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1. INTRODUCTION

The main goal of this paper is to study a class of vector optimization problems in Banach
spaces for essentially nonlinear operator equations with additional control and state constraints.
This topic, in the scalarized form, has been widely studied by many authors. We mainly men-
tion Barbu [5], Fattorini [10], Fursikov [12], Ivanenko & Mel’nik [14], Ioffe & Tichomirov
[13], Lions [23], Mel’nik & Zgurovsky [33] and the references cited therein. However, vector
optimization problems are usually much harder than single-objective optimization problems. A
systematic study of such problems in Banach spaces with different applications in engineering
and game theory has been presented in an overwhelming amount of literature (see, for instance,
Aubin & Ekeland [2], Chen & Huang & Yang Jahn [7], [16], Luc [24]).

An important aspect in vector optimization is to find conditions which guarantee the existence
of so-called efficient solutions. The following result is well-known (see, for instance, [32]):
if the image of admissible solutions in an objective Banach space is compact then the set of
efficient solutions is nonempty. Since compactness is a very restrictive assumption, at least
in an infinite-dimensional setting, many authors have tried to weaken it. The typical way is
to endow the objective mapping with some lower semicontinuity properties. In the vector-
valued case there are several possible ways to extend the “scalar” notion of lower semicontinuity
(see, for example, [1, 3, 4, 6, 8, 17, 24, 28]). We could mention the lower semicontinuity,
quasi lower semicontinuity, and order lower semicontinuity. However, as the following example
indicates, these properties for the objective functions may fail at an efficient solution, even
for simple vector optimization problems with a nonempty set of solutions. Indeed, let Ξ ={
x ∈ L2(Ω) : ‖x‖L2(Ω) ≤ 1

}
, and Λ = R2

+ be the ordering cone in the objective space R2. Let
the vector-valued mapping I : Ξ→ R2 be defined by

I(x) =

[
1 + ‖x‖L2(Ω)

2 + ‖x‖L2(Ω)

]
if x 6= 0, I(0) =

[
2

1

]
.

Then, it is easy to see that x = 0 is an efficient solution to the vector optimization problem
Λ−min I(x), x ∈ Ξ. However, as we will see later, the quasi lower semicontinuity property for
the mapping I does not hold at x = 0.

Our prime interest is to study vector optimization problems in the case when a control object
is described by nonlinear operator equations, an objective function is a vector-valued mapping
with a weakened property of lower semicontinuity, and the control and state constraints take
the form of some operator inequalities and inclusions in Banach spaces. We consider the case
when the objective mappings take values in a real Banach space Z partially ordered by a closed
convex pointed cone Λ. Usually, the typical assumption in many papers is that the interior of the
ordering cone Λ is non-empty. However, in many interesting and important cases, this property
does not hold. For instance, in the case when Z = Lp(Ω), where Ω is an open bounded subset
of Rn, p ∈ [1,+∞), and Λ is the natural cone of positive elements of Z, we have Int Λ = ∅. So,
we make no additional assumptions on the cone Λ and its interior. We also extend the concept of
lower semicontinuity to vector-valued mappings and discuss sufficient conditions of solvability
of the corresponding vector optimization problems.

Let us describe the contents of the paper. Section 2 contains the statement of the vector
optimization problem. In Section 3, we detail the ingredients needed in this work. We also
introduce the notion of the Λ-lower sequential limit of vector-valued mappings, give the defini-
tion of Λw-efficient solutions to the corresponding vector optimization problems, and illustrate
them with some examples. Section 4 includes the main assumptions about the control object.
We introduce the so-called Λw-lower semicontinuity property for vector-valued mappings in
Banach spaces with respect to the weak topology of the objective space, which can be viewed
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as an extension of the ones mentioned above and study its properties. In Section 5, we prove
the main existence theorem of the Λw-efficient solutions for the vector optimization problem
without any scalarization process. Instead of this, we propose to involve a penalized vector
optimization problem which is much easier to manage, and to study its Λw-efficient solutions in
the limit as the penalization parameter tends to zero. In Section 6 we discuss the scalarization
of vector optimization problems with Λw-lower semicontinuous mappings, using the “simplest”
method of the “weighted sum”. We show that in this case one of the fundamental requirements
on the scalarizing vector optimization problems (according to Sawaragi et al. [29]): solutions
to the scalarized optimization problem must also be efficient solutions to the original vector
optimization problem, may not hold. In view of this, Section 7 aims to extend the notion of Λw-
efficient solutions to the so-called generalized Λw-solutions of the vector optimization problem.
We study their main properties and derive sufficient conditions when the generalized solutions
can be obtained via the penalized optimal control problems. Finally, Section 8 deals with the ap-
plication of the main results to study a control object governed by nonlinear partial differential
equations with inequality state and control constraints.

2. PROBLEM SETTING AND NOTATION

Let Y be a reflexive Banach space, and Y ∗ be its dual. Let Z be a Banach space partially
ordered by a closed convex pointed reproducing cone Λ ⊂ Z. No assumption is required on the
interior of Λ. Let U be a control space which is assumed to be dual to some separable Banach
space V (that is U = V ∗). Let U∂ be a subset of admissible controls in U , and let K be a fixed
subset of Y . The vector optimization problem we consider can be described as follows:

(2.1) Minimize I(u, y) ( with respect to the cone Λ)

subject to

A(u, y) = f,(2.2)

F (u, y) ≥Λ 0,(2.3)
y ∈ K, u ∈ U∂ ⊂ U,(2.4)

where A : U × Y → Y ∗, F : U × Y → Z are (nonlinear) mappings, I : U × Y → Z is an
objective function, and f is a given element of Y ∗.

Definition 2.1. We say that the problem (2.1)–(2.4) is regular if for every f ∈ Y ∗ there exists
(u, y) ∈ U × Y , where y = y(u) is a corresponding solution of (2.2), such that (u, y) satisfies
the restrictions (2.3)–(2.4) and I(u, y) <Λ z for some element z of Z. In this case the pair (u, y)
is said to be admissible (note that, in general, the mapping u→ y(u) may be multi-valued).

We denote by Ξ the set of all admissible pairs to the problem (2.1)–(2.4). Throughout this
paper we will associate the vector optimization problem (2.1)–(2.4) with the triplet 〈Ξ, I,Λ〉.
We denote by intτ Z0 and clτ Z0 the interior of the set Z0 ⊂ Z and its closure with respect to
the τ -topology, respectively. By default τ is always associated with the strong topology of Z.

To specify the definition of the efficient solutions to the vector optimization problem 〈Ξ, I,Λ〉,
we outline the main notions of the vector-valued mappings.

3. PRELIMINARIES

Let Z0 be a subset of Z. We say that an element z∗ ∈ Z0 is Λ-minimal for the set Z0 ⊂ Z, if
there is no z ∈ Z0 such that z ≤Λ z

∗, z 6= z∗, that is

Z0 ∩ (z∗ − Λ) = {z∗}.
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We denote by Λ −Min(Z0) the family of all such elements . We say that an element z∗ is the
Λ-ideal minimal point of the set Z0, if z∗ ≤Λ z for every z ∈ Z0. By analogy we can introduce
the sets of Λ-maximal elements and Λ-ideal maximal elements of the set Z0.

Let −∞Λ and +∞Λ be two singular elements such that −∞Λ ≤Λ z ≤Λ +∞Λ for all z ∈ Z.
We use the notation Z = Z ∪ {±∞Λ}. Then +∞Λ is the Λ-greatest element of the set Z, and
the element −∞Λ is its Λ-smallest element. By Z• we denote a semiextended Banach space:
Z• = Z ∪ {+∞Λ} assuming that ‖ +∞Λ‖Z = +∞ and z + λ(+∞Λ) = +∞Λ for all z ∈ Z
and λ ∈ R+.

The following concept is the crucial point of this paper.

Definition 3.1. We say that a set E is the efficient Λ-infimum of a set Z0 ⊂ Z with respect to the
weak topology of Z (or Λw-infimum for short) if E is the collection of all Λ-minimal elements
of clw Z0 in the case when this set is non-empty, and otherwise E = {−∞Λ}.

In what follows we always associate the objective mapping I : Ξ → Z with its natural
extension Î : U × Y → Z• to the whole space U × Y , where

Î(u, y) =

{
I(u, y), (u, y) ∈ Ξ
+∞, (u, y) /∈ Ξ.

Following [31] we say that a function Î : U × Y → Z• is bounded below if there exists z ∈ Z
such that z ≤Λ Î(u, y) for all (u, y) ∈ U × Y . Hereinafter we denote the efficient Λw-infimum
for Z0 ⊂ Z• by Λw − Inf Z0. Thus, in view of the above definition, we have

Λw − Inf Z0 :=

{
Λ−Min(clw Z0), Λ−Min(clw Z0) 6= ∅
−∞Λ, Λ−Min(clw Z0) = ∅.

Definition 3.2. A subset E of Z∪{±∞Λ} is said to be a weak efficient Λ-infimum of a mapping
I : Ξ → Z and is denoted by Λw − Inf

(u,y)∈Ξ
I(u, y), if E is an efficient Λw-infimum of the image

Î(Ξ) of Ξ ⊂ U × Y in Z•, that is,

Λw− Inf
(u,y)∈Ξ

I(u, y) = Λw − Inf
{
Î(u, y) : (u, y) ∈ U × Y

}
.

Remark 3.3. It is clear now that if a ∈ Λw − Inf
(u,y)∈Ξ

I(u, y), then

clw {I(u, y) : ∀ (u, y) ∈ Ξ} ∩ (a− Λ) = {a},
provided Λw −Min [clw {I(u, y) : ∀ (u, y) ∈ Ξ}] 6= ∅.

Let {zk}∞k=1 be a sequence in Z. Let us denote by L{zk} the set of all its cluster points
with respect to the weak topology of Z, that is, z ∈ L{zk} if there is a subsequence {zki}

∞
i=1 ⊂

{zk}∞k=1 such that zki ⇀ z inZ as i→∞. If this set is lower unbounded, i.e., Λw−Inf L{zk} =
{−∞Λ}, we assume that {−∞Λ} ∈ L{zk}. Let (u0, y0) ∈ U × Y be a fixed pair.

