are exposed, consider
an arbitraryz ∈ P∨ and denote byPΩ the orthogonal projection operator which zeroes all the
components with index inΩ (or PΩf = fχΩ). Let n = −PΩz ∈ −P = P p. Then(n, .) is a
continuous linear functional separatingzΩ andP , because(n, zΩ) = {0} and(n, y) < 0 for
anyy ∈ P\zΩ. Hence in particular:

zΩ = {f : f ∈ P and(n, f) = 0}
It remains to show that there are no other closed faces. Consider a closed face ofP , and let it
bez. Define:

Ω = ∪{ip(f) : f ∈ z}
Takei ∈ Ω andf ∈ z with fi > 0 . If by chancef = r(ei) thenei ∈ z. Otherwise, iff has
also other nonzero components, reasoning as we did earlier, we see that we can findz 6= f such
that:

[ei : f ] ⊂ [ei : z] ⊂ P

so that we are forced to conclude thatei ∈ z. At this point it is readily seen that:

z = Co−({ei : i ∈ Ω}
The remaining statements are self-evident and so the proof is finished.

Remark 6.1. Notice that this Theorem entails that the set of closed faces ofP is not countable.

Definition 6.1. Consider a closed proper facez of P so that for someΩ ⊂ N, z = zΩ. A
vectory such thatip(y) = Ω is said to belong to the relative intern ofzΩ.
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GENERALIZING POLYHEDRA TO INFINITE DIMENSION 13

Notice that
Ω1 ∩ Ω1 = φ ⇒ zΩ1⊥zΩ2

In view of this latter it make sense to define orthogonal complementation within the lattice of
closed faces.

Definition 6.2. For any closed facezΩ the orthogonal complement face inP is

zΩ = z⊥
Ω ∩ P

In the sequel if a face is denoted byM we briefly denote byM⊥ its orthogonal complement
face inP .

Note also that, obviously:
zΩ = L−(zΩ) ∩ P

Are there non closed faces ofP? The answer is yes. In fact:

Proposition 6.3. For any non finite subsetΨ of N the cone:

CΨ = Co({ei : i ∈ Ψ}
is a non-closed face ofP .

Proof. The functionip(.) is monotone increasing under convex combinations. Iff ∈ CΨ and is
the convex combination:

f = αf1 + βf2

with f1 ∈ P andf2 ∈ P and withα, β > 0, thenip(f) = ip(f1)∪ ip(f2) so thatip(f1) ⊂ ip(f)
andip(f2) ⊂ ip(f) and this implies thatf1 ∈ CΨ andf2 ∈ CΨ. And we are done.

7. FEASIBILITY AND FIRST DECOMPOSITION OF POLYHEDRA IN l2

Primal range-space feasibility conditions are formally the same as in finite dimension:

G(G, v) 6= φ ⇔ v ∈ R(G) + P ⇔
(v +R(G)) ∩ P 6= φ ⇔ (v − P ) ∩R(G) 6= φ

In view of the first condition, the coneR(G)+P is called the cone of feasible bound vectors
(that is, the cone of bound vectors for which the polyhedron is non-void). In contrast to the
finite dimensional case this cone is not necessarily closed. However if we assume thatR(G) is
closed then it is true thatR(G) + P is closed. We state now this important result, postponing
the proof to the Section dedicated to the cone capping theory.

Theorem 7.1. If a linear subspaceF is closed so isF + P . Consequently, ifF is not closed:

(F + P )− = F− + P

The setS = (v + R(G)) ∩ P , which is called theslack set(essentially the slack set is the
polyhedron as viewed from the Range Space side), is of course closed ifR(G) is closed.

Another important set, which determines a polyhedron by a suitable inverse image is

Σ = (v − P ) ∩R(G) = v − S

In fact we can write:

G(G, v) = G−1(Σ)

Next bear in mind Corollary 2.7 and write

G = G|N (G)⊥PN (G)⊥
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14 PAOLO D’A LESSANDRO

Where both map are continuous,G|N (G)⊥ is one to one fromN (G)⊥ toR(G) and also a topo-
logical isomorphism if and only ifR(G) is closed.

Even ifR(G) is not closed, we can still decomposeG = G|N (G)⊥PN (G)⊥ in the same way,
G|N (G)⊥ will be continuousbut not a linear topological isomorphism. Substituting

G = (G|N (G)⊥)−1(Σ) +N (G)

Bearing in mind:
S− = (v +R(G)−) ∩ P

Σ− = (v − P ) ∩R(G)−

as long as we take the above inverse image, it is legal to substitute toR(G) its closure.
Thus a first level of decomposition of polyhedra, which in the case of cones, reinterprets

differently Proposition 2.2 is given by the following:

Proposition 7.2. Any (non-void) polyhedron is the sum of a closed linear subspace, always
given byN (G), plus a closed convex subset ofN (G)⊥ given by(G|N (G)⊥)−1(Σ), which con-
tains no linear subspaces. A closed cone is the sum ofN (G) plus the closed pointed cone
contained inN (G)⊥ given by(G|N (G)⊥)−1(R(G)− ∩ P ).

