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2 N. CARTER AND M. PREDESCU

1. INTRODUCTION

The following form of a discrete time age structured population model was introduced by
Greenman et al. in [9].

Tpr1 = Pzpexp{—(c12, + Coyn + 2,)}
(1.1) Ynt1 = VTn n=20,1,...
Zn+1 = YYn +oz,

The dynamic variables,,, y, andz, denote the number of juveniles, subadults, and adults,
respectively, at time.. The paramete® represents the per capita reproduction rate of adults;

~ ando represent per capita survival rates. The parameteasdc, measure the contributions

of x,, andy, to the density dependence, respectively [9]. Obviously, a biologically meaningful
analysis requires the parameteto be positive an® < ¢;, ¢y, 7,0 < 1. In [9], following the
empirical evidence, the authors applied the density dependence only to the reproduction rate (in
the first equation of the system).

Structured population models have been analyzed over the years in the literature. A basic
mathematical framework for these models can be found in both books (Cushing [3] and Caswell
[2]) and articles (Levin and Goodyear [12], Bergh and Geitz [1], Silva and Hallam [22] ahd [23],
Dennis et all[6], Cushing [4], Cushing and LI [5], Neubert and CasWwell [20], etc.). Just as there
are many paths through which density dependence can enter the model and affect the vital rates
[20], there are also quite a few density dependence functions that one can consider [3].

Herein we analyze the behavior of solutions when more general density dependence functions
are used in the first equation of systgm (1.1). We discuss the boundedness, persistence, and
stability of the following system.

Tny1 = (I)ZnG(Clxn + CoYpn + Zn)
(1.2) Yntl = VTp n=20,1,...
Zntl = VYn T 02p

with parameter® > 0 and0 < ¢, 3,7, 0 < 1 and non-negative initial conditions. The density
dependence functiof’ is assumed to satisfy all of the following assumptions. We call these
assumptiong.

() Gis adecreasing function i’ ([0, c0) — (0, 1]).

(i) There is a real numbet/ such thatvG(w) < M for all w € [0, o).

(i) G(0) =1.
Condition [ij) essentially requires a certain minimum potency in the density function; itis equiv-
alent to saying that: decreases at least as quickly as the funcfion) = %, for some M. An
important consequence of these conditions is¢hetbijective, and therefore there is a function
G71:(0,1] — [0, 00).

While it seems more symmetrical and more general to®8gx,, + c2y,, + c32,) Where
0 < ¢1,09,c3 < 1, in fact the formG(ciz, + oy, + 2,) represents no loss in generality (if
cs # 0). Any model of the first form can be converted to the second form by the substitutions
2 — 2,0 — %, andcs — c3v. (Note thategy < 1.)

The particularG used in[9] isG(x) = e~*, as in the systeny (1.1), which we call the expo-
nential model. In the biological literature the exponential nonlinearity is referred to as Ricker
nonlinearity. In this paper, we propose an alternativey) = HLZ, which gives rise to a system
we call rational (models with this type of rational density dependence are also called Beverton-
Holt models). We compare the dynamics of solutions of the rational model with those of the
exponential model. For the exponential model, boundedness, persistence, and global stability
of trajectories in special cases of interest have been discussed in [21].
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The paper is organized as follows. Secfion 2 deals with the existence of equilibrium points.
Sectior B is concerned with the boundedness of solutions. Seltiond 4 and 5 treat the local and
global stability of equilibrium points. Finally numerical simulations are reported in Section
and conclusions drawn. Our analysis uses tools from nonlinear difference equations theory
to address the local and global stability behavior of solutions. Results concerning stability,
periodicity and oscillatory properties of various classes of nonlinear difference equations are
given for example in Kocic and Ladas [15], Grove and Ladas [10], Kulenovic and Mérino [18];
we list in the Appendix those results we use herein.

2. EQUILIBRIUM POINTS

Equilibrium points(z, g, z) are solutions of the following system of three equations.