Definition 3.4. A sequence {(uk, yk)}∞k=1 ⊂ U × Y is said to be w-convergent to the pair
(u0, y0) ∈ U × Y (or (uk, yk)

w→ (u0, y0) for short) if uk
∗
⇀ u0 in U and yk ⇀ y0 in Y as k

tends to +∞.

In what follows, for an arbitrary mapping I : U × Y → Z• we make use of the following
set:

Lw(I, u0, y0) :=
⋃

{(uk,yk)}∞k=1∈M(u0,y0)

L{I(uk, yk)},

where we denote by M(u0, y0) the set of all sequences {(uk, yk)}∞k=1 ⊂ U × Y such that
(uk, yk)

w
⇀ (u0, y0).
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Definition 3.5. We say that a subset E ⊂ Z ∪ {±∞Λ} is the Λ-lower sequential limit of the
mapping I : U × Y → Z• at the pair (u0, y0) ∈ U × Y with respect to the product of the
w-topology of U × Y and the weak topology of Z, and we use the notation
E = Λw − lim inf

(u,y)
w
⇀ (u0,y0)

I(u, y), if

(3.1) Λw− lim inf
(u,y)

w
⇀ (u0,y0)

I(u, y) := Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y),

in the case when Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) 6= ∅, and

(3.2) Λw − lim inf
(u,y)

w
⇀ (u0,y0)

I(u, y) := Λw − Inf Lw(I, u0, y0),

otherwise (i.e. in the case when Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) = ∅).

In fact, relation (3.1) can be rewritten in the equivalent form

Λw− lim inf
(u,y)

w
⇀ (u0,y0)

I(u, y) := Λw − Inf Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈Ξ

I(u, y).

Remark 3.6. Note that in the scalar case (I : U × Y −→ R) the sets

Λw − Inf
(u,y)∈U×Y

I(u, y) and Λw − Inf Lw(I, u0, y0)

are singletons. Thus, if Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) 6= ∅, then

Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) ≡ Λw − Inf Lw(I, u0, y0),

and therefore the rules (3.1) and (3.2) coincide and give the classical definition of the lower
limit.

To illustrate the crucial role of the conditions

Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) 6= ∅ and Lw(I, u0, y0) ∩ Λw − Inf
(u,y)∈U×Y

I(u, y) = ∅

in Definition 3.5, we give the following example.

Example 3.7. [20] Let U × Y = Z = R2, Ξ = Ξ1 ∪ Ξ2,

Ξ1 =
{
x ∈ R2 : (x1 − 6)2 + (x2 − 6)2 ≤ 25, x1 + x2 ≤ 7

}
,(3.3)

Ξ2 =
{
x ∈ R2 : x1 + x2 > 7, x1 + x2 ≤ 8, x1 ≥ 1, x2 ≥ 1

}
,(3.4)

and let Λ = R2
+ be the cone of positive elements. We define a vector-valued mapping I : Ξ→ Z

as follows:

(3.5) I(x) =


x, x 6∈ X0,[
6
2

]
, x ∈ X ′0 ∪ {A,C} ,[

2
6

]
, x ∈ X ′′0 ∪ {B,D} ,

where A =
[

1
7

]
, B =

[
1
6

]
, C =

[
6
1

]
, D =

[
7
1

]
, X0 = X ′0 ∪X ′′0 ∪ {A,B,C,D},

X ′0 =
{
x ∈ Ξ : (x1 − 6)2 + (x2 − 6)2 = 25, 1 < x1 ≤ x2

}
,

X ′′0 =
{
x ∈ Ξ : (x1 − 6)2 + (x2 − 6)2 = 25, x2 < x1 < 6

}
.

Let us find the Λ-lower sequential limit of I : Ξ → Z at x0 = A, and at x0 = C. To begin
with, we note that Λw − Inf

x∈Ξ
I(x) = X ′0 ∪ X ′′0 ∪ {B,C} (see Fig. 1). Then, in the case when
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Figure 1: The image of Ξ in Example 3.7

x0 = A, we have Lw(I, x0) =
{
A,
[

6
2

]}
. Hence, since Lw(I, x0) ∩ Λw − Inf

x∈Ξ
I(x) = ∅, by

Definition 3.5, we conclude that

Λw − lim inf
x→x0

Î(x) = Λw − Inf Lw(I, x0) =

{
A,

[
6

2

]}
.

On the other hand, if we take x0 = C, then Lw(I, x0) =
{
C,
[

6
2

]}
. Hence,

Λw − lim inf
x→x0

Î(x) = Lw(I, x0) ∩ Λw − Inf
x∈Ξ

I(x) = {C} .

We are now able to give the definition of efficient solutions to the vector optimization problem
(2.1)–(2.4). Let us recall the standard definitions (see, for instance, [7, 16, 24, 28]). A pair
(u0, y0) ∈ Ξ is an efficient solution of the problem 〈Ξ, I,Λ〉 if (I(Ξ)− I(u0, y0))∩(−Λ) = {0},
whereas a pair (û, ŷ) ∈ Ξ is said to be a weakly efficient solution of this problem if int Λ 6= ∅
and there is no z ∈ I(Ξ) such that I(û, ŷ) 6= z and I(û, ŷ)− z ∈ int Λ.

Further to the notions of efficient and weakly efficient solutions, the following concept will
be used in this work.

Definition 3.8. We say that (u∗, y∗) ∈ Ξ is a Λw-efficient solution of the problem 〈Ξ, I,Λ〉 if
(clw I(Ξ)− I(u∗, y∗))∩ (−Λ) = {0}, where clw I(Ξ) is the closure of the set I(Ξ) with respect
to the weak topology of Z.

In other words, (u∗, y∗) ∈ Ξ is a Λw-efficient solution of the problem 〈Ξ, I,Λ〉 if (u∗, y∗)
realizes the weak efficient Λ-infimum of the mapping I : Ξ→ Z, that is,

I(u∗, y∗) ∈ Λw − Inf
(u,y)∈Ξ

I(u, y).

We denote by Eff (Ξ; I; Λ), Effw (Ξ; I; Λ), and Solw(Ξ; I; Λ), respectively, the sets of all
efficient solutions, all weakly efficient ones, and all Λw-efficient ones to the above vector prob-
lem.

Remark 3.9. The difference between the notion of Λw- efficient solutions to the vector opti-
mization problem (2.1)–(2.4) and the standard definition of efficient solutions should be noted.
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It is easy to show that each Λw-efficient solution is an efficient solution to this problem since
clw I(Ξ) ⊇ I(Ξ), i.e.,

Solw(Ξ; I; Λ) ⊂ Eff (Ξ; I; Λ),

and Solw(Ξ; I; Λ) ⊂ Eff (Ξ; I; Λ) ⊂ Effw (Ξ; I; Λ), provided the cone Λ has a non-empty
interior.

So, the sets Eff (Ξ; I; Λ), Effw (Ξ; I; Λ), and Solw(Ξ; I; Λ) do not coincide in general. To
illustrate this fact more precisely, we give the following example.

Example 3.10. [21] Let Z = R2 and let Λ = R2
+ be the cone of positive elements. We suppose

that a vector-valued mapping I : U × Y → Z and a set of admissible pairs Ξ are such that
I(Ξ) =

⋃4
i=1 Ωi, where

Ω1 =
{
z ∈ R2 : z1 ≥ 1, z2 > 3, z1 + z2 ≤ 5

}
,

Ω2 =
{
z ∈ R2 : z1 > 2, z2 > 2, z1 + z2 ≤ 5

}
,

Ω3 =
{
z ∈ R2 : z1 > 3, z2 ≥ 4, z1 + z2 ≤ 5

}
, Ω4 = {(2; 3), (3; 2), (3; 1)} .

Then straightforward calculations show that

Figure 2: The image of the set Ξ in Example 3.10

Eff (Ξ; I; Λ) = I−1(Ωeff ), Effw (Ξ; I; Λ) = I−1(Ωw), and Solw(Ξ; I; Λ) = I−1(Ω0),

where

Ωeff = {(2; 3), (3; 1)} , Ω0 = {(3; 1)} ,
Ωw =

{
z ∈ R2 : 3 < z2 ≤ 4, z1 = 1

}
∪
{
z ∈ R2 : 3 ≤ z1 ≤ 4, z2 = 1

}
∪ {(2; 3), (3; 2)} .

4. THE MAIN ASSUMPTIONS

Since our main aim is an existence theorem for the Λw-efficient solutions to the vector op-
timization problem 〈Ξ, I,Λ〉, that is, to find sufficient conditions which guarantee the relation
Solw(Ξ; I; Λ) 6= ∅ without any scalarization process of the original optimization problem, we
begin with the following assumptions (see for comparison [19]):

(A1) U∂ is a bounded sequentially weakly-∗ closed subset of U ;
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(A2) the operator A : U × Y → Y ∗ is coercive in the following sense

inf
u∈G

〈A(u, y), y〉Y ∗;Y
‖y‖Y

→ +∞ as ‖y‖Y → +∞

for any bounded subset G ⊂ U ;
(A3) the operator A : U × Y → Y ∗ possesses the property (M), i.e., for any w-convergent

sequence {(uk, yk)}∞k=1 the conditions

(4.1) A(uk, yk) ⇀ d in Y ∗, lim sup
k→∞

〈A(uk, yk), yk〉Y ∗;Y ≤ 〈d, y〉Y ∗;Y

imply d = A(u, y) ;
(A4) the operator F : U × Y → Z is sequentially continuous in the following sense:

F (uk, yk) ⇀ F (u, y) in Z whenever (uk, yk)
w
⇀ (u, y);

(A5) K is a weakly closed subset of Y ;
(A6) the objective function I : Ξ → Z is sequentially Λw-lower semicontinuous (Λw-lsc)

with respect to the w-convergence in U × Y in the following sense (see [18, 20]):

(4.2) I(û, ŷ) ∈ Λw − lim inf
(u,y)

w
⇀ (û,ŷ)

Î(u, y), ∀ (û, ŷ) ∈ Ξ.

