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1. INTRODUCTION

The theory of singular perturbation is not a settled direction in mathematics and the path of
its development is a dramatic one. In the intensive development of science and technology,
many practical problems, such as the mathematical boundary layer theory or approximation
of solution of various problems described by differential equations involving; large or small
parameters, become more complex. In some problems, the perturbations are operative over a
very narrow region across which the dependent variable undergoes very rapid changes. These
narrow regions frequently adjoin the boundaries of the domain of interest, owing to the fact that
the small parameter multiplies the highest derivative. Consequently, they are usually referred
to as boundary layers in Fluid Mechanics, edge layers in Solid Mechanics, skin layers in Elec-
trical Applications, shock layers in Fluid and Solid Mechanics, transition points in Quantum
Mechanics and surfaces in Mathematics.

In particular, boundary-value problems(BVPs) of the form

εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ Ω ≡ (0, 1),

−u′(0) = A, u(1) + εu′(1) = B,

and

εu′′(x) + a(x)u′(x) = b(x, y), x ∈ Ω,

−u′(0) = A, u(1) + εu′(1) = B,

arise in the study of adiabatic tubular chemical flow reactors with axial diffusion [1]. In [1],
O’Malley obtained asymptotic solutions of the BVPs arising in chemical reactor theory. It
may be noted that the asymptotic solution constructed in [1] converge uniformly to the so-
lution of the reduced problem of the given problem throughout the interval [0, 1] while the
derivatives generally converge non-uniformly as ε → 0 either at x = 0(a(x) ≥ α > 0) or
at x = 1(a(x) ≤ α < 0). In [6]-[8], this type of problems are considered and computational
methods are suggested.

Various methods for the numerical solution of problem involving singularly perturbed second
order ordinary differential equations with non - smooth data (discontinuous source term / con-
vection coefficient) using special piecewise uniform meshes ( Shishkin mesh and Bakhvalov
mesh) have been considered widely in the literature (see [1] - [16] and references therein).
While many finite difference methods have been proposed to approximate such solutions, there
has been much less research into the finite-difference approximation of their derivatives, even
though such approximations are desirable in certain applications. It should be noted that for
convection-diffusion problems, the attainment of high accuracy in a computed solution does
not automatically lead to good approximation of derivatives of the true solution.

In [2], for singularly perturbed convection-diffusion problems with continuous convection
coefficient and source term estimates for numerical derivatives have been derived. Here the
scaled derivative is taken on whole domain where as Natalia Kopteva and Martin Stynes [4] have
obtained approximation of derivatives with scaling in the boundary layer region and without
scaling in the outer region. It may be noted that the source term and convection coefficient
are smooth for the problem considered in [2, 4]. R. Mythili Priyadharshini and N. Ramanujam
[15], have determined estimate for the scaled derivative for a singularly perturbed reaction-
convection-diffusion problem with two parameters.

In [13], the authors have obtained bounds on the errors in approximations to the scaled deriva-
tive in the whole domain in the case of discontinuous source term. R. Mythili Priyadharshini and
N. Ramanujam [14], have determined estimate for the scaled derivative in the boundary layer
region and non-scaled derivative in the outer region for the boundary value problems with Robin
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type boundary conditions and discontinuous convection coefficient and source term. Zhongdi
Cen [9] has suggested a hybrid finite difference scheme for singularly perturbed convection -
diffusion problem with discontinuous convection coefficient. As far as author’s knowledge goes
no work has been reported in the literature for finding approximation to scaled derivatives of the
solution for problems having discontinuous convection coefficient for both upwind and hybrid
finite difference schemes on Shishkin mesh.

Motivated by the works given in [7] and [10], the present paper consider the above singu-
larly perturbed second order ordinary differential equation with a discontinuous convection co-
efficient and source term. In case of smooth data, the solution of the problem considered above
exhibits a weak boundary layer. In case of non-smooth data, the solution and its derivatives
exhibits a strong interior layers. Thus the analytical techniques developed in [10] are extended
in a natural way to the problems considered in this paper. Since derivatives are related to flux or
drag in physical and chemical applications, we obtain parameter-uniform approximations not
only to the solution but also to its derivatives. Thus in this paper, motivated by the works of
[4], bounds on the errors in approximating the first derivative of the solution in the fine mesh as
well as in the coarse mesh are obtained separately.