This proposition indicates whether or not there is a linear component in a polyhedron and
who this linear component is. A polyhedron where the linear subspace is present is called a
stripe, the closed convex set containing no subspaces of the decomposition is called thebase
of the stripe. In the range space, the slack set and henceΣ cannot contain linear subspaces:
it is never a stripe. As trivial finite dimensional cases indicates the addition of a subspace to
form a stripe may well destroy the fine structure of the base. Not only extreme points and rays
disappear but we may end up with a polyhedron that has no extreme sets at all, as for example
a sandwich (non void intersection of closed semispaces defined by opposite normals).

If we want a topologically isomorphic pull back we must assume thatR(G) be closed. In
this case both the slack set andΣ are closed and such is the inverse image ofΣ. Moreover such
inverse images will necessarily have void interiors.

8. RELATIVE POSITION OF A SUBSPACE AND P

Next we investigate the structure of the base of the stripe. Such finer structure depends on
the relative position ofR(G) (which for simplicity we will mostly denote byF ) andP . In
this paper we develop the range space theory of polyhedra that assumesF (which is usually
identified withR(G)) is closed. The results on the on theX topology forl2 are instrumental
and almost all of the finite dimensional results go through, albeit with harder proofs. However,
the optimization results of last Section are general and do not require this hypothesis. The
requirement of closure of range spaces only determines whether or not suprema are attained.

Remark 8.1. In the simplex model the role ofR(G) is taken by the kernel of an linear trans-
formation. Thus all our results apply to this model with much more generality, since we only
need the the transformation in question be continuous.

The present Section is concluded with a few technical Lemmas.

Definition 8.1. We say that a closed linear subspaceF is strictly tangent toP , if:

F ∩ P = {0}
Dually we say that a closed linear subspaceF is intern toP if

F ∩ P∨ 6= φ
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We say that a closed subspaceF is weakly tangent or extern toP if it is neither strictly tangent
nor intern.

Theorem 8.1.Suppose thatF is intern toP . Then:

F + P = H and this is equivalent to

(F + P )p = F⊥ ∩ (−P ) = {0}
ThusF is intern toP if and only ifF⊥ is strictly tangent toP . Moreover, if a closed subspace
is strictly tangent toP , then it is contained in a closed hyperplane strictly tangent toP .

Proof. In this proof bear in mind that, by Theorem 7.1,F + P is closed. Note thatei ∈ F + P ,
∀i. By hypothesis∃w, w 6= 0 andw ∈ F ∩ P∨ and also−w ∈ F + P . Apply now Lemma 2.1
to F + P . Suppose∃z 6= 0 such that:

F + P ⊂ {y : (z, y) ≤ 0}

This implieszi ≤ 0 and that it must exist aj such thatzj < 0. But then(z, w) > 0. This
contradiction shows thatF + P = H. This implies(F + P )p = F⊥ ∩ (−P ) = {0}. ThusF⊥

is strictly tangent toP . Conversely, by taking polars:

F⊥ ∩ P = {0} ⇒ H = {0}p = (F + P )− = F + P

Finally, if a closed subspaceF is strictly tangent toP , so thatF⊥ is intern toP , consider a
vectorn 6= 0 with n ∈ F⊥ ∩ P∨. Then:

{y : (n, y) = 0} ⊃ F

and becauseL({n}) is intern toP such an hyperplane is strictly tangent toP .

Theorem 8.2. If a closed subspaceF is strictly tangent toP thenF + P is a proper cone and:

lin(F + P ) = F

If F is an hyperplaneF + P is a closed semispace.

Proof. Notice that in general:
lin(F + P ) ⊃ F

First assume thatF is an hyperplane, which we denote byL. Then

L + P = (L + P )pp = (L⊥ ∩ −P )p = (r(n))p

wheren is a unit vector inL⊥ ∩ −P . ThusL + P is closed semispace and its lineality space
is L. For the general case note that, by the preceding Theorem,F ⊂ L whereL is a closed
hyperplane strictly tangent. ThusF + P is a proper cone. Next taken ∈ P∨∩ L⊥ , and so it
will be true that

F + P ⊂ L + P ⊂ {y : (y, n) ≥ 0}
Next note that fory ∈ F + P ⊂ L + P it is true thaty = w + z with w ∈ F andz ∈ P and
then with obvious meaning of symbols we can writey = w + zL + αn. Because ifα > 0 then
(n,−y) < 0, y ∈ F + P and−y ∈ F + P impliesα = 0. But theny ∈ L, y − w = zL ∈ P
implieszL = 0 and soy = w. Thuslin(F + P ) = F .