Before proceeding further, we note that the concept of sequential Λw-lower semicontinuity
for vector-valued mappings, given above, is more general than well known extensions of the
“scalar” notion of lower semicontinuity to the vector-valued case (see, for example, [1, 3, 4, 6,
8, 17, 24, 28]). We now recall a few main definitions of lower semicontinuity of vector-valued
mappings with respect to the product of the w-topology of U × Y and the weak topology of Z,
introduced in [6, 8, 11, 30].

Definition 4.1. [8] A mapping I : U ×Y → Z• is said to be sequentially lower semicontinuous
(s-lsc) at (u0, y0) ∈ U × Y , if for any z ∈ Z satisfying z ≤Λ I(u0, y0) and for any sequence
{(uk, yk)}∞k=1 of U ×Y w-convergent to (u0, y0), there exists a sequence {zk}∞k=1 (in Z) weakly
converging to z in Z and satisfying condition zk ≤Λ I(uk, yk), for any k ∈ N.

Remark 4.2. For (u0, y0) ∈ U × Y , Definition 4.1 can be expressed simply as follows. For
each sequence {(uk, yk)}∞k=1 w-converging to (u0, y0), there exists a sequence {zk}∞k=1 weakly
converging to I(u0, y0) in Z such that zk ≤Λ I(uk, yk) for all k ∈ N.

Definition 4.3. [6] A mapping I : U×Y → Z• is said to be quasi lower semicontinuous (q-lsc)
at (u0, y0) ∈ U × Y , if for each z ∈ Z such that z �Λ I(u0, y0), there exists a neighborhood O
of (u0, y0) in the w-topology of U × Y such that z �Λ I(u, y) for each (u, y) in O.

A mapping I is s-lsc (resp., q-lsc) if I is s-lsc (resp., q-lsc) at each point of U × Y . It is clear
that the s-lsc-property of I at (u, y) implies it is q-lsc at this pair. To characterize the properties
of Λw-lower semicontinuity more precisely, we give the following result. The other properties
concerning these notions can be found in [18].

Lemma 4.4. If a mapping I : Ξ → Z is q-lower semicontinuous at (u0, y0) ∈ Ξ with respect
to the weak topology of Z and the w-topology of U × Y , then I is Λw-lower semicontinuous at
this pair.

Proof. Let I : Ξ → Z be a q-lower semicontinuous mapping at (u0, y0) ∈ Ξ, and let Î :
U × Y → Z• be its natural extension to the whole space U × Y . Let {(uk, yk)}∞k=1 be a
sequence w-converging to (u0, y0). Hence {(uk, yk)}∞k=1 ∈ M(u0, y0). Let us assume that
there exists a subsequence {I(uki , yki)}

∞
i=1 such that I(uki , yki) �Λ I(u0, y0). Then, in view

of the definition of the quasi-lower semicontinuity, we just conclude {+∞Λ} ∈ Lw(I, u0, y0).
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So, to characterize the set Λw − lim inf
(u,y)

w
⇀ (u0,y0)

Î(u, y), we suppose that the corresponding image

sequence {I(uk, yk)}∞k=1 is bounded above with respect to the cone Λ. Then there exists an
integer k∗ such that

I(uk, yk) ≥Λ I(u0, y0), ∀k ≥ k∗.

Hence, for any z∗ ∈ Lw(I, u0, y0, we have I(u0, y0) ≤Λ z
∗. This means that

{I(u0, y0)} ∈ Λw − Inf Lw(I(u0, y0)).

Thus, due to Definition 3.5, we deduce: I(u0, y0) ∈ Λw − lim inf
(u,y)

w
⇀ (u0,y0)

Î(u, y). This concludes

the proof.

As a consequence of this result and the properties of quasi-lower semicontinuity, we have: if
I is s-lsc then I is Λw-lsc. However, in general, for vector-valued mappings, Λw-ls continuity
does not imply q-lsc. Indeed, let us consider the following example when I depends on one
variable (see also Example 6.5).

Example 4.5. [18] Let Ξ ⊂ R, Z = R2, and let Λ = R2
+ be the cone of positive elements. To

state a vector optimization problem 〈Ξ, I,Λ〉, we define the set of admissible solutions Ξ and
the mapping I : Ξ→ Z as follows:

Ξ = {x ∈ R1 : −3 ≤ x ≤ −1},(4.3)

I(x) =

[
−x
2

]
, for all x 6= −1, I(−1) =

[
2
1

]
.(4.4)

Let x0 = −1. Then

(4.5) I(x0) =

[
2

1

]
, Λw − lim inf

x→x0
Î(x) =

{[
2

1

]
,

[
1

2

]}
(see Fig. 3). Let us take z =

[
1,5
3

]
. Obviously z �Λ I(x0) and there is no neighborhood of the

Figure 3: An example of Λw-lsc mapping which is neither lsc nor q-lsc

point x0 such that z �Λ I(x) for all x from this neighborhood. Hence, I is neither q-lsc nor lsc
at the point x0.

However, by (4.5), I is a Λw-lower semicontinuous mapping at x0 = −1.

We note also that if sequential Λw-lower semicontinuity for an objective mapping fails, the set
of Λw- efficient solutions Solw(Ξ; I; Λ) to the corresponding problem may be empty. Indeed,
let us consider the following example.
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Example 4.6. Let Z = R2, Ξ = [1, 2], and let Λ = R2
+ be the cone of positive elements. We

define the objective mapping I : Ξ → Z as follows: I(x) =
[
x
1

]
if x ∈ (1, 2], and I(x) =

[
1
2

]
at the point x = 1 (see Fig. 4). It is clear that in this case Eff (Ξ; I; Λ) = Effw (Ξ; I; Λ) =

Figure 4: The example of the problem for which Solw(Ξ; I; Λ) = ∅

[
1
2

]
. However, straightforward calculations show that Λw − lim inf

x→1
Î(x) =

[
1
1

]
, and hence

Solw(Ξ; I; Λ) = ∅. Moreover, I is not Λw-lsc at x = 1.

To conclude this section we give the following observation concerning the property of two
Λw-lsc mappings. It is well known that the sum of two q-lsc mappings does not give a q-lsc
mapping in general. Due to the following example, we can give a similar conclusion for Λw-lsc
mappings.

Example 4.7. Let Λ = R2
+ be the cone of positive elements in R2. Let us consider the mappings

I : R→ R2 and G : R→ R2 defined by

I(x) =


[

0
0

]
if x = 0,[

−2+|x|−1

−2|x|−1

]
if x 6= 0,

, G(x) =


[

0
0

]
if x = 0,[

−|x|−1

2|x|−1

]
if x 6= 0.

It is easy to see that each of these mappings is q-lsc at x0 = 0. So, due to Lemma 4.4 these
mappings are Λw-lsc at 0. However, for the mapping I +G, we have

Lw(I(0) +G(0)) =

{[
−2

0

]
,

[
0

0

]}
and Λ− Inf

x∈R
[I(x) +G(x)] =

{[
−2

0

]}
.

Hence, Λw − lim inf
x→0

[I(x) +G(x)] =
{[−2

0

]}
63 I(0) + G(0), and we obtain the required

conclusion: in general the sum of two Λw-lsc mappings is not a Λw-lsc mapping.

5. EXISTENCE THEOREM

We begin with the following supposition: assume that the ordering cone Λ possesses the so-
called D-property, that is, every decreasing sequence in Z is weakly convergent if and only if
it has a Λ-lower bound. The typical ordering cone with this property is the so-called natural
ordering cone in Lp(Ω) (1 < p < +∞) which is defined as (see [15])

ΛLp(Ω) = {f ∈ Lp(Ω) : f(x) ≥ 0 almost everywhere on Ω} .

Definition 5.1. We say that {(uk, yk)}∞k=1 ⊂ Ξ is a minimizing sequence for the mapping
I : Ξ→ Z if there exists an element ξ ∈ Λw − Inf

(u,y)∈Ξ
I(u, y) such that I(uk, yk) ⇀ ξ in Z.
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First of all we establish the following result:

Theorem 5.2. Assume that the properties (A1)–(A6) hold true and the ordering cone Λ ⊂ Z
satisfies the D-property. Then the vector optimization problem (2.1)–(2.4) has a nonempty set
of Λw-efficient solutions.

Proof. To begin with, we show that the mapping I : Ξ → Z satisfies the property: for any
sequence {(uk, yk)}∞k=1 ⊂ Ξ for which its image {I(uk, yk)}∞k=1 ⊂ Z is a decreasing sequence
in Z there exists an element z ∈ Z such that z ≤Λ I(uk, yk) for all k ∈ N. Let us assume the
converse. Then there exist sequences {(ûk, ŷk)}∞k=1 ⊂ Ξ and {ẑk}∞k=1 ⊂ Z such that ẑk+1 ≤Λ ẑk
∀ k ∈ N, and

(5.1) Λw − Inf {ẑk}∞k=1 = −∞Λ, I(ûk, ŷk) <Λ ẑk, ∀ k ∈ N.
Due to the initial assumptions, we have {ûk}∞k=1 ⊂ U∂ and the sequence {ûk}∞k=1 is bounded in
U . So, we may assume that ûk

∗
⇀ û in U and û ∈ U∂ . Since

〈A(ûk, ŷk), ŷk〉Y ∗;Y = 〈f, ŷk〉Y ∗;Y ≤ ‖f‖Y ∗‖ŷk‖Y , ∀ k ∈ N
and the operator A is coercive (see (A2)), it follows that

sup
k∈N

〈A(ûk, ŷk), ŷk〉Y ∗;Y
‖ŷk‖Y

≤ ‖f‖Y ∗ .