Note: Through out this paper, C denotes a generic constant (sometimes subscripted) is in-
dependent of the singular perturbation parameter ε and the dimension of the discrete prob-
lem N. Note that C can take different values at different place, even in the same argument.
Let y : D −→ R, D ⊂ R. The appropriate norm for studying the convergence of numer-
ical solution to the exact solution of a singular perturbation problem is the supremum norm
‖ y ‖= sup

x∈D
|y(x)|, [2, 3].

2. CONTINUOUS PROBLEM

Consider the singularly perturbed second order ordinary differential equation with a discon-
tinuous convection term on the unit interval Ω = (0, 1).

(Pε) :



Find u ∈ Y ≡ C1(Ω) ∩ C2(Ω− ∪ Ω+) such that
Lu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ Ω− ∪ Ω+

B0u(0) ≡ −u′(0) = A, B1u(1) ≡ u(1) + εu′(1) = B,

a(x) ≤ −α1 < 0 on [0, d], a(x) ≥ α2 > 0 on [d, 1],

b(x) ≥ β > 0 on [0, 1], α1 < β,

|[a](d)| ≤ C, |[f ](d)| ≤ C,

(2.1)

where 0 < ε � 1, d ∈ Ω, Ω− = (0, d) and Ω+ = (d, 1). For the functions a(x) and f(x)
we assume they are sufficiently smooth on Ω− ∪ Ω+. Further it is assumed that f(x) and its
derivatives have right and left limits at x = d. We denote the jump at d in any function with
[w](d) = w(d+)− w(d−).

In the following, the maximum principle for (2.1) is established. Then using this principle, a
stability result is derived.

Theorem 2.1. Suppose that a function u ∈ Y satisfies B0u(0) ≥ 0, B1u(1) ≥ 0, Lu(x) ≤
0, for x ∈ Ω− ∪ Ω+ and [u′](d) ≤ 0. Then u(x) ≥ 0, for all x ∈ Ω.

Proof. Using the method adopted in [11, 12], and the test function s(x) as

s(x) =

{
1/2− x/8 + d/8, x ∈ Ω− ∪ {0, d}
1/2− x/4 + d/4, x ∈ Ω+ ∪ {1},

the present theorem can be proved.
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Lemma 2.2. If u ∈ Y then

‖ u ‖≤ C max{|B0u(0)|, |B1u(1)|, ‖ Lu ‖Ω−∪Ω+}.

Proof. Using appropriate barrier functions and applying Theorem 2.1, the present lemma can
be proved.

The sharper bounds on the derivatives of the solution are obtained by decomposing the so-
lution as u = v + w, where v = v0 + εv1. Here v0 and v1 are defined respectively to be the
solutions of the problems

a(x)v′0(x)− b(x)v0(x) = f(x), x ∈ Ω− ∪ Ω+,

−v′0(0) = A, v0(1) = B

and

a(x)v′1(x)− b(x)v1(x) = −v′′0 , x ∈ Ω− ∪ Ω+,

−v′1(0) = 0, v1(1) + εv′1(1) = −v′0(1).

Thus, v is define by

Lv(x) = f(x), x ∈ Ω− ∪ Ω+,(2.2)
−v′(0) = A, v(d−) = v0(d−) + εv1(d−),(2.3)

v(d+) = v0(d+) + εv1(d+), v(1) + εv′(1) = B.(2.4)

Now, we define the layer component of the decomposition as follows :

Lw(x) = 0, x ∈ Ω− ∪ Ω+,(2.5)
−w′(0) = −u′(0) + v′(0), [w](d) = −[v](d),(2.6)

[w′](d) = −[v′](d), w(1) + εw′(1) = 0.(2.7)

Hence w(d−) = u(d−)− v(d−) and w(d+) = u(d+)− v(d+).

Lemma 2.3. For each integer k, satisfying 0 ≤ k ≤ 3, the solutions v and w of (2.2-2.4) and
(2.5-2.7) respectively satisfy the following bounds

‖ v ‖≤ C, ‖ v(k) ‖Ω−∪Ω+≤ C(1 + ε2−k),

|[v](d)|, |[v′](d)|, |[v′′](d)| ≤ C

and

|w(k)(x)| ≤

{
Cε1−ke−(d−x)α1/ε, x ∈ Ω−,

Cε1−ke−(x−d)α2/ε, x ∈ Ω+.

Proof. Using the technique adopted in [2] and applying the argument separately on each of the
subintervals Ω− and Ω+, the present theorem can be proved.

