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ABSTRACT. Asis well-known, underwater ridges and submerged horizontal cylinders can serve
as waveguides for surface water waves. For large values of the wavenumber in the direction
of the ridge, there is only one trapped wave (this was proved in Bonnet & Joly (E988/

J. Appl. Math.,53, pp. 1507-1550)). We construct the asymptotics of these trapped waves
and their frequencies at high frequency by means of reducing the initial problem to a pair of
boundary integral equations and then by applying the method of Zhevandrov & Merzon (2003,
AMS Transl. (2)208, pp. 235—-284), in order to solve them.
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1. INTRODUCTION

It is well-known that underwater ridges (horizontal “bumps” on the bottom) can trap water
waves (see pioneering paper of Urselll[10] for the case of submerged horizontal cylinders as
waveguides; see Garipov [7] for the case of underwater ridges).| In [2], Bonnet-Ben Dhia and
Joly proved that large values of the wavenumbealong the direction of the ridge, there is
only one trapped mode. Some estimates for the frequency of this mode were also obtained.
Our goal here is to construct the asymptotics of this frequency for large valde® ahe case
of n ridges. The general plan of the present paper is the sameas in [8].In our case, we use a
technique similar to that of [11], where a close analogy of the problem of water waves and small
perturbations of the one-dimensional Schrodinger equation is established. The latter problem
was studied by a number of authors (we mention, for exampgle] [6, 9, 3], and, in the context of
water waves/[5]). We note that the asymptotics turns out to be exponential, i.e., the distance of
the trapped wave frequency to the cut-off frequency is exponentially smallNevertheless,
in fact we construct an exact convergent expansion, and no additional difficulties arise.

2. MATHEMATICAL FORMULATION AND MAIN RESULTS

We will be mainly occupied by the problem of an underwater ridge. Consider the water layer
Q= {—h(z) < y < 0}, wherex is the horizontal coordinate orthogonal to the direction of
the ridge,y is the vertical coordinate and the bottom satisfies —h(x). With the velocity
potential in the form®(z, y)e!@!=*2) where: is the horizontal coordinate along the ridge and
w is the frequency, we come to the problem

(2.1) B, = \D, y =0,
(2.2) By + Dy — K20 =0,  —h(z) <y <0,
(2.3) o®/on =0, y = —h,

for the function®; here\ = w?/g. Trapped waves are the solutions of this problem from the
Sobolev spacé/; (2) and exist only for certain values affor £ fixed.

We assume that(z) = ho for || > R > 0 andh is a C*°-function that has exactly
nondegenerate local minimaat= 0,1,2,--- ;n < R, say,h”(0) > 0,h"(1) > 0,h"(2) >
0,---,h"(n) > 0 (the last condition is for simplicity only, refer to Figure 2.1). The con-
tinuous spectrum of (2.1)-(3.3) coincides with that for the flat bottom and represents the ray
A € [ktanh(khg), c0). From the results of [2] it follows that there is only one eigenfrequency
below the continuous spectrum for large values @#ith dimensionless coordinates choosing).
We will construct an asymptotics of this frequency. The main result consists in the following
statement.

Theorem 2.1. The unique eigenvaluk(k) of (2.1)-[2.8) has the form

(2.4) Ak) = ktanh kho — 3%,
where
- T - 1
2. = —2khG) (1 ).
@9 1=k (1o (5)

From now on we will devote to the proof of the statement and the construction of the corre-
sponding eigenfunction.
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Figure 2.1

3. REDUCTION TO A SYSTEM OF INTEGRAL EQUATIONS

As a first step, we reducg (2.1)-(R.3) to a pair of integral equationSoandI's for the
functiony = ®|,—, andd = ®|,—_,. To this end, we apply the Green formula®g, n) and
—(1/2m)Ko(kr), wherer = /(x — £)? + (y — n)? and K, is the Macdonald function (so that
—(1/27)Ko(kr) is the fundamental solution of the operat®r- £%). We obtain

ro(€) =) / Ko(klz — €])p(x)de

o

31 k& / Kok /(@ = O + hD)") o )~ hiw)oa)de

V@ =97 + ha)?

70(€) =\ / Ko(k/(@ — €7 + h(€))p(x)dz

o0

Ky /o= R T HEP)
(3.2) —kh(f)_é N

[ K (k/(z — €2 + (h(z) — h(E))?
VT =87 + (hz) — h(©))?

+k 1 (z)(x = &) = (h(x) — h(£))]0(x)dz.