Hence, {ŷk}∞k=1 ⊂ K is a bounded sequence in Y and there exists an element ŷ ∈ K such that,
passing to a subsequence if necessary, we get ŷk ⇀ ŷ in Y . Thus for a given sequence of pairs,
we have (ûk, ŷk)

w
⇀ (û, ŷ).

Now we can pass to the limit in (5.1) as k → ∞. Using the D-property of ordering cone Λ,
we obtain

(5.2) ξ ≤Λ −∞Λ, ∀ξ ∈ L{I(ûk, ŷk)},
where L{I(ûk, ŷk)} is the set of all cluster points of {I(ûk, ŷk)}∞k=1 with respect to the weak
topology of Z. So, in view of Definition 3.5 and the Λw-lower semicontinuity of I , we have

I(û, ŷ) ∈ Λw − lim inf
(u,y)

w
⇀ (û,ŷ)

Î(u, y), and hence I(û, ŷ) ≯Λ ξ, ∀ ξ ∈ L{I(ûk, ŷk)}.

Combining this result with (5.2), we obtain

I(û, ŷ) ≯Λ −∞Λ.

However this contradicts (5.1). Hence Λw − Inf
(u,y)∈Ξ

I(u, y) 63 −∞Λ.

Let ξ be any element of Λw− Inf
(u,y)∈Ξ

I(u, y). Then, by definition of the Λw-efficient infimum,

there exists a sequence {(uk, yk)}∞k=1 ⊂ Ξ such that I(uk, yk) ⇀ ξ in Z as k → ∞. By the
previous arguments this sequence is uniformly bounded in U × Y . Since Ξ ⊂ U∂ ×K and the
set U∂ ×K is sequentially closed with respect to the w-convergence, we may assume that there
exists a pair (u0, y0) ∈ U∂ ×K such that (uk, yk)

w→ (u0, y0). Let us show that (u0, y0) is an
admissible pair to the problem (2.1)–(2.4).

Indeed, taking into account that A(uk, yk) = f for all k ∈ N and passing to the limit in the
equality

〈A(uk, yk), yk〉Y ∗;Y = 〈f, yk〉Y ∗;Y
as k →∞, we obtain

lim
k→∞
〈A(uk, yk), yk〉Y ∗;Y =

〈
f, y0

〉
Y ∗;Y

.

Hence A(u0, y0) = f by (M)-property of the operator A : U × Y → Y ∗.
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By the initial assumptions, the cone Λ ⊂ Z is reproducing and uniquely determined by its
conjugate semigroup (the dual cone) Λ∗, i.e.,

(5.3) Λ =
{
ξ ∈ Z : 〈ϕ, ξ〉Z∗;Z ≥ 0 ∀ϕ ∈ Λ∗

}
.

Here we denote by Z∗ the dual space of Z with duality pairing 〈·, ·〉Z∗;Z . In view of the con-
tinuity property of the operator F : U × Y → Z with respect to the w-convergence, we have
F (uk, yk) ⇀ F (u0, y0) in Z. Since the elements of the conjugate semigroup Λ∗ are linear
continuous functionals on Z, it follows that

0 ≤ 〈ψ, F (uk, yk)〉Z∗;Z →
〈
ψ, F (u0, y0)

〉
Z∗;Z

as k →∞, ∀ψ ∈ Λ∗.

Therefore 〈ψ, F (u0, y0)〉Z∗;Z ≥ 0, and hence F (u0, y0) ≥Λ 0.
Thus, the limit pair (u0, y0) is an admissible solution to the problem (2.1)–(2.4), i.e., (u0, y0) ∈

Ξ. As a result, we have

(5.4) ξ ∈ Lw(I(u0, y0)) and, therefore, Lw(I(u0, y0)) ∩ Λw − Inf
(u,y)∈Ξ

I(u, y) 6= ∅.

Let us show that (u0, y0) ∈ Ξ is a Λw-efficient solution of this problem. In view of Definition
3.5 and the Λw-lower semicontinuity of I , we obtain

I(u0, y0) ∈ Λw − lim inf
(u,y)

w
⇀ (u0,y0)

Î(u, y) = Lw(I(u0, y0)) ∩ Λw − Inf
(u,y)∈Ξ

I(u, y).

Hence, I(u0, y0) ∈ Lw(I(u0, y0)), which implies

I(u0, y0) = ξ, and ξ ∈ Λw − Inf
(u,y)∈Ξ

I(u, y).

Thus, (u0, y0) is a Λw-efficient solution of the vector optimization problem (2.1)–(2.4) and this
concludes the proof.

Let us denote by P+(Λ∗) the set of all equivalence classes with respect to the binary relation

ϕ1 v ϕ2 ⇐⇒ ∃ t ∈ R+ \ {0} : ϕ1 = tϕ2, ϕ1, ϕ2 ∈ Λ∗.

Let Π∗ : Λ∗ \ 0 → P+(Λ∗) be the corresponding canonical quotient-mapping. We assume that
P+(Λ∗) is endowed with the quotient-topology. It is clear that in this case the mapping

Π∗|S∗1∩Λ∗ : S∗1 ∩ Λ∗ → P+(Λ∗)

is a continuous surjection, i.e., every equivalence class can be interpreted as the image of some
element of Λ∗ belonging to the unit sphere S∗1 in Z∗. Hence, if F (v, ξ) 6∈ Λ for some pair
(v, ξ) ∈ U∂ × Y , then there is an element ψ ∈ S∗1 ∩ Λ∗ such that 〈ψ, F (v, ξ)〉Z∗;Z < 0. Taking
into account these observations, we introduce the following penalized problem to the original
one (2.1)–(2.4)

Iε(u, y) = I(u, y) + ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
b→ Λw − Inf,(5.5)

A(u, y) = f,(5.6)
y ∈ K, u ∈ U∂ ⊂ U,(5.7)

where b ∈ Λ is a fixed element, µ : R → R+ is a lower semicontinuous monotone decreasing
function such that µ(0) = 0 and µ is strictly monotone on R−. We denote by F(R,R+) the set
of all functions µ with the properties mentioned above.

Let Ξ be the set of admissible solutions to the penalized problem (5.5)–(5.7), that is

Ξ = {(u, y) ∈ U∂ ×K : A(u, y) = f} .
It is clear that Ξ ⊂ Ξ for every ε > 0.
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Lemma 5.3. Assume that the properties (A1)–(A6) hold true. Then for every ε > 0 and every
fixed µ ∈ F(R,R+) the problem (5.5)–(5.7) has a nonempty set of Λw-efficient solutions.

Proof. By analogy with Theorem 5.2, it can be proved that Λw − Inf
(u,y)∈Ξ

Iε(u, y) 63 −∞Λ. Let ξ

be any element of Λw − Inf
(u,y)∈Ξ

Iε(u, y). Then, by definition of the Λw-efficient infimum, there

exists a sequence {(uk, yk)}∞k=1 ⊂ Ξ such that Iε(uk, yk) ⇀ ξ in Z as k →∞. By arguments in
the previous proof, this sequence is uniformly bounded in U × Y . Since Ξ ⊂ U∂ ×K and the
set U∂ ×K is sequentially closed with respect to the w-convergence, we may assume that there
exists a pair (u0

ε, y
0
ε) ∈ U∂ ×K such that (uk, yk)

w→ (u0
ε, y

0
ε). Then, taking into account that

A(uk, yk) = f for all k ∈ N and passing to the limit in the equality

〈A(uk, yk), yk〉Y ∗;Y = 〈f, yk〉Y ∗;Y
as k →∞, we obtain

lim
k→∞
〈A(uk, yk), yk〉Y ∗;Y =

〈
f, y0

ε

〉
Y ∗;Y

.

Hence A(u0
ε, y

0
ε) = f by the (M)-property of the operator A : U × Y → Y ∗. Thus, the limit

pair (u0
ε, y

0
ε) is an admissible solution to the problem (5.5)–(5.7), i.e., (u0

ε, y
0
ε) ∈ Ξ. As a result,

we have

(5.8) ξ ∈ Lw(Iε(u
0
ε, y

0
ε)) and, therefore, Lw(Iε(u

0
ε, y

0
ε)) ∩ Λw − Inf

(u,y)∈Ξ
Iε(u, y) 6= ∅.

Let us show that (u0
ε, y

0
ε) ∈ Ξ is a Λw-efficient solution of this problem. Indeed, in view of

the continuity property of the operator F : U × Y → Z with respect to the w-convergence, we
have F (uk, yk) ⇀ F (u0

ε, y
0
ε) in Z. Since the elements of the conjugate semigroup Λ∗ are linear

continuous functionals on Z, it follows that

〈ψ, F (uk, yk)〉Z∗;Z →
〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

as k →∞, ∀ψ ∈ Λ∗.

By initial assumptions, Z 3 η 7→ µ
(
〈ψ, η〉Z∗;Z

)
∈ R is a lower semicontinuous function.

Hence η 7→ supψ∈S∗1∩Λ∗

[
µ
(
〈ψ, η〉Z∗;Z

)]
is a semicontinuous non-negative function with re-

spect to the weak topology of Z. Therefore, for every fixed b ∈ Λ, the mappingG : U×Y → Z,
where

G(u, y) = ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
b,

is sequentially lower semicontinuous in the sense of Definition 4.1. So, we get

(5.9) ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

)]
b ≤Λ ζ, ∀ ζ ∈ L{G(uk, yk)}.

Due to the initial assumptions, we have

I(uk, yk) + ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (uk, yk)〉Z∗;Z

)]
= Iε(uk, yk) ⇀ ξ in Z.

We claim that (5.9) implies

(5.10) ξ = weak− lim
k→∞

Iε(uk, yk) ≮Λ a+ ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

)]
b

for every a ∈ Λw − lim inf
(u,y)

w
⇀ (u0ε,y

0
ε)

Î(u, y).
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Assume the converse. Namely, there exists an element

a∗ ∈ Λw− lim inf
(u,y)

w
⇀ (u0ε,y

0
ε)

Î(u, y)

such that

(5.11) ξ = weak− lim
k→∞

Iε(uk, yk) <Λ a
∗ + ε−1 sup

ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

)]
b.