3. DISCRETE PROBLEM

A fitted mesh method for the Problem (2.1) is now introduced. On Ω a piecewise uniform
mesh of N mesh interval is constructed as follows. The domain Ω is subdivided into the four
subintervals [0, d − σ1] ∪ [d − σ1, d] ∪ [d, d + σ2] ∪ [d + σ2, 1] for some σ1, σ2 that satisfy
0 < σ1 ≤ d

2
, 0 < σ2 ≤ 1−d

2
. On each subinterval a uniform mesh with N/4 mesh-intervals is

placed. The interior points of the mesh are denoted by ΩN = {xi : 1 ≤ i ≤ N
2
−1}∪{xi : N

2
+

1 ≤ i ≤ N−1}. Clearly xN/2 = d and Ω
N

= {xi}N0 .We now introduce the following notations
for the four mesh widths h1 = 4(d−σ1)

N
, h2 = 4σ1

N
, h3 = 4σ2

N
and h4 = 4(1−d−σ2)

N
. It is
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fitted to the singular perturbation problem (2.1) by choosing σ1 and σ2 to be the following
functions of N and ε

σ1 = min{d
2
,
2ε

α
lnN} and σ2 = min{1− d

2
,
2ε

α
lnN},

where α = min{α1, α2}. Then the fitted mesh method for the problem (2.1) is

(3.1) PN
ε


LNU(xi) ≡ εδ2U(xi) + a(xi)DU(xi)− b(xi)U(xi) = f(xi), xi ∈ ΩN

B0U(x0) ≡ −D+U(x0) = A, BNU(xN) ≡ U(xN) + εD−U(xN) = B.

D−U(xN/2) = D+U(xN/2)

where δ2Zi = D+Zi−D−Zi

(xi+1−xi−1)/2
and DZi =

{
D−Zi, i ≤ N/2

D+Zi, i > N/2,
where D+ and D− are the stan-

dard forward and backward finite difference operators, respectively. Analogous to the continu-
ous results stated in Theorem 2.1 and Lemma 2.2 one can prove the following results.

Theorem 3.1. Suppose that a mesh function Z(xi) satisfiesB0Z(x0) ≥ 0, BNZ(xN ) ≥ 0, LNZ(xi) ≤
0, xi ∈ ΩN and D+Z(d)−D−Z(d) ≤ 0. Then Z(xi) ≥ 0 for all xi ∈ Ω

N
.

Theorem 3.2. If U(xi) is the solution of the problem (3.1), then

|U(d)| ≤ C.

In order to obtain sharper error bound on the discrete derivative, we decompose the discrete
solution as U = V +W, where V = VL + VR and W = WL +WR.

Define the mesh functions VL and VR to be the solutions of the following discrete problems

LNVL(xi) = f(xi), for i = 1, ..., N/2− 1,(3.2)
−D+VL(x0) = −v′(0), VL(xN/2) = v(d−)(3.3)

and

LNVR(xi) = f(xi), for i = N/2 + 1, ..., N − 1,(3.4)
VR(xN/2) = v(d+), VR(xN) + εD−VR(xN) = v(1) + εv′(1).(3.5)

Define the mesh functions WL and WR to be the solutions of the following system of finite
difference equations

LNWL(xi) = 0 for i = 1, ..., N/2− 1,(3.6)
LNWR(xi) = 0 for i = N/2 + 1, ..., N − 1,(3.7)
−D+WL(x0) = 0, WR(xN) + εD−WR(xN) = 0,(3.8)

WR(xN/2) + VR(xN/2) = WL(xN/2) + VL(xN/2),(3.9)

D+WR(xN/2) +D+VR(xN/2) = D−WL(xN/2) +D−VL(xN/2).(3.10)

Now, we can define U(xi) to be

(3.11) U(xi) = V (xi) +W (xi) =


VL(xi) +WL(xi), for xi ∈ {0} ∪ (ΩN ∩ Ω−),

VL(xi) +WL(xi) = VR(xi) +WR(xi), for xi = d,

VR(xi) +WR(xi), for xi ∈ (ΩN ∩ Ω+) ∪ {1}.