In order to apply the technique df [11] tp (B.1), (3.2) it is necessary to pass to the Fourier
transformg of the functiony,

Fep(©)(p) = 2(p) = %27 / e p(€)dE.
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Using the formulas (se&l[1])

™

\/W

. {Kl(kwg—Q +h3)]< )= T emhov/F R
§—p /—52 T h% p kho )

Te [KMM>] (p) = he—hom,

we come to the following system far(p), 6(¢):

(3.3) (1 - L)@(p) = femh@)ﬂm (1 + iph/(x))G(x)dx,

7(p) 7(p)

Ko(2) = =Ki(2),  Fep[Ko(RIEND](P) =

o) =5 / el’pxmﬂm(% T 1)p(p)dp
(3.4) / sl kv “ () — a) — (h(€) — h(a))]OE)de,

where

o(§,7) = (§ — )" + (h(€) — h(x))*.
Rewrite systen{ (3]3) { (3.4) as

A B o
(3.5) (1 - W) 2(p) =(31,6) (1)
(3.6) (1 — M;)0)(z) =(Map)(x),
where
(VL6)(p) = / Mi(p, )6(x)dx
(V) (z) = / My(x, p)3(p)dp
(VL) (z) = / My (e, €)0(6)de
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with

k K\(k : ,
Mo €) = £ EUEEED e — ) (hi6) — h(o)
Obviously, a solution of{ (3]5)[ (3.6) gives via the standard formulas of the potential theory a

solution of [2.1){(2.B).
4. SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS
Consider equatiorn (3.6). Recall the following (see, €.9., [4])

Lemma4.1. Let
[t <a [ Kyl <o

Then
[ Kullr, <Ml ullg,,
where

Ku = /K(x,y)u(y)dy.

It is not hard to see, using the asymptoticggf x) for small and large:, that the kernelV/;
in (3.6) satisfies the conditions of Leminal4.1 with= Const. k~/2. Hence we can invert the
operator(1 — M3) in ) using the Neumann series and obtain

(4.1) 0(x) = [(1 — Ms) ™' Map)(z),
where(1 — Mz)~' = 3. | M. Substituting[(4.1) in(3]5) we finally come to
@2) (1 25 )20 = (1 - 30 4l

We apply the reasoning df [11] tp (4.2). Indeed, we know thit given by [(2.4), where is
exponentially small irk [2]. Hence the first factor in the left-hand side [of (4.2),

A k— 3
4.3 Lp)=1—-——=1— ——
@3 Pl T e
is exponentially small irk for p = 0. In fact, the roots of.(p) = 0 which tend to zero as
k — oo, as itis not hard to see, are simple and given by

+ O(e_%ho),

(4.4) p=Dp+ —i%JrO(el/Qﬁg), €= %

For this reason, the heuristic considerations of section 2 of [11] are applicaple]to (4.2). Fol-
lowing these arguments, we look f@rin the form@(p) = A(p)/L(p). As we shall see (see
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formula [4.6) below)A(p) and M, (x, p) are analytic in a strip containing the real axis, and we
can change the contour of integration in the integral

/ MQ(xvp)%dp

C:=(—o0,—a|U{p+iq:p*+ ¢ =d’, ¢>0}U][a,o00)

in the complex plane, with a suitable> 0 such that in the dis{p| < a there are no zeros of
L(p) apart fromp_..
We have, by the residue theorem,

to that given by

P (p) Ms(x, pi)A(ps)
(4:5) /M”p L(p)" /M”p L) P L) ) e,
Thus [4.2) transforms into
(4.6) A(p) = [My (1 = My) ™" My A)(p) + [My (1 — M)~ f(2)] A(py),
where

A(p) Ms (2, pi)Alp+)
= /Mg(x,p)mdp, flz) =2mi (L) /D)y,

Note that now the operata¥l; = M, (1 — M)~ M, is small ine since|L(p)| > const k>
alongC andM,(z, p) is exponentially small. Indeed, on the arc we have up tb—>°)

1 a? 4
|L(p)| = 1_\/T2/k‘2 Z@WLO(]{? ),

and on the part of the contour which lies on the real axis the minimuph(@f| is attained at
the pointsp = +a, hence, the above estimate still holds. Rewrit[ng](4.6) as

(4.7) (1 — Ms)A(p) = g(p)Alps),

Whereg(p) = M1(1 — Mg)—lf(x), we see thatl — ]\7[5) is invertible andA(p) = (1 —
M;)"tg(p)A(py). Puttingp = p, in the last equality and dividing byl(p. ), we obtain an
equation fors:

(4.8) L= (1~ M5)""9(p) lp=p, -

A standard application of the Laplace method of asymptotic evaluation of integrals to the lead-
ing term in [4.8) yields formuld (2,5).
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