Oz2G (1T + 2y + 2)
T n=01,...
VY +oz

(2.1)

N QLR
Il

Note that(0, 0, 0) is always an equilibrium point. If # 0 then solving forz yields

G ((1-0)/(27?))

T = .
61+CQ’Y+’}/2/<1—0')

Corresponding values fgrandz can be obtained from = vz andz = %55 This equilib-
rium exists wheril—o)/(®+?) is in the domain of7~!, which is(0, 1]. However, to ensure that
this equilibrium point is positive, we nee@™" ((1 — 0)/(®+?)) > 0, and so we must require
(1 —0)/(®y?*) # 1, because&r (1) = 0 by (i) of H. In fact, under the imposed conditions
on G, this positive equilibrium point is unique when it exists.

Herein we may write eithel —o)/(®+?) < 1 or the equivalen®+?/(1—c) > 1, whichever
is more convenient in context. Dendig = ®72/(1 — o). Ry is a bifurcation parameter called
the (inherent) net reproductive number'thre expected number of offspring per individual per
lifetime” (seel[3], p7). The positive equilibria for the two models analyzed herein are shown
below.

Exponential (Ricker) Rational (Beverton-Holt)
Cla)= e Gla) = —
r=e ¥ = 1+
G Hr)=—Inx G_l(x):l—l
T
o In (®9%/(1 - o)) . Py /(1—0)—1
Catoy+13/(1-0) Ca+oy+?/(1-o0)

3. BOUNDEDNESS AND PERMANENCE

3.1. Boundedness.It is important, as part of determining the utility of a model, to ensure that

it never predicts an unbounded explosion in the population. Therefore we prove that every tra-
jectory enters and remains in a closed region. Using similar techniqueg as in [21], the following
lemma demonstrates boundedness for solutions of the systgm (1.2).

Lemma 3.1. Assume that hypothesgshold. The compact set
[0, ®M] x [0,7®M] x [0,/*®M /(1 — )]
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is invariant and attracting irR?.

Proof. We show invariance first. Take: v, yn, zx) in the compact set just described, for some
N. Then

TNyl = (I)ZNG(CLTN + Coyn + ZN> first equation In@)
< (I)ZNG(ZN> @ of H
<dM (i) of H

From the second equatiopy . ; = vrni1 < 7y®M. Finally, using thez-boundaries of the
compact set gives

2

ZN+1 =VYN + 02Ny < V2OM + UP;

l1—0 1—0

M 2o M
:72(I>M<1+ d ) =2
Thus the set is invariant.
Next we show that the region is also attracting. Note that dingey < 1 from the second
equation in[(IR), we have < y,,, < xz, foranyn > 0. If (x,),>0 IS bounded then con-
sequently(y,).>o is bounded. And as stated in invariance proof just given, < ®M for

everyn, solimsup z, < ®M. For convenience, sdymsup z,, = r®M, with0 < r < 1, and

therefore
0 <limsupy, <ry®dM < oo.

n—oo

From the third equation in (1.2},,.; = oz, + vy., we obtain that for every > 0, there is
someN, > 0 such that,,; < oz, + 7y*®M + ¢ for all n > N.. Becausdimsup,, . 2z, =

2
ry*®M + ¢ . :
limsup,,_,, Zn+1, We havdimsup,,_, . 2, < u Bute > Oisarbitraryand <r <1
-0

and thus

: V2OM

limsup z, < ,

n—00 —0
as desiredn

3.2. Permanence.We look at the total population survival, expressed mathematically by the
concept ofp-permanence (see Definitign B.1 in the Appendix, Sedtion 8). In factpthe
permanence definition used here incorporates two parts: (1) survival of the total population
in the long run and (2) boundedness of the population. Studies of permanence can be found, for
example, in[[2, 16, 17, 19].

Remark 3.1. The system[(1]2) is-permanent whet®4?)/(1 — o) > 1.