Theorem 8.3.Suppose thatF is extern toP . Then in the lattice of closed faces ofP , there exist
a unique maximal facezΩ whose relative intern is met byF . Moreover:

F ∩ P ⊂ zΩ
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16 PAOLO D’A LESSANDRO

Proof. Define the order� on F ∩ P by y � w if ip(y) ⊃ ip(w). We now apply the Maximal
Principle (e.g. [10]). Consider a tower in this set and a vectorz ∈ P∨. Also we can normalize
all elements of the tower without any harm to the argument and also assume that the tower is
countable. In fact if it is not simply take the subtower obtained choosing only one element for
each value of the functionip, and our argument will go through anyway. Denote the tower by
{wj}. Define the series: ∑

zjw
j

This series is Cauchy in norm and therefore it converges to some vectorξ in F ∩ P , which
follows in the order any element in the tower. Because for each tower there is vector inF ∩ P
which follows all vectors in the tower, it follow from the Maximal Principle that there is a
maximal elementµ in F ∩ P . Such vector identifies the claimed maximal face by means of the
index setip(µ). If there were more than one callσ andτ the vectors for whichip(σ) andip(τ)
are maximal. Thenip((σ + τ)/2) properly contains bothip(σ) andip(τ). This contradiction
concludes the proof.

We now need a technical Lemma, because it is often useful to consider relaxations of the
systemGx ≤ v, which are systems obtained from the original one by deleting some of the
inequalities and/or adding tov a vector inP . Dealing with the first case, does the fact that
R(G) is closed imply that, ifG2 is the matrix obtained fromG deleting some of its rows (which
obviously also represent an operator), thenR(G2) is closed? The answer is affirmative.

Lemma 8.4. If R(G) is closed then, denoting byG2x ≤ v2 any relaxation ofGx ≤ v,R(G2)
is closed.

Proof. It is clearly equivalent to argue applying to both sides of the system the projectorP2

into the coordinate space individuated by the relaxation. Then write:

G2 = P2G|N (G)⊥P |N (G)⊥

and notice that all maps on the right hand side are open. ThusG2 is open and thus, by virtue of
the Open Mapping Theorem has closed range.

Suppose thatF = R(G) is extern toP , and letM ↔ Ψ be the maximal face ofP , whose
relative intern is met byF .

Theorem 8.5. Suppose thatF = R(G) is extern toP . If in the systemGx ≤ v we delete the
inequalities corresponding toΨ the ensuing relaxationG2x ≤ v2 is strictly tangent. Moreover
if M ↔ Ψ is the maximal face whose relative intern is met byF thenM⊥ ↔ Ψ is the maximal
face ofP , whose relative intern is met byF⊥.

Proof. By the first duality principle (F strictly tangent⇔ F⊥ intern orF intern⇐⇒ F⊥strictly
tangent), we deduce thatF⊥ is extern, and in addition, the maximal face whose relative intern
is met byF⊥has an index setΓ ⊂ Ψ, for otherwise we would have two vectors inF andF⊥

with positive inner product. SupposeΓ ⊂ Ψ properly. Now consider the direct sum (which is
stated by polarity theory):

(F⊥ ∩ P )⊕ (F − P )

and consider a vector in the relative intern ofM⊥. The first set cannot contribute with a vector
with all the positive components and the second set can contribute at most with a vector in the
relative interior ofM . Thus the direct sum is contradicted and so it must beΓ = Ψ or the
maximum face whose relative intern is met byF⊥ is M⊥. Next , letQ be the matrix, whose
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rows generate the coneF ∩ P . All rows have all zeros for indexes inΨ. SinceF⊥ + P = {x :
Qx ≤ 0}, then we can write:

F⊥ + P = F⊥ + L−(M⊥) + P

and by polarization:

F ∩ P = [F ∩ L−(M)] ∩ P

thus to the effect of intersectingF with P we can use the subspaceF ∩ L−(M) in place ofF .
But this implies that if we projectR(G) onL−(M⊥), as we do when we consider the relaxation
individuated by the subscript2, we find a strictly tangent system. Thus the proof is finished.

Corollary 8.6. Suppose thatF = R(G) is extern toP , then the cone of feasible bound vectors
R(G) + P is proper and hence contained in a closed semispace.

Proof. Obvious from the fact that the system has a strictly tangent relaxation.

Lemma 8.7. Given two closed conesC1 andC2 and two vectorsy1 andy2:

y1 + C1 ⊂ y2 + C2 ⇔ y1 − y2 ∈ C2 andC1 ⊂ C2

y1 + C1 = y2 + C2 ⇔ y1 − y2 ∈ lin(C2) andC1 = C2

Proof. The second statement is an immediate consequence of the first one. As to this latter
sufficiency is obvious. Next suppose that although

y1 − y2 + C1 = y + C1 ⊂ C2

there is a vectorz in C1 that does not belong toC2. Thuskz is inC1 but not inC2. By hypothesis
y + kz ∈ C2, for any positive integerk. Therefore{(y/k) + z} is in C2. But this sequence
converges toz and so, beingC2 closedz ∈ C2. This contradiction concludes the proof.