Taking into account (5.8), we can deduce that in this case there are two possibilities for the
representation of ξ: either ξ = a1 + G(u0

ε, y
0
ε) or ξ = a2 + g∗, where a1, a2 ∈ I(Ξ), and

g∗ ∈ L{G(uk, yk)}. By (5.9) g∗ ≥Λ G(u0
ε, y

0
ε). The first case gives

a1 +G(u0
ε, y

0
ε) <Λ a

∗ +G(u0
ε, y

0
ε) =⇒ a1 <Λ a

∗,

and this contradicts the condition a∗ ∈ Λw − lim inf
(u,y)

w
⇀ (u0ε,y

0
ε)

Î(u, y).

In the second case, we have a2 + g∗ <Λ a∗ + G(u0
ε, y

0
ε). Since g∗ ≥Λ G(u0

ε, y
0
ε) it follows

that a2 <Λ a
∗. But this is impossible by the previous argument. Thus (5.11) was erroneous.

Hence (5.10) holds for every a ∈ Λw − lim inf
(u,y)

w
⇀ (u0ε,y

0
ε)

Î(u, y). Since the objective function I is

Λw-lower semicontinuous, we have I(u0
ε, y

0
ε) ∈ Λw− lim inf

(u,y)
w
⇀ (u0ε,y

0
ε)

Î(u, y). Setting a = I(u0
ε, y

0
ε)

in (5.10), we get

ξ ≮Λ Iε(u
0
ε, y

0
ε) for every ξ ∈ Λw − Inf

(u,y)∈Ξ
Iε(u, y).

Hence Iε(u0
ε, y

0
ε) ∈ Λw− Inf

(u,y)∈Ξ
Iε(u, y), i.e., (u0

ε, y
0
ε) is a Λw-efficient solution of the penalized

problem (5.5)–(5.7).

Let
{

(u0
ε, y

0
ε) ∈ Ξ

}
ε>0

be any sequence of Λw-efficient solutions to the problem (5.5)–(5.7).
The next step of our analysis is to study the asymptotic behaviour of this sequence as ε tends to
zero.

Lemma 5.4. Let
{

(u0
ε, y

0
ε) ∈ Ξ

}
ε>0

be a sequence of Λw-efficient solutions of the problem
(5.5)–(5.7) (when ε > 0 varies in a strictly decreasing sequence of positive numbers which
converge to 0) such that the set {I(u0

ε, y
0
ε)}ε>0 is bounded below in Z. Then under assumptions

(A1)–(A6), a subsequence of {(u0
ε, y

0
ε)}ε>0 still denoted by ε can be extracted such that

(u0
ε, y

0
ε)

w→ (u0, y0) in U × Y as ε→ 0,

A(u0, y0) = f, y0 ∈ K, u0 ∈ U∂ ⊂ U.

Proof. In the same way as in the proof of Lemma 5.3, we can conclude that the sequence
{(u0

ε, y
0
ε) ∈ Ξε}ε>0 is relatively w-compact in U×Y and, passing to a subsequence if necessary,

we get
u0
ε
∗
⇀ u0 in U, y0

ε⇀y0 in Y, where (u0, y0) ∈ Ξ.

Let us prove that F (u0, y0) ≥Λ 0. Let (u, y) be any admissible pair to the original problem, that
is, (u, y) ∈ Ξ. Then, by the initial assumptions, µ

(
〈ψ, F (u, y)〉Z∗;Z

)
= 0. Therefore

Iε(u
0
ε, y

0
ε) ≯Λ Iε(u, y) ≡ I(u, y).

Setting gε = supψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u0

ε, y
0
ε)〉Z∗;Z

)]
, we have ε−1gεb+ I(u0

ε, y
0
ε) ≯Λ I(u, y). By

the initial assumptions the set {I(u0
ε, y

0
ε)}ε>0 is bounded below, say by z ∈ Z. The latter yields

ε−1gεb ≯Λ w, with w = I(u, y) − z, i.e. gεb ≯Λ εw. On the other hand, gεb ≥Λ 0Z ∀ b ∈ Λ
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and ∀ ε > 0. Hence, passing to the limit as ε → 0 in the above relations and using the fact
that εw → 0Z , we come to the inequality 0Z ≤ lim infε→0 gεb ≯Λ 0Z . Since gε takes the scalar
values and this relation holds for any b ∈ Λ, one gets

lim inf
ε→0

gε = lim inf
ε→0

sup
ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

)]
= 0.

Then, in view of the lower semicontinuity property, we obtain

sup
ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0, y0)

〉
Z∗;Z

)]
≤ lim inf

ε→0
sup

ψ∈S∗1∩Λ∗

[
µ
(〈
ψ, F (u0

ε, y
0
ε)
〉
Z∗;Z

)]
= 0.

Since this is equivalent to the inequality F (u0, y0) ≥Λ 0, it follows that the limit pair (u0, y0) is
an admissible solution to the original problem (2.1)–(2.4).

The following assertion is an obvious consequence of Lemmas 5.3 and 5.4.

Corollary 5.5. Under assumptions (A1)–(A6) the sets of admissible pairs Ξ and Ξ are bounded
and sequentially compact with respect to the w-convergence.

We are now in a position to prove the following result:

Theorem 5.6. Assume that the properties (A1)–(A6) hold true. Then under assumptions of
Lemma 5.4, Solw(Ξ; I; Λ) 6= ∅ if and only if the vector optimization problem (2.1)–(2.4) is
regular.

Proof. We have to prove only the sufficient conditions of this theorem. Assume that Ξ 6=
∅. Then, taking into account Lemmas 5.3–5.4, we can construct a sequence of Λw-efficient
solutions

{
(u0

ε, y
0
ε) ∈ Ξ

}
ε>0

to the penalized problem (5.5)–(5.7) such that (u0
ε, y

0
ε)

w
⇀ (u0, y0),

where (u0, y0) is some admissible pair to the original problem (2.1)–(2.4). Let us show that
(u0, y0) is a Λw-efficient solution, that is, (u0, y0) ∈ Solw(Ξ; I; Λ). To do so, we assume the
converse. Namely, there is a pair (û, ŷ) ∈ Ξ such that I(û, ŷ) <Λ I(u0, y0). Then this pair is
also admissible to the penalized problem (5.5)–(5.7), i.e. (û, ŷ) ∈ Ξ. Hence

(5.12) I(û, ŷ) ≡ Iε(û, ŷ) ≮Λ Iε(u
0
ε, y

0
ε), ∀ ε > 0.

From this we immediately conclude that

(5.13) Iε(û, ŷ) ≮Λ ξ for every ξ ∈ L{Iε(u0
ε, y

0
ε)}.

However for all ε > 0 we have the obvious inequality

(5.14) Iε(u
0
ε, y

0
ε) ≥Λ I(u0

ε, y
0
ε).

Hence, in view of the relations (5.12)–(5.14), we obtain

(5.15) I(û, ŷ) ≮Λ η for all η ∈ L{I(u0
ε, y

0
ε)}.

Since the objective mapping I : U × Y → Z is sequentially Λw-lower semicontinuous with
respect to the w-convergence, it follows from (5.15) that I(û, ŷ) ≮Λ I(u0, y0). As a result, we
come to the contradiction with the inequality I(û, ŷ) <Λ I(u0, y0). This concludes the proof.

Remark 5.7. Note that Theorems 5.2 and 5.6 still hold if instead of (A3) we assume that the
operator A : U × Y → Y ∗ is quasi-monotone. We recall that an operator A : U × Y → Y ∗

is said to be quasi-monotone if for any sequence {(uk, yk)}∞k=1 which is w-convergent to some
pair (u, y), the condition

(5.16) lim sup
k→∞

〈A(uk, yk), yk − y〉Y ∗,Y ≤ 0
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implies the relation

(5.17) lim inf
k→∞

〈A(uk, yk), yk − ξ〉Y ∗,Y ≥ 〈A(u, y), y − ξ〉Y ∗,Y , ∀ ξ ∈ Y.

Indeed, let us prove the implication: “A is quasi-monotone” =⇒ “A possesses the property
(M)”. Let {(uk, yk)}∞k=1 be a sequence such that

(uk, yk)
w
⇀ (u, y), A(uk, yk) ⇀ ζ in Y ∗, and lim sup

k→∞
〈A(uk, yk), yk〉Y ∗,Y ≤ 〈ζ, y〉Y ∗,Y .

This immediately leads us to the inequality (5.16). Hence, by the quasi-monotonicity property,
we have

〈A(u, y), y − ξ〉Y ∗,Y ≤ lim inf
k→∞

〈A(uk, yk), yk − ξ〉Y ∗,Y
≤ lim sup

k→∞
〈A(uk, yk), yk − ξ〉Y ∗,Y

≤ 〈ζ, y − ξ〉Y ∗,Y ∀ ξ ∈ Y.

Thus A(u, y) = ζ , and we come to the required conclusion: the operator A possesses the
property (M).

6. Λw-LOWER SEMICONTINUOUS MAPPINGS AND THE PROBLEM OF THEIR
SCALARIZATION

The traditional approach to solving vector optimization problems is by scalarization, which
involves the formulation of a single objective optimization problem that is related to the original
one. Among various scalarization procedures known in the literature (see, for instance, [9,
25, 27] and the references therein), we consider the problem of the scalar representation of
vector problem with Λw-lower semicontinuous mappings, using the “simplest” method of the
“weighted sum”. Then the scalar problem associated with the penalized vector optimization
problem (5.5)–(5.7) has the following representation

〈λ∗, Iε(u, y)〉Z∗;Z =〈λ∗, I(u, y)〉Z∗;Z+ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z→ inf,(6.1)

A(u, y) = f,(6.2)
y ∈ K, u ∈ U∂ ⊂ U,(6.3)

where λ∗ is an element of the dual cone Λ∗ =
{
w ∈ Z∗ : 〈w, b〉Z∗;Z ≥ 0 ∀ b ∈ Λ

}
.