To demonstrate this remark, we will apply Theoren 8.1 from the Appendix. That theorem
requires that our system be dissipative (Defini 8.2) and forward invariaRt ornd that
Ap be irreducible and have a dominant eigenvalue greater than 1. We establish each of these
four criteria in the following paragraphs.

The system is dissipative because from Lemima 3.1,

2
o
lim sup(z,, + Yn + 2n) < 71 +yYMP + M.

n—oo — 0

IfweletD =>M®/(1 — o) +yM®P + M® (here0 < M < oo and thug) < D < o0), then
system[(1.P) is dissipative according to Definition| 8.2.

Forward invariance is straightforward from the equationg i (1.2) and the fact isatiways
positive.
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Becaused, is nonnegative and the matrid; + Ag)? has all entries positive, it follows
from Theorenj 82 that, is irreducible. The matrix4, is nonnegative and irreducible, and
therefore the Perron-Frobenius Theorem (7, 8]) (see also [3]) guaranteegthassesses a
positive eigenvalue with magnitude greater than or equal to all other existing eigenvalues. Its
eigenvalues are the roots of

P(\) = N —a)\? — 02,
We haveAlim P(\) = o0, and thus ifP(1) < 0 we can guarantee a root grater than 1. Because
P(1) = 1 — o — %, we have thaf’(1) < 0 just when®+?/(1 — o) > 1. Therefore when
®+?/(1 — o) > 1, by Theoren 8]1 systerp (1.2)jispermanent, guaranteeing both survival and
boundedness. Moreover whéby?)/(1—o) > 1, no solutions tend to th@), 0, 0) equilibrium.
4. STABILITY OF EQUILIBRIUM POINTS

We view system[ (1]2) in a matrix form:

(4.1) X1 = Ax, Xy

wheren = 0,1,2,... andX,, = (z,,yn, 2,)". The entries of matrixdy, are denoted by,
and they are continous functions:of, y,, andz,,. The nonlinear matrix structure is

0 0 ®G(c1x+ oy + 2) x
Ax=1| v O 0 and X =1[ vy
0 v o z

The matrixAx has all entries nonnegative and

Ap = J0,00) =

o2 O
2 OO
SEESREY

The characteristic equation associated Wi, 0) is
(4.2) N — o\ — Py =0.

Let g stands for the expressi@r (c;z + coy + Z), which can be evaluated for the specific model
in advance, based only ar and the model parametets andc,. The characteristic equation
about the positive equilibrium is

(4.3) N+ (=0 — Dzc1g) N\ + (0PZerg — YPZcag) A
+ (yo®Zzcyg — 2 ®Zg — 1+ 0) = 0.

Using the Schur Cohn criteria (see Appendix), the local asymptotic stability of the positive equi-
librium is given by the intersection of the conditions below. Criteridn (i) becomes equivalent
to

(4.4) @Z[ —(c+ 1) +7y(c+1)ca — fyﬂg < 2.
Criterion (i) becomes equivalent to the conjunction of

(4.5) @2[(372 —307cy —¢1) + (0¢; — 'ycz)} g <do
and

(4.6) @Z[(i&’f — 307ycs — ¢1) — (0¢1 — ’ycg)}g > 40 — 6.
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More algebraic manipulations of criteridniii) yield the following equivalent expression.

(4.7) %72 [74 — 2v%0cy + V20PcE — yPc + yocics| g

+ &z [272 + 3y0%cy — 3720 — 2yocy + 20¢; — ey — cl] g
+[20° =30 +1] < 1

From a specific functiotr, such as the rational or exponential examples studied herein, one can
obtain amenable conditions for local asymptotic stability of the positive equilibfium, z).

This has been done for the exponential modelin [21], and one could do a similar analysis for
the rational model, but that is not our purpose here. Explicit calculations of the LAS boundaries
for a different model (the LPA, flour beetle model) were done in [3].