The following Lemma is the essential tool to determine who is the conical component of a
slack polyhedron.

Lemma 8.8. Suppose thatF is either intern or extern toP and that(v + F ) ∩ P is non-void.
Then

∀w ∈ (v + F ) ∩ P , w + (F ∩ P ) ⊂ (v + F ) ∩ P

and for any closed coneC

∀w ∈ (v + F ) ∩ P , w + C ⊂ (v + F ) ∩ P ⇔ C ⊂ (F ∩ P )

Proof. First statement. Suppose a vectorz belongs to the lhs. Thenz = v + y + γ with y ∈ F ,
v + y ∈ P andγ ∈ F ∩P , so thatz ∈ P . But, also,v + y ∈ v +F andγ ∈ F imply z ∈ v +F .
Second statement. It must beC ⊂ P . For otherwise there would be a vectorz in C with at least
a negative component. Then for sufficiently largeα > 0, w + αz cannot be inP , which is a
contradiction. On the other hand

w + C ⊂ v + F ⇒ C ⊂ F

in view of the Lemma on inclusion of translated closed cones. ThusC ⊂ F ∩ P as stated.
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18 PAOLO D’A LESSANDRO

9. POLYHEDRA IN RANGE SPACE, GENERALITIES

A major goal is to prove that the slack polyhedron(v+F )∩P is either a generalized polytope
(a convex set that is compact in theX topology) or a cup, that is, the sum of a generalized
polytope plus a closed pointed cone (contained inP ).

There are also major differences though, especially in the approach. In finite dimension
polytopes have a finite set of extreme points and the convex hull of a finite set is always compact.
This fails in infinite dimension, where the set of extreme points can even be uncountable.

Our approach is first to settle the case whereF = R(G) is a closed hyperplane, which is an
easier case, and then use the result as a Lemma to settle in turn the general case. In this way we
will be able to show that the finite dimensional classification goes through: in fact in the strictly
tangent case we can only have polytopes; all other cases generate cups. The cone of the cups is
alwaysF ∩ P . Their compact components always contain the setex((v + F ) ∩ P ).

However, as we know, both the coneF ∩ P and the compact base are countably generated,
whereas extreme points and rays might be uncountable. Internal descriptions by extreme rays
and extreme points remain a fundamental theoretical issue, but might loose some appeal espe-
cially from the numerical point of view. There might be special cases, where countability is
preserved, but this goes beyond the present purposes.

10. COMPACT POLYHEDRA : THE STRICTLY TANGENT CASE

In this Section we investigate the case in whichF = R(G) is strictly tangent toP . We
show that the slack polyhedron is compact in theX topology. This is the infinite dimensional
counterpart of the concept of polytope. For brevity, we make only the statements relative to the
range space, from which the statements on domain spaces follow immediately via Theorem 3.4.

Theorem 10.1.Suppose thatR(G) is strictly tangent toP . Then:

S = (v + F ) ∩ P

is compact in theX topology. Assume, without restriction of generality,v⊥F . If F is an
hyperplane, then the set of extreme points ofS is:

Λ = {‖v‖
2

vi

ei : i = 1, 2, ..}

and so
S = C−(Λ)

If F is any closed subspace, letz be a closed strictly tangent hyperplane, which containsF . In
the definition ofΛ, substitutev byPz⊥v. Then(v + F )∩P is a convex closed subset ofC−(Λ),
and hence it isX -compact. It follows thatS has extreme points and :

S = C−(ex(S))

Proof. If F is an hyperplane then

v + F = {y : (v, y) = ‖v‖2}
The ith coordinate axis (extreme ray) ofP intersectv + F only onceat the points

λi =
‖v‖2

vi

ei

and it easy to verify that these points are extreme for(v + F ) ∩ P and that there are no other
extreme points. At this point notice that:

(v + F ) ∩ P ⊂ X{[0, ‖v‖
2

vi

]}
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which, by the Tychonoff Theorem is a compact set in the product topology. Thus the statement
dealing with hyperplanes is now proved. IfF is not an hyperplane, by Theorem 8.1, it is
contained in a closed hyperplanez strictly tangent toP . Thus

v + F ⊂ v + z = Pz⊥v + z
From this the remaining part of the thesis follows at once.

Theorem 10.2.The orthogonal projection ofP on a a closed linear subspaceF intern toP is
closed.

Proof. We know thatF + P is closed and thatlin(F⊥ + P ) = F⊥. The application of decom-
position of cones yields:

F + P = F + PF⊥(F + P ) = F + PF⊥(P )

Because this last expression is unique, ifPF⊥(P ) were not closed we would contradict that
F + P is closed.

11. THE CONE CAPPING TOOL

There is a connection between the last Theorem and the theory of cone capping. These
concepts are also instrumental in the sequel and so we briefly outline them. We follow [12], in
which more details as well as references can be found.