We begin with the following concept [22, 26, 30].

Definition 6.1. We say that λ∗ ∈ Z∗ is a quasi-interior point of the dual cone Λ∗ if λ∗ ∈ Λ∗

and 〈λ∗, b〉Z∗;Z > 0 for all b ∈ Λ \ {0}.

We denote by Λ] the set of all quasi-interior points to Λ∗. Note that, in general, we have the
inclusion int Λ ⊆ Λ] (we refer for instance to [26]). However, we suppose that Λ] 6= ∅ even if
int Λ = ∅ (see [22]).

Now we can give the main property of the scalar problems associated with the vector problem
by the rule (6.1).

Theorem 6.2. Assume that the vector optimization problem (2.1)–(2.4) is regular. Let λ∗ be
any element of Λ], and let (u0, y0) ∈ Argmin

(u,y)∈Ξ

〈λ∗, I(u, y)〉Z∗;Z . Then

(6.4) (u0, y0) ∈ Solw(Ξ; I; Λ).
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Proof. By assumption, we have

(6.5)
〈
λ∗, I(u0, y0)− I(u, y)

〉
Z∗;Z
≤ 0, ∀ (u, y) ∈ Ξ.

Let z be any fixed element of the set clw I(Ξ). Then there exists a sequence {(uk, yk)}∞k=1 ⊂ Ξ
such that I(uk, yk) ⇀ z in Z as k →∞. Hence, in view of (6.5), we get

(6.6)
〈
λ∗, I(u0, y0)− I(uk, yk)

〉
Z∗;Z
≤ 0, ∀ k ∈ N.

Passing to the limit in (6.6) as k →∞, we obtain

(6.7)
〈
λ∗, I(u0, y0)− z

〉
Z∗;Z
≤ 0, ∀ z ∈ clw I(Ξ).

Let us assume the converse, that is, (u0, y0) 6∈ Solw(Ξ; I; Λ). Then we may find an element
h ∈ clw I(Ξ) such that h <Λ I(u0, y0), i.e., I(u0, y0) − h ∈ Λ \ {0}. Hence, by Definition
6.1, 〈λ∗, I(u0, y0)− h〉Z∗;Z > 0, and we come to the contradiction with (6.7). So, (u0, y0) ∈
Solw(Ξ; I; Λ) and this concludes the proof.

Remark 6.3. Note that Theorem 6.2 generally fails when λ ∈ Λ∗ \ Λ]. Indeed, if we take
λ∗ =

[
1
0

]
in Example 4.6, then 〈λ∗, I(x)〉Z∗;Z = x and hence Argmin

x∈[1,2]

〈λ∗, I(x)〉Z∗;Z = {1}.

However, as it was shown before, Solw(Ξ; I; Λ) = ∅ and Eff (Ξ; I; Λ) = Effw (Ξ; I; Λ) =[
1
2

]
.

In fact, Theorem 6.2 immediately leads us to the conclusion⋃
λ∗∈Λ]

Argmin
(u,y)∈Ξ

〈λ∗, I(u, y)〉Z∗;Z ⊆ Solw(Ξ; I; Λ),

which does not seem to be an important result from a practical point of view. Indeed, as the
following examples show, for Λw-lower semicontinuous mappings I : U × Y → Z it is pos-
sible to have a situation when none of the scalar functions (u, y) 7→ 〈λ∗, I(u, y)〉Z∗;Z is lower
semicontinuous for any λ∗ ∈ Λ].

Example 6.4. [21] Let Ξ = [1, 2] ⊂ R, and let Λ = R2
+ be the cone of positive elements in R2.

Consider the mapping I : Ξ→ R2 defined by (see Fig. 5)

I(x) =

{ [
x
1

]
, if x ∈ [1, 2] \ {1 + 1/k, k ∈ N} ,[

0
1+k

]
, if x = 1 + 1/k, k ∈ N.

Straightforward calculations show that

Figure 5: The vector-valued mapping in Example 6.4

Λw − lim inf
x→ 1

Î(x) =

{[
1

1

]}
, Λw − lim inf

x→ (1+1/k)
Î(x) =

{[
0

1 + k

]
,

[
1 + 1/k

1

]}
.
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Since I(1) ∈ Λw−lim inf
x→ 1

Î(x) and I(1+1/k) ∈ Λw− lim inf
x→ (1+1/k)

Î(x), it means that the mapping

I : Ξ→ R2 is Λw-lower semicontinuous at these points and in fact on the whole domain Ξ. Let
λ∗ =

[
λ1
λ2

]
be any vector with non-negative components, i.e. λ∗ ∈ Λ∗. Then the scalar function

Iλ∗ , associated with the vector-valued mapping I by the scheme of the “weighted sum”, can be
represented in the form

(6.8) Iλ∗(x) := 〈λ∗, I(x)〉Z∗;Z =

{
λ1x+ λ2, if x 6= 1 + 1/k,
λ2(1 + k), if x = 1 + 1/k,

∀ k ∈ N ∀x ∈ Ξ.

To be sure that the lower semicontinuity property for this function at the points xk = 1 + 1/k is
valid, we have to choose the parameters λ1 and λ2 so that the inequality

(6.9) λ2(1 + k) ≤ λ1(1 + 1/k) + λ2

holds true for every k ∈ N.
However, taking into account the non-negativeness of λi and passing in (6.9) to the limit as

k →∞, we obtain λ2 = 0. As a result, we have

(6.10) Iλ∗(x) =

{
λ1x, if x 6= 1 + 1/k,
0, if x = 1 + 1/k,

∀ k ∈ N ∀x ∈ Ξ.

Nevertheless, as follows from (6.10), the inequality Iλ∗(1) ≤ lim infk→∞ Iλ∗(xk) does not hold
for any λ1 > 0 with the exception of λ1 = 0. Thus, there is a unique scalar function in the
collection (6.8) satisfying the lower semicontinuity property in the domain Ξ = [1, 2]. This
function is Iλ∗(x) = 0.

The next example shows a vector-value mapping I : Ξ→ Z not quasi lower semicontinuous
at any point of Ξ, whereas it is Λw-lower semicontinuous on Ξ.

Example 6.5. Let Ξ be a bounded closed convex subset of a reflexive infinite-dimensional Ba-
nach space X , let Z = R2, and let Λ = R2

+ be the cone of positive elements in R2. Let us
consider the mapping I : Ξ→ R2 defined as follows

I(x) =

[
‖x‖
−‖x‖

]
, ∀x ∈ Ξ.

Then I(Ξ) is a segment

D =

{
z ∈ R2 : z = α

[
m
−m

]
+ (1− α)

[
M
−M

]
, α ∈ [0, 1]

}
,

where m = min
x∈Ξ
‖x‖ and m = max

x∈Ξ
‖x‖. Hence each element of Ξ is a Λw-efficient solution to

the corresponding problem 〈Ξ, I,Λ〉 since Λw− Inf
x∈Ξ

I(x) = D. However, since

(6.11) lim inf
k→∞

‖xk‖ ≥ ‖x‖, ∀xk ⇀ x in X,

and equality sometimes fails, the lower and quasi lower semicontinuity properties for I : Ξ →
R2 do not hold at any points x ∈ Ξ.

At the same time for every x0 ∈ Ξ we have Lw(I, x0) :=
⋃

xk⇀x0

L{I(xk)} ⊂ Λw − Inf
x∈Ξ

I(x),

and I(x0) ∈ Λw− Inf
x∈Ξ

I(x) due to (6.11). Thus, the objective function I : Ξ→ Z is sequentially

Λw-lower semicontinuous at each point of Ξ. Let λ∗ =
[
λ1
λ2

]
be a vector such that λ2 > λ1 > 0,

whence λ∗ ∈ Λ]. Then the scalar function Iλ∗ , associated with the vector-valued mapping I,
takes the form Iλ∗(x) = (λ1 − λ2)‖x‖. As a result, we come to the same conclusion as in the
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previous example: none of these scalar functions is lower semicontinuous with respect to the
weak topology of X .

7. GENERALIZED SOLUTIONS AND WELL-POSED SCALARIZED PROBLEMS

Let us rewrite the scalar minimization problem (6.1)–(6.3) as follows

(7.1) min Jε,λ∗(u, y), (u, y) ∈ Ξ,

where Jε,λ∗(u, y) = 〈λ∗, Iε(u, y)〉Z∗;Z and Ξ is the set of admissible solutions.
Denote by

Sol(Ξ; Jε,λ∗) := Argmin
(u,y)∈Ξ

Jε,λ∗(u, y)

the solution set to the problem (7.1). We recall that the problem (7.1) is said to be well-
posed in the generalized sense when every minimizing sequence {(uk, yk)}∞k=1 ⊂ Ξ (i.e. such
that Jε,λ∗(uk, yk) → inf(u,y)∈Ξ Jε,λ∗(u, y)) has a subsequence w-converging to some pair of
Sol(Ξ; Jε,λ∗). We recall also a generalization of the above mentioned notion. The problem
(7.1) is said to be well-set when every minimizing sequence contained in Ξ\Sol(Ξ; Jε,λ∗) has a
w-cluster pair in Sol(Ξ; Jε,λ∗). However, as follows from the arguments of the previous section,
the problem (6.1)–(6.3) is neither well-posed nor well-set, in general. The main reason is the
Λw-lower semicontinuity property of the objective function I .

In view of this we introduce the following notion.

Definition 7.1. We say that a pair (u∗, y∗) ∈ Ξ is a generalized Λw-solution of the vector
optimization problem 〈Ξ, I,Λ〉 if there exist a sequence {(uk, yk)}∞k=1 ⊂ Ξ and an element
ξ ∈ Λw − Inf

(u,y)∈Ξ
I(u, y) such that (uk, yk)

w
⇀ (u∗, y∗) and I(uk, yk) ⇀ ξ in Z.