4.1. Global Asymptotic Stability of the Extinction Equilibrium. Our analysis of the global
asymptotic stability of the extinction equilibrium point is summarized in the following theorem:

Theorem 4.1. Assume condition®/ hold and the model parameters, in addition to satisfying
the criteria from Sectioh|1, also satisfy # 0 and ®y?/(1 — o) < 1. Then the extinction
equilibrium (0, 0, 0) of systen{I.2)is globally asymptotically stable.

Proof. Local stability follows by checking the Schur Cohn critefia (i) through (iii) (see Appen-
dix) with ay = —®+2, a; = 0, anda, = —o using algebra; we therefore do not show the
verification here. It suffices to show th@x 0, 0) is a global attractor. Suppos$e,,, y,, zn)n>0

is a non-negative solution of system (1.2). We prove that (x,,, v, z,) = (0,0,0). From the

first equation of[(1]2) and| (i) o,
(48) Tp1 = q)znG(Clxn + Coyn + Zn) < (I)Zn-

The second and third equations pf {1.2) give: = v?x,_1 + 0z,, and by [4.B) therefore
21 < 2Pz, o + 0z, for anyn > 2. Now consider the difference equation

(4.9) Pl = V2 ®r,_o + o7y n=0,1,2,...

withr_o = z 9,71 = z_3 andrg = 2. By inductionz,,; < r,; foralln > 0. Equation|[(4.p)
is of the appropriate form for Theorgm B.5 in the Appendix and it satisfies all that theorem’s
hypotheses. Theorem 8.5 tells us tHah r, = 0 and thuslim 2, = 0. By (4.8) we get

n—oo — 00

lim x,, = 0. Taking the limit in the second equation of systém](1.2) therefore divesy,, = 0

n—oo

also.n

5. GLOBAL ATTRACTIVITY OF THE POSITIVE EQUILIBRIUM . SPECIAL CASES

In addition to the previous section’s analysis of the extinction equilibrium, this section ad-
dresses the positive equilibrium. We find sufficient conditions in the parameter space where the
trajectories of the rational system converge to the equilibrium. While global attractivity results
for systems are quite rare, at the moment we can provide analytical proofs for only a few special
cases of interest of the rational model. Case 1 assumesc, = 0, meaning that the younger
members of the population (newborns and juveniles) do not impact density dependence. Case
2 assumes; = 0 andc, > 0, meaning that newborns do not impact density dependence, but
juveniles do, though generally to a lesser degree than adults. It is worth noting that the posi-
tive equilibrium is not locally asymptotically stable for all values of the parameters for which
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(®9?)/(1 — o) > 1. Computer simulations in the following section complement this analysis.
Let us consider Case 1 first. The rational system becomes the following.

Tpi1 = Pz, /(1 + 2,)
(5.1) Ynt1 = VTn n=0,1,...
Zn4+1 = VYn + o0z,

In the discussion of global stability of solutions in cases (1 and 2), we make use of the remark
that when(®+?)/(1 — o) > 1, the populations will never approach the zero equilibrium.

One can see as follows that the solutions are bounded. From the first eqOation,,.; < ®
for n > 0, and the second equation then gives: y,.1 < v®. Using the third equation and
0 < o < 1 we getlimsup z, < v*®/(1— ). Then using the equations jn (b.1) for substitution,

n—oo

we have

72(1)271—2
Zptl = VYn + 02y =YTp—1 + 02, = ———— + 02y.
1+ Zn—2

Thus in this case we are dealing with the functional equation

’YQCI)Zt—z
1+ Zt—9 ’

(52) Ztr1 — 0% +
The next theorem gives sufficient conditions for positive equilibrium of equdtioh (5.2) to be

globally asymptotically stable.

Theorem 5.1. Supposed > 0,0 < v,0 < landl — o < ¥?® < (1 — 0)/(1 — ¢%). Then the

positive solutions of equatiaf.4) have the property that

. G
lim z; =z =
t—o0 l1—0

— 1.

In fact, the positive equilibriurm is globally asymptotically stable.

This lemma is illustrated in Figuig 1. Four randomly generated rational models are shown,
each satisfying the hypotheses of Theofem 5.1, and their convergence shown using a dashed line
to indicate the value for total population that corresponds taztteewhich the lemma states
that the model converges.