In fact we have used a special instance of universal caps for pointed convex cones in locally
convex spaces. These concepts have been introduced by Choquet, to the purpose of extending
The Krein-Milman Theorem in a framework of Measure Theory.

If C is a convex pointed cone, thenK ⊂ C is a cap ofC if it is compact and convex and
C\K is convex. The cap is universal ifC = ∪{nK : n = 1, 2, ..}. Once a cone is capped ,all
its closed subcones are obviously capped as well.

In our specific technique forP in (l2,X ), we indeed used forP the universal cap:

N(α, f) = K = {y : (f, y) ≤ α} ∩ P

with someα > 0 andf ∈ P∨. To avoid confusion, we change a little bit Phelp’s terminology,
and call the compact set

L(α, f) = {y : (f, y) = α} ∩ P

the roof (at levelα) of the capped cone. The fact that the hyperplaneF is strictly tangent toP
means thatN is a cap andL is a roof. Note that we can also express the capping of the cone
using the roofs instead. For example we can write:

P = N(α, f) ∪ (∪{L(β, f) : β > α})
We can rephrase Proposition 13.1 of [12] in our context:

Proposition 11.1.A pointy is an extreme point of a roof if and only if it lays on an extreme ray
of the cone.

Naturally, this result provides the internal description (in terms of extreme rays, for all the
closed subcones ofP , and in particular those of the formF ∩ P , whereF is a closed subspace,
either internal or extern toP .

In the sequel we will use in a self-evident way the same terminology relative to cone capping
for subset ofP called cups, which are sum of anX -compact subset ofP plus a closed subcone
of F ∩ P .

We now use the cone capping standpoint to show the anticipated result 7.1 asserting that, if
a subspaceF is closed, then the coneF + P is also closed. Here is a proof:
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Proof. It is immediate that if we capP at a certain levelβ and denote byPβ the capped cone,
we can write:

F + P = F + Pβ + P

MoreoverF + Pβ isX -closed, because it is the sum of anX -compact set plus anX -closed set.
But X - is also convex, and hence by what we stated regarding theX topology, we can affirm
that F + Pβ is strongly closed. Consider a converging sequence{vi} in F + P . using the
increments with respect tov0, we can write:

vi = v0 + δi = w + z + δi− + δi+

wherew ∈ F , z ∈ P andδ = δi− + δi+ is the unique decomposition defined by the pairP
and its polar cone−P . We chooseβ sufficiently large so thatz ∈ Pβ. Because the{δi+} is
defined by a projection, which is continuous, it converges to a limit inP . Consequently the
sequence{w+z +δi−} also converges. We claim that each vectorw+z +δi− is in F +Pβ. For
if it were not so, it would evidently have some negative component of index inin(δi−), which
cannot compensated by the corresponding component ofδi+, because this must be zero. But
then the limit of this sequence is inF + Pβ and the Theorem is proved.

12. THE I NTERN CASE

We will prove that in the intern case the slack polyhedron(v + F ) ∩ P has extreme points
and is the sum ofX -compact proper subset containingC−(ex((v + F ) ∩ P )) plus the closed
pointed coneF ∩P . This kind of polyhedron is called cup. The closed set is called the base of
the cup.

Definition 12.1. A set C ⊂ P is called a cup ifex(C) 6= φ andC is the sum of a proper
X -compact convex subsetB containingC−(ex(C)) plus a closed pointedF ∩ P . The setB
called the base of the cup.

We start showing that in this definitionex(C) cannot be void.

Lemma 12.1.A cupC has extreme points.

Proof. If 0 ∈ C, then obviously0 is an extreme point. Otherwise take a capping functional
(f, .) for P (so thatf ∈ P∨). For some sufficiently high levelα > 0 the corresponding cap
intersect the cup. The intersection isX -compact and on such intersection the functional has a
minimum. By a, by now usual, argument the minimum is attained on an extreme point of the
roof corresponding to the minimum and such an extreme point is also extreme for the cup.

First we examine the structure of the slack set in the case in which the subspaceF is a closed
hyperplane.

Theorem 12.2.Suppose thatF = R(G) is a (closed) hyperplane and thatF is intern toP .
Then(v + F ) ∩ P is a non-void cup withX -compact baseB = C−({ξj}) and coneF ∩ P .
More precisely, assuming without restriction of generalityv ∈ F⊥:

(v + F ) ∩ P = C−({ξj}) + (F ∩ P ) =

where:

{ξj} = {‖v‖
2

vj

ej: j ∈ ip(v)}

Remark 12.1. We remind once more that the closure in the preceding formula can be taken in
any of the three topologies we are working with.
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Proof. As usual we can takev⊥F . The hyperplane has the form:

v + F = {y : (v, y) = ‖v‖2}
ThenL({v}) must be strictly tangent and sov must have both positive and negative components.
Let, for the present purposes,Ω = in(v) ∪ iz(v). We claim:

[(v + F ) ∩ P ] ∩zΩ = φ

This follows from the fact that for all vectors inzΩ, the inner product in the expression ofF
is negative or zero. Thus all vectors in(v + F ) ∩ P have either all zero components inΩ or, if
not, they must have some positive components inΩ. Moreover,v + F intersect all and only the
coordinate axes with indexΩ in the pointsξj = ‖v‖2

vj
ej and only once for each axis, as follows

from the expression ofv + F . Our remarks on components of vectors in(v + F ) ∩ P imply
that theξj are all extreme points and that there are no other extreme points in(v + F )∩P . The
same argument used for the strictly tangent case proves that

B = C−({ξj})
isX -compact. At this point, in view of Lemma 8.8, we can claim that

C−({ξj}) + (F ∩ P ) ⊂ (v + F ) ∩ P

Note thatB + (F ∩ P ) is convex and closed in theX -topology (becauseB is compact). Next
suppose∃z with z ∈ (v+F )∩P butz /∈ C−({ξj})+(F∩P ). Then{z} (which is compact) can
be strongly separated fromC−({ξj})+(F ∩P ), by a continuous functionalf . Let’s look at this
issue from the point of view of theX -topology. The image ofB is a closed bounded interval,
and the image ofF ∩P is (without restriction of generality)[0, +∞), so that the resulting image
has the form[δ, +∞). It is easy to show that the valueδ is attained in an extreme pointξk (in
fact, briefly,f−1(δ) is a closed and hence compact face ofB and thus it has an extreme point).
Next notice that, because the null space of the functional is closed, the functional is also strongly
continuous so that∃!g ∈ l2 such thatf = (g, .). Moreover, it must beg ∈−(F ∩P )p = F⊥+P
or g = αv + p, with obvious meaning of symbols. But the componentαv assumes the same
valueα2‖v‖2 on bothξk andv + F . Thus we may assumeg ∈ P . Next we can add tog a
vectorg′, obtained from a vector inP∨ zeroing thekth component. Clearly for this sum (still
denoted byg), δ = (g, ξk) is again the infimum of the functional onC−({ξj})+(F ∩P ) and the
perturbation can be taken small enough to ensure (g, z) < δ. Note that now we are dealing with
a capping functional for the set(v + F ) ∩ P . By the strictly tangent theory we have developed
in the preceding Section, the intersection:

Ψ = {x : (g, x) ≤ (g, z)} ∩ (v + F ) ∩ P

is X -compact and hence has extreme points. The functional(g, .) attains its minimum (inΨ
and hence also on(v +F )∩P ) at an extreme pointζ. We claim thatζ is extreme for the whole
(v + F ) ∩ P . For this cannot evidently contradicted neither using test points in the bottom roof
{x : (g, x) = (g, z)} and neither using points in roofs of higher level, because this case it would
contradict minimality. But this new extreme pointζ cannot belong to{ξj} = ex((v + F )∩ P ).
This contradiction concludes the proof.

Theorem 12.3.Suppose thatF = R(G) is a (closed) subspace and thatF is intern toP . Then
(v + F ) ∩ P is non-void, has extreme points and is a cup:

(v + F ) ∩ P = Γ + (F ∩ P )

whereΓ (which containsex((v + F ) ∩ P ) is defined as follows. LetL be a closed hyperplane
with L ⊃ F so thatL is intern too. Thus we know that(v + L) ∩ P is a cupB + (F ∩ P ).
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Then:

Γ = B ∩ ((v + F ) ∩ P )

Proof. First note that non-voidness is a consequence of the obvious conditionG 6= φ ⇔ v ∈
F +P and in the present case Theorem 8.1 ensures thatF +P = H. Next consider a continuous
linear functionalf ∈ F ∩ P∨. For some capping levelα the set:

[(v + F ) ∩ P ] ∩ {x : (f, x) ≤ α}

must be non-void and it isX -compact. (These sets are the cups for(v + F ) ∩ P and the
corresponding roofs are denoted still byL(α, f)). Thus it has extreme points. Because(f, .) is
(by Lemma 3.3) continuous in theX topology, it has a minimumδ on this compact set (which
is attained in an extreme pointζ). All the extreme points of the roof at levelδ are clearly also
extreme for(v + F ) ∩ P . Thus the first part of the statement is proved. Next bearing in mind
Lemma 8.8 we can write:

Γ + (F ∩ P ) ⊂ (v + F ) ∩ P ⊂ B + (F ∩ P )

From this we see that an extreme point of(v + F )∩ P must belong toB and hence, also, such
an extreme point must be inΓ by the very definition ofΓ itself. In formula:

Γ ⊃ ex((v + F ) ∩ P )

Next suppose there is a vector in(v + F ) ∩ P that is not inΓ + (F ∩ P ). At this point a
replication (mutatis mutandis) of the separation argument in the proof for the hyperplane case
leads to a contradiction and so the proof is finished.