Lemma 3.3. At each mesh points xi ∈ Ω
N
, the smooth component of the error satisfies the

estimate

|(V − v)(xi)| ≤

{
C(d− xi)N−1, for i = 0, ..., N/2

C(3− xi)N−1, for i = N/2, ..., N.
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Proof. We have the inequalities

|B0(V − v)(x0)| = | −D+(V − v)(x0)| ≤ C(xi+1 − xi) ‖ v(2) ‖
≤ CN−1

and

|BN(V − v)(xN)| = |(V − v)(xN) + εD−(V − v)(xN)| ≤ Cε(xi − xi−1) ‖ v(2) ‖
≤ CN−1.

By standard local truncation error estimate and Lemma 2.3, we have

|LN(V − v)(xi)| ≤ CN−1.

Using the two mesh functions Ψ±(xi) = φ(xi)± (V − v)(xi), where

φ(xi) =

{
C(d− xi)N−1, for i = 0, ..., N/2

C(3− xi)N−1, for i = N/2, ..., N,

we have,
B0Ψ±(x0) = −D+φ(x0)∓D+(V − v)(x0) ≥ 0,

LNΨ±(xi) = a(xi)D
−φ(xi)− b(xi)C(d− xi)N−1 ± LN(V − v)(xi), for i = 1, ...,

N

2
− 1

≤ α1CN
−1 − βC(d− xi)N−1 ± CN−1,

< 0.

Similarly, LNΨ±(xi) ≤ 0, for i = N/2 + 1, ..., N − 1,

BNΨ±(xN) = φ(xN) + εD−φ(xN)±BN(V − v)(xN) > 0

and
D+Ψ±(xN/2)−D−Ψ±(xN/2) = D+φ(xN/2)−D−φ(xN/2) = 0.

Applying Theorem 3.1, we get Ψ±(xi) ≥ 0,∀xi ∈ Ω
N
, which completes the prove.

Theorem 3.4. Let w be the solution of (2.5-2.7) and W the corresponding numerical solution
of (3.6-3.10). Then at each mesh point xi ∈ Ω

N
, we have

|(W − w)(xi)| ≤ CN−1 lnN.

Proof. First we consider the case σ1 = 2ε
α

lnN and σ2 = 2ε
α

lnN. Since |U(xN/2)| ≤ C,
we have |WL(xN/2)| ≤ C and |WR(xN/2)| ≤ C. Using the arguments in [5], with the above
transition parameters for i ≤ N/4, we have

|WL(xi)| ≤ CN−2

and

(3.12) |(WL − w)(xi)| ≤ |WL(xi)|+ |w(xi)| ≤ CN−2.

Similarly for i ≥ 3N/4, we have
|WR(xi)| ≤ CN−2

and

(3.13) |(WR − w)(xi)| ≤ |WR(xi)|+ |w(xi)| ≤ CN−2.

Therefore, it follows that

|(WL − w)(xN/4)| ≤ CN−2 and |(WR − w)(x3N/4)| ≤ CN−2.
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We have for i = N/4 + 1, ..., N/2− 1,

|(LNWL − Lw)(xi)| ≤ εh2|w(3)(xi)|+ h2|w(2)(xi)| ≤
Ch2

ε
.

Similarly for i = N/2 + 1, ...3N/4− 1, we obtain

|(LNWR − Lw)(xi)| ≤ εh3|w(3)(xi)|+ h3|w(2)(xi)| ≤
Ch3

ε
.

At the mesh point xN/2 = d, let h2 and h3 be the mesh interval sizes on either side of xN/2 and
h = max{h2, h3}. Thus

|(D+ −D−)(W − w)(xN/2)| = |(D+ −D−)w(xN/2)|

≤ |(D+ − d

dx
)w(xN/2)|+ |(D− − d

dx
)w(xN/2)|

≤ 1

2
h3|w(2)(xi)|+

1

2
h2|w(2)(xi)|

≤ Ch

2ε
.

Consider the mesh functions

Ψ±(xi) =
Ch

ε

{
d− xi, xi ∈ ΩN ∩ (d− σ1, d)

3(d+ σ2)− xi, xi ∈ ΩN ∩ (d, d+ σ2).

Applying the discrete maximum principle to Ψ±(xi) ± (W − w)(xi) over the interval [d −
σ1, d+ σ2], we get the required result. Thus,

|(W − w)(xi)| ≤
Ch

ε
, for i = 0, ..., N,

≤ CN−1 lnN.