Proof. We prove that is locally stable and a global attractor. The local stability is done by
verifying conditions[(4.4) through (4.7) (using the above assumptions togethee withvy =

i l-0o
0). Note thaty = G'(z) = ( o

2
> . Sinceg is negative, condition (4]5) is always satisfied.

2
After replacingg, equation|[(4.14) is equivalentﬁa(ﬂ — 1) 7

1— 2
’ (3-2)

< 2 which after algebraic

manipulations, it changes into

1—o0)?
By hypothesis, we have that(1 — %) > — ;@G. Thus
Y

<(l-0)-(1-0)(1-0*)=0*-0*<2
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and inequality[(4J4) holds true within the specified hypotheses. Now, let us check condition
(4.8). Replacing; and simplifying out, one gets
3(1—0)?
3(1—0)?
720
and the right always positive, so the inequality is always true and conditidn (4.6) is verified.
The only condition which remains to verify is (4.7), which when= ¢, = 0 simplifies to

<6—4o

or equivalently into— < 3—o0.Sincel < o < 1then the left side is always negative

P22y g? + ©2(272 — 37%0)g + 20% — 30 < 0.

Substituting in the expressions fgrand z used earlier in this proof gives a longer inequality,
but it can be simplified and factored to yield

2% o] [ (2 ) o)

Notice that the left of the two brackets in this equation is a product of positive quantities, and
thus must be positive. However it can also be simplified, as can the second bracket, to yield the
following more manageable inequality.

+0(20 —3) < 0.

(1—0)’ (1—0)’
5.3 1—0— 1—0— 243 20 — 3 0.
(5.3) [ o 25 o 25 +(—2430)| +0(20 —3) <
Notice that the quantity which appears twice[in [513); 0 — (17‘2?;)2, is clearly less than — o,
and thus the inequality (5.3) will be true as long as the following one is.

1—o0]l—0+(-2+30)]+0(20 —3) <0.

However, multiplying out the left hand side of this inequality and combining terms reveals that
the entire left hand side simplifies tol (which is obviously less than 0).

The last fact to establish is thatis a global attractor. Lefz;),. , be a positive solution of
(5-2). Now, it suffices to show th?ir& 2, = z. This follows from Theorer@G and the analysis

that follows it in [14] (p. 1083) with\ = o, 8 = 4*®, m = 2, andr = 1. §

Let us consider Case 2 now. When= 0 andc, > 0, the rational system becomes the
following.

Tpi1 = qDZn/(]- + CoYn + Zn)
(5.4) Ynt1 = VTn n=20,1,...
Zptl = VYn T 02p

We could repeat an analysis very similar to that for Case 1 to show#h@at., is bounded. The
positive equilibrium point of((514) is

V2P ca(l — o)
1 — o 1)/(7

(5.5) 7= ( +1)

With respect to this equilibrium point we have the following lemma.

Theorem 5.2. Suppose > 0,0 < ¢3,7,0 < 1,7?*®/(1 — o) > 1andcy(1 + o)/v < 1. Then
the positive trajectories of5.4) converge to the positive equilibrium
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v~ 0.067,0 =~ 0.966, ® ~ 73.198 v~ 04170~ 0.772, P ~ 2.294
61:(}2:0 01262:0
— e 20 1
75+
g o
2 60 .2 15
E E
a 45 a 10 -+
2. 30 - 3
E15+ EOT
: S o
0+—"F—+—+—+++—++- 0 +—F+—F+—+—+++—++-
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 1012 14 16 18 20
time, n time, n
v = 0.362,0 ~ 0.811, P ~ 3.059 v~ 0.074,0 =~ 0.992, d ~ 14.049
01202:0 01262:0
20 + 30
o o 20T
.S 15+ S Ve
3 cay
2 10 + 2 15—+
2 210+
= 5T =
=S ittt b= 5T
hat 0 | % % I + 0 | % % I

[ [
T 1 [ — T 1 [ —
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

time, n time, n

Figure 1: Time series diagrams for four rational models satisfying the hypotheses of Tieoyem 5.1, and therefore
converging to positive equilibria.