13. THE WEAKLY TANGENT CASE

In the extern case there exists the maximal faceM of P whose relative intern is met byF .
The faceM is determined by the corresponding subsetΥ of N andF ∩ P ⊂ L−(M) = M.
Deleting the rows ofG in Υ (and doing the same on the components ofv) we obtain a block
G2 out ofG. This corresponds to redefineG as the column of two blocks:

Gx ≤ v 


(
G1

G2

)
x ≤

(
v1

v2

)
Recall that, by Lemma 8.4,R(G1) andR(G2) are closed. Moreover, by Theorem 8.5, the
systemG2x ≤ v2 is a strictly tangent. We call it thestrictly tangent relaxation. The system
G1x ≤ v1 is an intern system, by the very definition ofM . We call it theintern relaxation. In
dealing with these systems, if needed, we inject vectors of their range spaces suitably adding a
zero column block and viceversa make projections , but without explicit notice.

In the extern case we have a results similar to the preceding one: we still have anX -compact
base plus the coneF ∩ P . The expression of the base is derived from the bases of an internal
and a strictly tangent case.

Theorem 13.1.Suppose thatF = R(G) is extern toP and thatS = (v + F ) ∩ P is non-void.
ThenS is a cup given by:

(v + F ) ∩ P = Σ + (F ∩ P )

Σ = (Ψ×B) ∩ [(v + F ) ∩ P ]

whereB is the (injected) polyhedron defined by the strictly tangent relaxation andΨ is the
(injected) base of the cup defined by the intern relaxation.
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Proof. Consider a feasible slack vectory ∈ (v + F ) ∩ P . If we projecty on the two coordinate
spaces1 and2 we obtain two feasible coordinate vectors for system1 and system2. Thus the
slack set of the system is contained in a product of the form:

(v + F ) ∩ P ⊂ [Ψ + (F ∩ P )]×B = (Ψ×B) + (F ∩ P )

with self-evident symbols that take into account the previous results on the strictly tangent and
internal cases. Next we show that:

Σ = (Ψ×B) ∩ [(v + F ) ∩ P ] 6= φ

In fact if we take any vectory in (v + F ) ∩ P it has the form:

y =

(
y1

y2

)
with y2 ∈ B, y1 = z1 + ζ with z1 ∈ Ψ andζ ∈ F ∩P . This follows from the fact thaty2 andy1

are of slack vectors in their respective relaxations. Now can take anx in the domain such that

Gx =

(
−ζ
0

)
and hence we can also obtain the slack vector:

ξ =

(
z1

y2

)
∈ Σ

as we wanted to show. At this point we know, by Lemma 8.8, that:

Σ + (F ∩ P ) ⊂ (v + F ) ∩ P

On the other hand we have just shown that a point in the rhs is the sum of a vector inΣ plus a
vector inF ∩ P and hence the reverse inclusion holds as well. Clearly the Tychonof Theorem
applies to show thatΣ is X -compact. Next, by a by now usual argument, because the cup is
formed adding to the base a cone, the extreme points ofS, if any, belong necessarily toΣ.
That there are extreme points inS is deduced in the same way as in the previous case, taking a
functional(f, .) with f ∈ P∨ and showing that it has a minimum inS and that such minimum
is necessarily attained at an extreme point ofS.

14. DUAL RANGE SPACE CONDITIONS

With the hypothesis thatR(G) be closed in force, we easily generalize the finite dimensional
dual feasibility condition as follows:

Theorem 14.1.There exists a non negative matrixQ ≥ 0 (inequality here intended entry-wise)
such that

v ∈ R(G) + P ⇔ Qv ≥ 0

Proof. Because, as we have proved, the coneR(G) + P is closed and hence a polyhedral cone,
we can write for some matrix operatorQ:

R(G) + P = {x : Qx ≤ 0}
at this point note that for any rowqi of Q it is true that(qi, x) ≤ 0, ∀x ∈ R(G) + P and hence:

qi ∈ (R(G) + P )p = −[(R(G))p ∩ P ]

Thereforeqi ∈ −P . To complete the proof changeQ in −Q and, at the same time. change the
sign of the inequality.
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Remark 14.1. If R(G) is not closed a similar condition holds for its closure. That is there
exists a matrixQ ≥ 0 such that:

v ∈ (R(G) + P )− = R(G)− + P ⇔ Qv ≥ 0

15. APPLICATION TO INFINITE DIMENSIONAL LP

The linear optimization problem (LP) is defined as follows.

max(f, x) on the polyhedronG = {x : Gx ≤ v}
Note that, assumingG 6= φ, this is equivalent to look at the maximum of the set of realsf(G),
which is convex and hence an interval. If and only if the interval has a finite right extremum,
there is asup in f(G). Thus three cases are possible. First, the polyhedron may be void (unfea-
sible problem). Second the polyhedron is non-void, butsup(f(G)) = ∞ (feasible unbounded
problem). Third the polyhedron is non-void, andsup(f(G)) < ∞ (feasible bounded problem).
These possibilities, and the value of thesup, whenever it exists, are settled by our last Theorem
below.