We denote by GenSolw (Ξ; I; Λ) the set of all generalized Λw-solutions to problem 〈Ξ, I,Λ〉.
It is clear that Solw(Ξ; I; Λ) ⊆ GenSolw (Ξ; I; Λ). However, as the following example indi-
cates, the inclusion GenSolw (Ξ; I; Λ) ⊂ Eff (Ξ; I; Λ) does not generally hold.

Example 7.2. Let Ξ be a unit ball in some normed space X centered at the origin, that is,
Ξ = {x ∈ X : ‖x‖ ≤ 1}. Let S = ∂ Ξ be the unit sphere in X , let Z = R2, and let Λ = R2

+

be the cone of positive elements in R2. Let us consider the mapping I : Ξ→ R2 defined by

I(x) =

[
1 + ‖x‖
1 + ‖x‖

]
if x ∈ Ξ \ {0 ∪ S} , I(x) =

[
1

2

]
if x ∈ S, I(0) =

[
2

1

]
.

Then Λ −Min(I(Ξ)) =
{[

1
2

]
,
[

2
1

]}
, Eff (Ξ; I; Λ) = {0} ∪ S, and Λw − Inf

x∈Ξ
I(x) =

{[
1
1

]}
.

Hence, Solw(Ξ; I; Λ) = ∅. However, the set of generalized Λw-solutions of the problem
〈Ξ, I,Λ〉 is nonempty. Indeed, let us fix a sequence {xk}∞k=1 ⊂ Ξ such that xk ⇀ 0 in X
and I(xk) →

{[
1
1

]}
. Then, in view of Definition 7.1, we have 0 ∈ GenSolw (Ξ; I; Λ) and, in

fact, GenSolw (Ξ; I; Λ) = {0}.
Having taken λ∗ =

[
1
0

]
, we consider the following scalar problem associated with the vector

problem 〈Ξ, I,Λ〉:

(7.2) Iλ∗(x) := 〈λ∗, I(x)〉Z∗;Z =

 1 + ‖x‖, if ‖x‖ < 1 and x 6= 0,
1, if ‖x‖ = 1,
2, if x = 0

It is a matter of direct verification to show that Argmin
x∈Ξ

Iλ∗(x) = {x ∈ Ξ : ‖x‖ = 1}. As

a result, we have GenSolw (Ξ; I; Λ) ∩ Argmin
x∈Ξ

Iλ∗(x) = ∅. Thus, any solution of the scalar
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Figure 6: The set I(Ξ) to Example 7.2

problem (7.2) is neither a Λw-efficient solution nor a generalized one to the vector problem
〈Ξ, I,Λ〉.

We begin with the following result.

Lemma 7.3. Assume that the properties (A1)–(A6) hold true. Let scw 〈λ∗, I(u, y)〉Z∗;Z be
the lower semicontinuous envelope of the functional 〈λ∗, I(u, y)〉Z∗;Z with respect to the w-
convergence in U × Y , where λ∗ ∈ Λ∗. Then the optimal control problem

J̃ε,λ∗(u, y)=scw 〈λ∗, I(u, y)〉Z∗;Z+ε−1 sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z→ inf,(7.3)

A(u, y) = f,(7.4)
y ∈ K, u ∈ U∂ ⊂ U,(7.5)

has a nonempty set of solutions for every ε > 0, ∀µ ∈ F(R,R+), and ∀ b ∈ Λ \ 0.

Proof. First of all, we show that the cost functional J̃ε,λ∗ : U∂ × Y → R is bounded below
on the set Ξ. Let us assume the converse. Then there exists a sequence {(uk, yk)}∞k=1 ⊂ Ξ

such that J̃ε,λ∗(uk, yk) < −k for all k ∈ N. Due to the initial assumptions and using the same
arguments as in Lemma 5.3, it can be shown that there exists a pair (û, ŷ) ∈ Ξ such that, passing
to a subsequence if necessary, we obtain (uk, yk)

w
⇀ (û, ŷ). Then, having used the sequentially

lower semi-continuity of the cost functional J̃ε,λ∗ with respect to the w-convergence and non-
negativeness of the term

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z ,

we come to the contradiction

J̃ε,λ∗(û, ŷ) ≤ lim inf
k→∞

J̃ε,λ∗(uk, yk) ≤ lim inf
k→∞

J̃ε,λ∗(uk, yk) < −∞.

Thus the cost functional J̃ε,λ∗ : U∂ × Y → R is bounded below on the set Ξ.
Let {(uk, yk)}∞k=1 ⊂ Ξ be a minimizing sequence of admissible pairs to the problem (7.3)–

(7.5). By the previous arguments, this sequence is bounded in U × Y . Since Ξ ⊂ U∂ × K
and the set U∂ × K is sequentially closed with respect to the w-convergence, we may assume
that there exists a pair (u0

ε, y
0
ε) ∈ U∂ ×K such that (uk, yk)

w
⇀ (u0

ε, y
0
ε). Then, in view of the

(M)-property of the operator A : U × Y → Y ∗, and taking into account that A(uk, yk) = f for
all k ∈ N, we just conclude: A(u0

ε, y
0
ε) = f . Thus, the limit pair (u0

ε, y
0
ε) is an admissible pair

to the problem (7.3)–(7.5).
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Let us show that (u0
ε, y

0
ε) ∈ Ξ is an optimal pair to this problem. Indeed, as was noted in

Lemma 5.3, the function

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
is semi-continuous with respect to the w-convergence. Therefore,

inf
(u,y)∈Ξ

J̃ε,λ∗(u, y) = lim inf
k→∞

J̃ε,λ∗(uk, yk)

≥ scw
〈
λ∗, I(u0

ε, y
0
ε)
〉
Z∗;Z

+ ε−1 lim inf
k→∞

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (uk, yk)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z

≥ J̃ε,λ∗(u
0
ε, y

0
ε),

and we obtain the required conclusion: (u0
ε, y

0
ε) is an optimal pair to the penalized problem

(7.3)–(7.5).

Let us denote by Argmin
(u,y)∈Ξ

J̃ε,λ∗(u, y) the set of optimal pairs to the problem (7.3)–(7.5) for

fixed ε > 0, µ ∈ F(R,R+), λ∗ ∈ Λ∗, and b ∈ Λ.

Lemma 7.4. Under the assumptions of Lemma 7.3, the following inclusion is valid:

(7.6)
⋃
λ∗∈Λ]

Argmin
(u,y)∈Ξ

J̃ε,λ∗(u, y) ⊆ GenSolw (Ξ; Iε; Λ).

Proof. For an arbitrary λ∗ ∈ Λ], let us fix a pair

(7.7) (u∗ε, y
∗
ε) ∈ Argmin

(u,y)∈Ξ

J̃ε,λ∗(u, y).

Since scw 〈λ∗, I(u, y)〉Z∗;Z is the lower w-semicontinuous envelope of the functional

〈λ∗, I(u, y)〉Z∗;Z ,

it follows that there exists a sequence {(uk, yk)}∞k=1 ⊂ Ξ such that (uk, yk)
w
⇀ (u∗ε, y

∗
ε) and

lim
k→∞
〈λ∗, Iε(uk, yk)〉Z∗;Z = J̃ε,λ∗(u

∗
ε, y
∗
ε) ≤ ( by condition (7.7) )

≤ J̃ε,λ∗(u, y) ≤ 〈λ∗, Iε(u, y)〉Z∗;Z ∀(u, y) ∈ Ξ.(7.8)

Since λ∗ ∈ Λ], by (7.8) the sequence {Iε(uk, yk)}∞k=1 is bounded in Z. So, we may suppose the
existence of an element η ∈ Z such that Iε(uk, yk) ⇀ η in Z as k →∞.

For now we assume that

(7.9) (u∗ε, y
∗
ε) 6∈ GenSolw (Ξ; Iε; Λ).

Then, as follows from Definition 7.1, η 6∈ Λw − Inf
(u,y)∈Ξ

Iε(u, y). Hence, there can be found an

element ξ ∈ Λw − Inf
(u,y)∈Ξ

Iε(u, y) such that ξ <Λ η. Therefore η − ξ ∈ Λ \ {0}, and using the

fact that λ ∈ Λ], we come to the inequality

(7.10) 〈λ∗, η〉Z∗;Z>〈λ
∗, ξ〉Z∗;Z which is equivalent to lim

k→∞
〈λ∗, Iε(uk, yk)〉Z∗;Z>〈λ

∗, ξ〉Z∗;Z .
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On the other hand, there exists a sequence {(vk, pk)}∞k=1 ⊂ Ξ such that Iε(vk, pk) ⇀ ξ in Z.
Since the set Ξ is sequentially compact with respect to the w-convergence (see Lemma 5.3), we
may suppose that (vk, pk)

w
⇀ (v∗, p∗) ∈ Ξ. Then, by inequality (7.8), we deduce

(7.11) lim
k→∞
〈λ∗, Iε(uk, yk)〉Z∗;Z ≤ 〈λ

∗, Iε(vi, pi)〉Z∗;Z , ∀ i ∈ N.

Passing to the limit in (7.11) as i→∞, we get

lim
k→∞
〈λ∗, Iε(uk, yk)〉Z∗;Z ≤ 〈λ

∗, ξ〉Z∗;Z .

However, this contradicts (7.10) and (7.9), concluding the proof.

Before proceeding further, we recall the concept of the upper limit in the sense of Kuratowski
of a set sequence {Cε}ε→0 ⊂ U × Y . Then the weak upper limit, in the sense of Kuratowski of
the set sequence {Cε}ε>0 ⊂ U × Y with respect to the w-convergence in U × Y , is defined by

w− lim sup
ε→0

Cε =

{
(u, y) ∈ U × Y : ∃(uεk , yεk) ∈ Cεk such that

∣∣∣∣ εk → 0 as k →∞,
(uεk , yεk)

w
⇀ (u, y)

}
.

We are now in a position to prove our main result.