This lemma is illustrated in Figuig 2. Four randomly generated rational models are shown,
each satisfying the hypotheses of Theofem 5.2, and their convergence shown using a dashed line
to indicate the value for total population that corresponds taztteewhich the lemma states
that the model converges.

Proof. In the sequel we prove that the positive equilibrium is a global attractor. Algebraic
manipulation and substitution applied [o (5.4) changes that system into

YDz o
L+ (co/7)zea1 + (1 — o0 /7) 20

(56) Zt41 — 02 +

We introduce the assumptidn— cso/y > 0 to ensure that the number of adults will always
be positive. (Note that,o /v < co(1 4+ 0)/v < 1.) The map associated with the above scalar
equation,

Y2y
L+ (ca/7)v+ (1= c20/7)u’
is monotonic in each of its arguments (increasing,ilecreasing i and increasing im.) It

follows by Theorenj 8]4 that there exist solutiofis }>> _ and{S,};>_, of the difference
equation|(5.p) with, = I andS, = S such that for all integers, I < I,, < Sand/ < S, < S.

fu,v,w) = ow +

AJMAA Vol. 7, No. 1, Art. 3, pp. 1-16, 2010 AJMAA
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Thus
YOI 4
L+ (c2/ )2+ (1 — 20 /7)1
VoI
L+ (e2/7)S+ (1= a0 /y) T
The above inequality is equivalent to

]:]0:0'1_1+

> ol +

VoI

(5.7) (I=o)l > 14 (c/7)S + (1 — coo/y)I

On the other hand,

2
1" PS_3
S=5 =051+
O T (/) S s+ (1 — 20/7)S s
2
VP S
<oS
=T T @)+ (- ea0/7)S’
which is equivalent to
2
d
(5.8) (1-0)S @5

< .

Tl (/NI + (1 —c0/v)S

According to our discussion in the permanence section, under the conditions in the hypothesis
we have thats > I > 0. Then using inequalitie§ (3.7) arid (5.8) we get

(5.9) (1=0)(1+(c2/7)S + (1= co0/7)I) 2 7@
> (L=o)(1+ (/NI + (1 = 20/7)5).

Sincel < ¢ < 1, the above equation givés,o /y+ca/v—1)(S—1) > 0. Butea(1+0) /7 < 1
and thereford > S and the conclusion follows

6. COMPUTER SIMULATIONS

We complement the preceding analytical work with a set of numerical experiments designed
with one goal in mind. We show that the rational model is in general more stable than the
exponential one. This may be of interest for biologists, suggesting the rational model as a better
alternative for designing various policies interventions or obtaining a less oscillatory behavior
of the solutions.

Greenman et all [9] studied the systém(1.1) and found it to be too often periodic, stating “
much broader range of oscillatory behavior than seen in nature is theoretically pos3iie
show here that the rational model has a much more stable character, particularly when it comes
to periodicity and oscillatory behavior. For this reason, we propose the rational model as an
alternative that is more faithful to data observed in nature. In the previous sections, we also
detected analytically regions in the parameter space where the solutions are stable.

In order to verify that the rational model is more often stable, we consider the convergence
of the orbits by looking into two sub-cases: one for small values {fepresenting organisms
that have small numbers of offspring at a time, such as mammals) and another for larger values
of ® (representing organisms that have large numbers of offspring at a time, such as fish). This
yields four cases in all, and in each, we sampled one million random models from parameter
space and evaluated the stability of the model. Random models were generated by selecting
o, ¢1, andey, from a uniform distribution on0, 1] and selectingb from a normal distribution.