Now we consider the case σ1 = d
2

and σ2 = 1−d
2
. In this case ε−1 ≤ C lnN. We have the

inequalities

B0(W − w)(x0) = | −D+(W − w)(x0)|
≤ C(xi+1 − xi)|w′′(xi)|
≤ CN−1 lnN,

BN(W − w)(xN) = |(W − w)(xN) + εD−(W − w)(xN)|
≤ Cε(xi − xi−1)|w′′(xi)|
≤ CN−1,

|LN(W − w)(xi)| ≤ CN−1(|w(3)(xi)|+ |w(2)(xi)|), xi ∈ ΩN ,

≤ Cε−1N−1

≤ CN−1 lnN

and

|(D+ −D−)(W − w)(xN/2)| ≤ Cε−1N−1

≤ CN−1 lnN.

Consider the mesh functions

Ψ±(xi) = CN−1 lnN

{
d− xi, xi ∈ Ω

N ∩ [0, d)

3− xi, xi ∈ Ω
N ∩ (d, 1].
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Applying Theorem 3.1 to Ψ±(xi)± (W − w)(xi), over the entire domain, we get

|(W − w)(xi)| ≤ CN−1 lnN

which is the required result.

Theorem 3.5. Let u be the solution of Problem (2.1) and U be the solution of the corresponding
discrete Problem (3.1). Then we have

sup
0<ε≤1

‖ U − u ‖≤ CN−1 lnN.

Proof. Proof follows immediately, if one applies the above Lemmas 3.3 and 3.4 to U − u =
(V − v) + (W − w).

Remark 3.1. Following the procedure adopted in [2] and applying it separately on the intervals
[0, d] and [d, 1], one can extend the above result to obtain the global error bound

sup
0<ε≤1

‖ U − u ‖≤ CN−1 lnN,

where U is the piecewise linear interpolant of U on Ω.

4. ANALYSIS ON DERIVATIVE ESTIMATE

In this section, we give the ε−uniform error estimate between the scaled derivative of the
continuous solution and the corresponding numerical solution in the fine mesh region. Further,
in the coarse mesh, an estimate is obtained without scaling the derivative.

We note that the errors
e(xi) ≡ U(xi)− u(xi),

satisfy the equations

[εδ2 + a(xi)D
+]e(xi) = [b(xi)e(xi)] + truncation error,

where, by Theorem 3.5, [b(xi)e(xi)] = O(N−1 lnN). In the proofs of the following lemmas
and theorems, we use the above equations. Hence the analysis carried out in [2, §3.5] can be
applied immediately with a slight modifications where ever necessary. Therefore, proofs for
some lemmas are omitted; for some of the them short proves are given.

Lemma 4.1. At each mesh point xi ∈ ΩN and all x ∈ Ω̄i = [xi−1, xi], we have

|D−u(xi)− u′(x)| ≤ CN−1, for xi ≤ σ1,

|ε(D−u(xi)− u′(x))| ≤ CN−1 lnN, for xi ∈ (σ1, d),

|ε(D+u(xi)− u′(x))| ≤ CN−1 lnN, for xi ∈ (d, 1− σ2),

|D+u(xi)− u′(x)| ≤ CN−1, for xi ≥ 1− σ2

where u(x) is the solution of (2.1).

Lemma 4.2. At each mesh point xi ∈ ΩN ,

max
0<i≤N/4

|D−(VL − v)(xi)| ≤ CN−1,

max
N/4<i≤N/2

|ε(D−(VL − v)(xi))| ≤ CN−1,

max
N/2<i≤3N/4

|ε(D+(VR − v)(xi))| ≤ CN−1,

max
3N/4<i≤N

|D+(VR − v)(xi)| ≤ CN−1,

where v and V N
L , V

N
R are the solutions of (2.2-2.4) and (3.2-3.5) respectively.
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Proof. We denote the error and the local truncation error respectively at each mesh point by

e(xi) = V (xi)− v(xi) and τ(xi) = LNe(xi).

First, we prove that for all i, N/2 ≤ i ≤ 3N/4− 1, |εD+ei| ≤ CN−1. We have

(4.1) |εD+e(x3N/4−1)| ≤ CεN−1.

Now we write τ(xi) = LNe(xi) in the form,
(4.2)

εD+e(xi)−εD+e(xi−1)+
1

2
(xi+1−xi−1)(a(xi)D

+e(xi)−b(xi)e(xi)) =
1

2
(xi+1−xi−1)τ(xi).