However, by contrast to the finite dimensional case, it is not assured that, when thesup exists,
it is also attained. Therefore we give a sufficient condition for this to happen.

To begin with define:

Ĝ =

(
−f
G

)
; v̂(h) =

(
−h
v

)
where clearly−f is disposed as a row andh is a real parameter. So the problem LP becomes:

max{h : Ĝ(Ĝ, v̂(h)) 6= φ}
Then we can state the following:

Theorem 15.1.For a rl2 polyhedron, assume thatf(G) is bounded from above. Then ifR(Ĝ)
is closed the maximum of the LP problem exists. Moreover,R(G) closed, andf ∈ R(G∗)−

imply thatR(Ĝ) is closed.

Proof. Actually we have to look if there exists the:

max{h : v̂(h) ∈ R(Ĝ) + P}
but in this way, as the parameterh varies, we intersect a line:

{−he1 +

(
0
v

)
: h ∈ R}

with the setR(Ĝ) + P . Note that ifR(G) is not closed and so neitherR(Ĝ) is closed, the
intersection of the line:

{−he1 +

(
0
v

)
: h ∈ R}

with the coneR(Ĝ) + P is anyway an interval, whose closure is the intersection of the same
line withR(Ĝ)− + P . If R(Ĝ) is closed (which impliesR(Ĝ) + P closed by Theorem 7.1)
then the interval is closed and the maximum is attained. As to the second part, consider a net
{ŷα} = {Ĝxα} inR(Ĝ) such that{ŷα} → ŷ. Partitioning thêyα as above, the first block yields
a net inR, {tα} = {(−f, xα)} → t, and the second block a net inl2, {yα} = {Gxα} → y.
Applying the strong topology part of the induced map Theorem 3.4, we know that the net
{PR(G∗)−xα} = {zα} in R(G∗)− is such that{zα} → z, and{Gzα} → Gz = y. Next
f ∈ R(G∗)− ⇔ {f}⊥ = N ((−f, .)) ⊃ N (G). Thus,∀α, (−f, xα) = (−f, zα) and therefore
{(−f, xα)} → (−f, z) = t. And this shows thatR(Ĝ) is closed.
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Using the dual conical condition we can now solve the LP problem. LetQ̂ be the matrix
whose rows are the generators ofR(Ĝ)⊥ ∩ P , and partition the matrix as

Q̂ =
(

p S
)

Then we have to find:

sup{h : Q̂v̂(h) ≥ 0}

or equivalently:

sup{h : hp ≤ b}

whereb = Sv. Note that the vectorp is non-negative.
If R(Ĝ)+P is closed the Theorem below give us themax of the problem. If not it gives the

sup, and such sup may or may not be attained according to the circumstances.
At this point we can state the following Theorem, which is proved by direct inspection.

Theorem 15.2.DefineJ = {i : p(i) = 0}. Then the following mutually exclusive and exhaus-
tive cases are possible.

• a)J = φ . If inf{ b(i)
p(i)
} > −∞ then the problem is feasible and

h = sup{(f, x) : x ∈ G} = inf{ b(i)

p(i)
}

Otherwise the problem is unfeasible.
• b) J 6= φ andJ 6= N. This case is partitioned in:
• b1)∃j ∈ J such thatb(j) < 0. In this case the problem is unfeasible.
• b2) @j ∈ J such thatb(j) < 0. If inf{ b(i)

p(i)
: i /∈ J} > −∞ then the problem is feasible

and:

h = sup{(f, x) : x ∈ G} = inf{ b(i)

p(i)
: i /∈ J}

Otherwise the problem is unfeasible.
• c)J = N This case is partitioned in:
• c1)∃j ∈ N such thatb(j) < 0. In this case the problem is unfeasible.
• c2)∀j ∈ N such thatb(j) ≥ 0. In this case the problem is feasible unbounded.

16. CONCLUSIONS

We conclude with an important observation, that indicate a possible orientation of future
research. As is clear the extension of theory of polyhedra is twofold: first the environment is
infinite dimensional, but also we intersect countable families of closed semispaces in a separable
space. Such an extension allows to encompass not only, as required, the positive cone but also
any closed convex set, although along the way we chose to deal only with closed subspaces (and
closed affine spaces). The fact of encompassing a large class of closed convex sets, suggests
that the optimization results presented could be adapted to included a special class of Convex
Programming Problems, by representing epigraphs as polyhedra. Moreover, in finite dimension,
the polar conical conditions have been used to prove linear programming problems duality. If
we extend this results in our setting, we could possibly prove a version of such duality in infinite
dimension and even obtain a corresponding Convex Programming interpretation.
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