For small® we used: = 8,0 = 3, and for larged we usedu = 40,0 = 10. (In the rare case
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v /= 0.459,0 =~ 0.533, 0 ~ 174.743
Cc1 = O7 Co =~ 0.132

~ 7 0.831,0 ~ 0.035, ® ~ 175.165
C1 = 0, Cy = 0.384

11
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Figure 2: Time series diagrams for four rational models satisfying the hypotheses of Tieoyem 5.2, and therefore
converging to positive equilibria.

when a® < 0 was generated, it was discarded and a @eghosen from the same distribution
to replace it.)

The results are summarized in Taple|6.1. It becomes clear that for small valde<ha
difference between the rational and exponential models is small, but for large val@asisf
more significant. Whem values are chosen from a normal distribution with= 8,0 = 3
(95% of values therefore between 2 and 14), global asymptotic stability happens an additional
4.06% for rational models. When the distribution parameters are larger,40,0 = 10 (95%
of values therefore between 20 and 60), we notice a drastic difference. The rational model is
globally stable more tha®5% of the time, whereas both these values for the exponential model
are only about7%. Thus the greater stability of the rational models is more pronounced for
larger®.

To see this difference illustrated, compare the chaotic portions of the bifurcation diagram
of the exponential model in Figufé¢ 3 with the ordered bifurcation diagrams of rational models
shown in Figur¢ 4.

7. CONCLUSIONS

We have generalized an age-structured population model and analyzed the boundedness, per-
manence, and stability properties of the general form. Some of our results hold for any specific
model created from the general form (1.2). Global stability results were established for some
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Exponential models Rational models
small® large® |small® larged

Global asymptotic stability
Converge to extinction 18.78% | 8.84% | 18.78% | 8.84%
Converge to positive 75.46% | 48.01% | 79.52% | 86.33%
Total 94.24% | 56.85% | 98.30% | 95.17%

Table 6.1: Comparison of local and global asymptotic stability for exponential and rational models, separated into
small® (those chosen from a normal distribution wjth= 8, 0 = 3) and large® (1 = 40,0 = 10).

v~ 0.63,0 =0.5,¢; =0.5,c0=0

o) w w
ot o ut
| | |

Population (x,, + vy, + z,)
DO
S
|

15

10

0 I I I I I I I I I |
0 10 20 30 40 50 60 70 80 90 100

Figure 3: A bifurcation diagram of an exponential model, showing signs of chaotic behavior. The first 100 itera-
tions from the initial poin{(10, 20, 30) were discarded, and the next 70 plotted.

special cases. We have also suggested a rational form of the model and given evidence for why
it is more often stable, and therefore more biologically reasonable than the exponential model
in existence. The results herein build a good foundation for further study of other forms of the

general model.

8. APPENDIX

In this appendix we include some background material for convenient reference, including
notation, definitions, and theorems used earlier in this paper.
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v~ 0.331118,0 ~ 0.101124, v~ 0.301724, 0 ~ 0.074110,
c1 ~ 0.592498, ¢y ~ 0.119553 c1 ~ 0.490819, ¢y ~ 0.194580

Population(z,, + y, + 2,)
[\ [N} w
(=} ot o
| | |

—
ot
1

10

10 20 30 40 50 60 70 8 90 100
]

Figure 4: Two bifurcation diagrams of periodic rational models. In each, the first 100 iterations from the initial
point (10, 20, 30) were discarded, and the next 70 plotted.

We begin with a definition opermanence This is the mathematical term for population
survival [16]. The following two definitions are extracted from/[16] (p. 618). The nonnegative
cone (the set of points iR* with z,, > 0,y, > 0, z, > 0) is denoted byR':.

Definition 8.1. System|(4.]1) is said to bepermanenif there exist positive constants> 0
andD > 0 such that

d < liminf(x, + y, + 2,) < limsup(z, + yn + 2,) < D

n—0oo n—o0

for all solutions with initial conditions iiR3 — {(0,0,0)}

Definition 8.2. System|[(4.11) is said to baissipativeif there exists a positive constant > 0
such thatim sup(zx,, + v, + z,) < D for all solutions with nonegative initial conditions.

n—oo

The next theorem (which is Theorem 3 [n [17] or Theorem 3.2 in [16]) is used to prove
permanence in structured population models; we use it in Sgdtion 3.