Summing and rearranging for each i, N/2 ≤ i ≤ 3N/4− 2, we get

|εD+e(xi)| ≤ |εD+e(x3N/4−1)|+ 1

2

3N/4−1∑
j=i

(xj+1 − xj−1)(|τ(xj)|+ b(xj)|e(xj)|)

+ |1
2

3N/4−1∑
j=i

(xj+1 − xj−1)a(xj)D
+e(xj)|.

Using the telescopic effect of the last term, |e(xi)| ≤ CN−1 and ‖ a′ ‖≤ C, we get |εD+(VR −
v)(xi)| ≤ CN−1.

Similarly, one can obtain |εD−(VL − v)(xi)| ≤ CN−1, for N/4 < i ≤ N/2.
We can rewrite (4.2) in the form

(1 + ρj)D
+e(xj) = D+e(xj−1) +

ρj
a(xj)

(τ(xj) + b(xj)e(xj)),(4.3)

where ρj =
a(xj)(xj+1−xj−1)

ε
. For i ≥ 3N/4 use (4.3) to complete the proof. Similarly for

i ≤ N/4 we get the required result.

Lemma 4.3. Let w and W be the solutions of (2.5-2.7) and (3.6-3.10) respectively. Then, we
have

max
0<i≤N/4

|D−(WL − w)(xi)| ≤ CN−1,

max
N/4<i<N/2

|ε(D−(WL − w)(xi))| ≤ CN−1 lnN

and

max
N/2<i<3N/2

|ε(D+(WR − w)(xi))| ≤ CN−1 lnN,

max
3N/2≤i<N

|D+(WR − w)(xi)| ≤ CN−1.

Proof. Suppose σ1 = 2ε
α

lnN and σ2 = 2ε
α

lnN we have, |WL(xi)| ≤ CN−2, for xi ≤
σ1, |WR(xi)| ≤ CN−2, for xi ≥ 1− σ2 and |w(xi)| ≤ CN−2. This implies

max
0<i≤N/4

|D−(WL − w)(xi)| ≤ CN−1,

max
3N/2≤i<N

|D+(WR − w)(xi)| ≤ CN−1.

For xi = 1− σ2, we write LNWR(1− σ2) = 0 in the form
εD+WR(x3N/4−1) = (ε− a(1− σ2)(h3 + h4))D+WR(1− σ2)− b(1− σ2)(h3 + h4)WR(1− σ2)

≤ CN−1.
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Similarly one can obtain

εD−WL(xN/4+1) = (ε− a(σ1)(h1 + h2))D−WL(σ1)− b(σ1)(h1 + h2)WL(σ1)

≤ CN−1.

Let ê(xi) = (ŴR− ŵ)(xi) and τ̂(xi) = LN ê(xi). Then on the interval [d, 1− σ2), we write
the equation τ̂(xi) = LN ê(xi) in the form

εD+ê(xj)− εD+ê(xj−1) + a(xj)(ê(xj+1)− ê(xj))− b(xj)h3ê(xj) = h3τ̂(xj).

Summing from xj = xi > d to xj = σ2 − h3 and rearranging we obtain

εD+ê(xi) = εD+ê(x3N/4−1) + a(x3N/4−1)ê(x3N/4)− a(xi−1)ê(xi)−
3N/4−1∑
j=i

(a(xj)− a(xj−1))ê(xj)− εh3

3N/4−1∑
j=i

[b(xj)ê(xj) + τ̂(xj)]

which yields the bound

εD+ê(xj) ≤ CN−1 lnN + Ch3σ2ε
−1N−1

3N/4−1∑
j=i

e−(j−1)α2h1/ε

≤ CN−1 lnN.

Finally over the range(σ1, d], we repeat the above procedure to complete the proof.

Theorem 4.4. Let u be the solution of (2.1) and U the corresponding numerical solution of
(3.11). Then for x ∈ Ωi = [xi, xi+1], we have

|(D−U(xi)− u′(x))| ≤ CN−1, 0 < i ≤ N/4

|ε(D−U(xi)− u′(x))| ≤ CN−1 lnN, N/4 + 1 < i ≤ N/2

and

|ε(D+U(xi)− u′(x))| ≤ CN−1 lnN, N/2 ≤ i ≤ 3N/4− 1,

|(D+U(xi)− u′(x))| ≤ CN−1, 3N/4 ≤ i ≤ N − 1.

Proof. Following the method of proof adopted in [2, Theorem 3.17], using the Lemmas 4.2 and
4.3 we get the required result.