Theorem 8.1([16,[17]). Suppose systefd.T))is continous and dissipative. Assume the matrix
Ay is irreducible andAxX € R3 — {(0,0,0)} for all X € R? — {(0,0,0)}. Systen{d-d)is
permanent ifAy has an eigenvalug with | A| > 1 (i.e the magnitude of the dominant eigenvalue
of Ay is greater than one).

An easily verifiable condition for a matrix to be irreducible is given in [24], p.6.
Theorem 8.2([24]). A is a nonnegative irreducible x n matrix if and only if(7,, + A)"~1 > 0.

Schur Cohn criterium (extracted from [18], p.212), is very useful in proving local asymptotic
stability.

Lemma 8.3([18], p.214) Necessary and sufficient conditions for all the rootsbf- a;\* +
a1 A + ag = 0 to lie in the open unit disc are

(|) ’CL2+CEO| < 1+CL1,
(||) |CL2 — 3@0‘ <3 —ay, and
(|||) a% + ay — agas < 1.
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The following result, due to Karakostas, is instrumental in proving global attractivity results.
We use it in Theorerm5.2.

Theorem 8.4([13]). Let{z,}>> , be a solution to the difference equation

n=—=k
Tny1 = f(xna s 7xn—k)‘

Set/ = liminf z,, andS = lim sup z,,, and suppose that S € J. Let L, be a limit point of the

n—oo

sequencédz, }°° . Then the following statements are true.

(1) There exists a solutiofil.,, }°°__ for the difference equation, called a full limiting se-
quence ofz, }>° ., suchthatl, = Ly, and such thatforeveryf € {...,—1,0,1,...},

Ly is alimit point of{x,, }°° , . In particular,
I<Ly<S forall Ne{ .  —1,01,...}.
(2) For everyip € {...,—1,0,1,...}, there exists a subsequenge,, }>°, of {z,}>>

such that
Ly =limax, y forevery N >iy.

The following theorem is helpful in proving global asymptotic stability of the extinction
equilibrium.

Theorem 8.5([11]). Consider the difference equation

k
Tnt1 = E rnfiﬂ(rna Tpn—1,--. T'nfk’)a
=0

n =0, 1,...with non-negative initial conditions, and assume further that
(1) k € {0,1,...},
(2) Fo, Fy,... Fy € C([0,00)F* — [0, 1)),
(3) Fu, Fi, ... F}, are non-increasing in each argument;
(4) S8 Fi(ro,m1, ..., ) < 1, forall (ro, 71, ...73) € (0,00)¥!, and
(5) Fo(r,r,...,r) > 0forall r > 0.

Thenr = 0 is globally asymptotically stable.

The next theorem is given as Theorem 2.in [14] and it turns out to be useful in proving global
attractivity results, especially for all positive solutions of the difference equation of the form

(8.1) Znt1 = Azn + F(zn_m),

where0 < A < 1, m is a positive integer, anfl' is a nonnegative real valued function defined
onR,.

Theorem 8.6 ([14], p. 1076) Assume that’ = fg where f is continous, positive and de-
creasing function ofR, andg is a continuous and increasing function & with g(0) > 0
andg(y) > 0 for y > 0. Assume also that the functiorfsand ¢ satisfy (i) and (ii), where
d = (1—=X)/f(0) andG is the generalized inverse 6f, namelyG(z) = minw > 0 : g(w) > 2
for = > 0. Moreover, suppose that the algebraic equatién= AK + F(K) has a unique
positive root . Finally, suppose thaf and g are differentiable or{0, c0), f’ is increasing on
(0,00), ¢ is decreasing in0, co), and
1—A
FWg' W) = FWe) <

forall y € (0, K]. Then any positive solutiaf,,),>_n, of the difference equatiof8.1) satisfies
hmn—»oo Zn = K.
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