Remark 4.1. Since Ū is a linear function in the open interval Ωi = (xi, xi+1) for each i, 0 ≤
i ≤ N − 1, we have Ū ′(x) = D+U(xi) for all x ∈ Ωi. It then follows, from Theorem 4.4,
that Ū ′ is an ε−uniform approximation to u′(x) for each x ∈ (xi, xi+1). We now show that this
approximation can be extended in a natural way to the entire domain Ω.We define the piecewise
constant function D̄+U on [0, 1) by

D̄+U(x) = D+U(xi), for x ∈ [xi, xi+1), i = 0, ..., N − 1

and at the point x = 1 by

D̄+U(1) = D+U(xN−1).

Then, from the above theorem, D̄+U is an ε−uniform global approximation to u′ in the sense
that

sup
0<ε≤1

‖ ε(D̄+U − u′) ‖Ω≤ CN−1 lnN.
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5. NUMERICAL RESULTS

In this section, an example is given to illustrate the numerical method discussed in this paper.
εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ (0, 1),

− u′(0) = 1, u(1) + εu′(1) = 0,
(5.1)

where,

a(x) =

{
x− 2, x ≤ 0.5,

x+ 1, x ≥ 0.5,
b(x) = 3, 0 < x < 1, f(x) =

{
− exp(x), x ≤ 0.5,

x− 3, x ≥ 0.5.

For all integers N, satisfying N, 2N ∈ RN = [128, 256, 512, 1024] and for a finite set of values
ε ∈ Rε = [2−19, 2−2], we compute the maximum pointwise two-mesh differences

EN
ε =‖ UN − U2N ‖ΩN ,

where UN and U
2N

denote respectively, the numerical solutions obtained usingN and 2N mesh
intervals. From these values the ε−uniform maximum pointwise two-mesh difference EN =
max
ε∈Rε

EN
ε are formed for each available value of N satisfying N, 2N ∈ RN . Approximations of

ε−uniform order of local convergence are defined, for all N, 4N ∈ RN , by

pN = log2(
EN

E2N
).

We compute the maximum pointwise two-mesh difference for the first derivative of the solution

by DN
ε =


max |(D−UN − D̄−U2N)(xi)|, for 1 ≤ i ≤ N/4

max |ε(D−UN − D̄−U2N)(xi)|, for N/4 + 1 ≤ i ≤ N/2

max |ε(D+UN − D̄+U2N)(xi)|, for N/2 + 1 ≤ i ≤ 3N/4− 1

max |(D+UN − D̄+U2N)(xi)|, for 3N/4 ≤ i ≤ N − 1.

From these values the ε−uniform maximum pointwise two-mesh difference DN = max
ε∈Rε

DN
ε

and the ε−uniform order of local convergence dpN = log2( D
N

D2N ) are formed for each available
value of N satisfying N, 2N ∈ RN . In Fig 1 and Fig 2, the solution and its first scaled deriv-
ative at the mesh points for the problem (5.1) are plotted as function of N and ε respectively.
Table 5.1, presents the values of EN and pN for the solution u. In the case of derivative, we
present the values of DN and dpN in Table 5.2.

Table 5.1: Values of EN and pN for the solution u.

Number of mesh points N
128 256 512 1024

EN 7.7516e-3 3.8910e-3 1.9493e-3 9.7561e-4
pN 9.9435e-1 9.9718e-1 9.9858e-1 -
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Table 5.2: Values of DN and dpN for the derivative of the solution u on (0, xN/4], (xN/4, d], [d, x3N/4) and
[x3N/4, 1) respectively.

Number of mesh points N
128 256 512 1024

DN 1.1667e-2 5.8445e-3 2.9248e-3 1.4630e-3
dpN 9.9728e-1 9.9874e-1 9.9941e-1 -
DN 1.1840e-2 9.8403e-3 7.5267e-3 5.1422e-3
dpN 2.6689e-1 3.8668e-1 5.4963e-1 -
DN 1.2148e-2 9.9441e-3 7.5538e-3 5.1514e-3
dpN 2.8881e-1 3.9664e-1 5.5224e-1 -
DN 1.6538e-3 9.5453e-4 5.7041e-4 3.2504e-4
dpN 7.9292e-1 7.4279e-1 8.1138e-1 -

Figure 1: Graphs of the numerical solution of problem 5.1 for ε ∈ [2−8, 2−5] with N = 256.
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Figure 2: Graphs of the numerical derivative of the solution of problem (5.1) for ε ∈ [2−6, 2−3] with N = 256.
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