Theorem 7.5. Assume that (A1)–(A6) hold and the vector optimization problem (2.1)–(2.4) is
regular. Let ε be a small scalar parameter varying in a strictly decreasing sequence of positive
numbers which converge to 0, and let λ∗ be an element of Λ]. Then

(7.12) w− lim sup
ε→0

[
Argmin
(u,y)∈Ξ

J̃ε,λ∗(u, y)

]
⊆ GenSolw (Ξ; I; Λ).

Proof. Let

{
(u∗ε, y

∗
ε) ∈ Argmin

(u,y)∈Ξ

J̃ε,λ∗(u, y)

}
ε>0

be a sequence of optimal pairs to the corre-

sponding minimization problems (7.3)–(7.5). Then, in view of Lemma 7.4, we have (u∗ε, y
∗
ε) ∈

GenSolw (Ξ; Iε; Λ) for every ε > 0. Our aim is to show that each w-cluster point of this se-
quence is a generalized Λw-solution of the original vector optimization problem (2.1)–(2.4).

By analogy with Lemma 5.4, it can be shown that the sequence {(u∗ε, y∗ε)}ε>0 is relatively w-
compact. Hence a subsequence of {(u∗ε, y∗ε)}ε>0, still denoted by the suffix ε, can be extracted
such that (u∗ε, y

∗
ε)

w
⇀ (u∗, y∗) as ε tends to zero, where (u∗, y∗) ∈ Ξ.

Let us show that this pair is admissible for the problem (2.1)–(2.4). To do so, it is enough to
prove the inequality F (u∗, y∗) ≥Λ 0. By the initial assumptions, we have

µ
(
〈ψ, F (u, y)〉Z∗;Z

)
= 0 for any (u, y) ∈ Ξ.

Therefore

J̃ε,λ∗(u
∗
ε, y
∗
ε) ≤ J̃ε,λ∗(u, y) ≡ scw 〈λ∗, I(u, y)〉Z∗;Z for every ε > 0.

Whence

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u∗ε, y

∗
ε)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z ≤ εC,
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where the constant C is independent of both ε and ψ ∈ S∗1 ∩ Λ∗. Then, using the w-lower
semi-continuity property of the scalar function supψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u, y)〉Z∗;Z

)]
, we have

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u∗, y∗)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z

≤ lim inf
ε→0

sup
ψ∈S∗1∩Λ∗

[
µ
(
〈ψ, F (u∗ε, y

∗
ε)〉Z∗;Z

)]
〈λ∗, b〉Z∗;Z = 0.

Since this is equivalent to the inequality F (u∗, y∗) ≥ 0, it follows that the w-cluster pair (u∗, y∗)
is admissible to the original problem (2.1)–(2.4).

Our next step is to prove that the pair (u∗, y∗) ∈ Ξ is an optimal one to the minimization
problem

J̃λ∗(u, y) := scw 〈λ∗, I(u, y)〉Z∗;Z → inf,(7.13)

A(u, y) = f, F (u, y) ≥Λ 0,(7.14)
y ∈ K, u ∈ U∂ ⊂ U.(7.15)

Let us assume the converse. Namely, there is a pair (û, ŷ) ∈ Ξ such that J̃λ∗(û, ŷ) < J̃λ∗(u
∗, y∗).

Then this pair is admissible to the penalized problem (7.3)–(7.5). Hence

J̃λ∗(û, ŷ) ≡ J̃ε,λ∗(û, ŷ) ≥ inf
(u,y)∈Ξ

J̃ε,λ∗(u, y) = J̃ε,λ∗(u
∗
ε, y
∗
ε), ∀ ε > 0,(7.16)

J̃λ∗(û, ŷ) ≥ lim inf
ε→0

J̃ε,λ∗(u
∗
ε, y
∗
ε) ≥ lim inf

ε→0
scw 〈λ∗, I(u∗ε, y

∗
ε)〉Z∗;Z ≥ J̃λ∗(u

∗, y∗),(7.17)

and it leads us to the contradiction.
Thus (u∗, y∗) ∈ Argmin

(u,y)∈Ξ

J̃λ∗(u, y). As a result, using the arguments of the proof in Lemma

7.4, we come to the required conclusion (u∗, y∗) ∈ GenSolw (Ξ; I; Λ).

Remark 7.6. In spite of the result of Theorem 7.5, we should note that the inclusion

(7.18) w− lim sup
ε→0

[
GenSolw (Ξ; Iε; Λ)

]
⊆ GenSolw (Ξ; I; Λ)

can be wrong in general. Indeed, let
{

(u∗ε, y
∗
ε) ∈ GenSolw (Ξ; Iε; Λ)

}
ε>0

be a sequence of
generalized Λw-solutions to the penalized vector optimization problem (5.5)–(5.7). In view
of Lemma 7.4, we can assume that there exists a sequence

{
λ∗ε ∈ Λ]

}
ε>0

such that

(u∗ε, y
∗
ε) ∈ Argmin

(u,y)∈Ξ

J̃ε,λ∗ε(u, y) for all ε > 0.

Moreover, taking into account the structure of the cost functionals (7.3), we can suppose that
this sequence is compact with respect to the strong topology of Z. Closely following the line
of the previous proof, it can be shown that {(u∗ε, y∗ε)}ε>0 is relatively w-compact, and every w-
cluster pair (u∗, y∗) belongs to the set Ξ. Then, passing in (7.3) (where λ∗ should be replaced by
λ∗ε) to the limit as ε→ 0 and using the inequalities (7.16)–(7.17), it is easy to prove that (u∗, y∗)
is an optimal pair to the minimization problem (7.13)–(7.15), where the vector λ∗ is a strong
limit of the sequence

{
λ∗ε ∈ Λ]

}
ε>0

. However, in this case we cannot assert that the vector λ∗

is a quasi-interior point of the dual cone Λ∗. So, in general, we only have λ∗ ∈ Λ∗. But, as
Example 7.2 indicates, the solutions of the scalar problem (7.13)–(7.15) when λ∗ ∈ Λ∗ \Λ] are
neither Λw-efficient nor generalized solutions to the vector optimization problem 〈Ξ, I,Λ〉.
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8. APPLICATION AND FINAL REMARKS

In this section we illustrate the results obtained above with some examples. Let Ω ⊂ Rn be
an open bounded domain with a Lipschitz boundary ∂Ω, and let D be its subdomain with the
characteristic function χD. For a given function f ∈ Lq(Ω), ξ ∈ W 1,p

0 (Ω), and v∗ ∈ Lq(∂Ω),
we consider the following control object

n∑
i=1

∂

∂xi

(∣∣∣∣ ∂y∂xi
∣∣∣∣p−2

∂y

∂xi

)
= f(x), x ∈ Ω,(8.1)

∂y

∂νA

∣∣∣∣
∂Ω

= u(x), x ∈ ∂Ω,(8.2)

u ∈ U∂ =
{
v ∈ Lq(∂Ω) : ‖v − v∗‖Lq(∂Ω) ≤ α

}
,(8.3)

|(y(x)− ξ(x))| ≤ β almost everywhere in D.(8.4)

Here u is a control function, y is a state of the control object,

∂y

∂νA
=

n∑
i=1

∣∣∣∣ ∂y∂xi
∣∣∣∣p−2

∂y

∂xi
νi(x),

α > 0, β > 0, p ≥ 2, and p−1 + q−1 = 1.
Let Λ be the cone of positive elements in Lp(Ω), i.e., η ∈ Λ if η(x) ≥ 0 almost everywhere in

Ω. It is clear that Λ] 6= ∅ whereas int Λ = int Λ∗ = ∅. Clearly, this cone is reproducing, since
each function x ∈ Lp(Ω) can be represented as x = x+ − x−, where x+ = max {x, 0} , x− =
max {−x, 0}, and x+, x− ∈ Λ. Moreover, as it is shown in [15], this cone possesses the D-
property. For every pair (u, y) ∈ Lq(∂Ω) × W 1,p(Ω) we define an objective mapping I :
Lq(∂Ω)×W 1,p(Ω)→ Lp(Ω) by the rule

(8.5) I(u, y) =
n∑
i=1

∣∣∣∣∂y(x)

∂xi

∣∣∣∣ .
Then the vector optimization problem for the object (8.1)–(8.4) we consider can be stated as
follows:

(8.6) Minimize I(u, y) (with respect to the cone Λ)

subject to the restrictions (8.1)–(8.4). From the physical point of view it means that we try “to
minimize the total oscillation” of the function y ∈ W 1,p(Ω) which has be pointwise close to the
given function ξ upon the domain D ⊂ Ω.

To rewrite this problem in the form of the vector optimization problem (2.1)–(2.4), we use
the following notations. Let

(8.7) U = Lq(∂Ω), Y = W 1,p(Ω), F (u, y) = (β − |y(x)− ξ(x)|)χD(x), K = W 1,p(Ω),

and let A : Lq(∂Ω) ×W 1,p(Ω) → (W 1,p(Ω))
∗ be the nonlinear operator associated with the

boundary value problem (8.1)–(8.2). We define the w-convergence in U × Y as the weak
convergence in Lq(∂Ω)×W 1,p(Ω).

It is easy to see that the boundary value problem (8.1)–(8.2) is non-coercive. Hence we cannot
assert that this problem has a solution y(u) ∈ W 1,p(Ω) for every u ∈ U∂ . So, we deal with an
incorrect problem from the point of view of partial differential equations theory. Nevertheless,
if we take u = ∂ξ/∂νA| ∂Ω and ξ ∈ W 1,p

0 (Ω) as the unique solution of (8.1) with the Dirichlet
boundary condition y|∂Ω = 0, then the pair (u, ξ) will be admissible to the problem (8.1)–(8.6).
So, we may suppose that Ξ 6= ∅ for the given initial data, and hence the vector optimization
problem (8.1)–(8.6) is regular.
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Let us verify the hypotheses (A1)–(A6). Taking into account the notations (8.7), the fulfil-
ment of the hypotheses (A1), (A2), (A4), and (A5) is obvious. The quasi-monotonicity property
of the operatorA (which implies the (M)-property due to Remark 5.7 ) has been proved in [14].
As for the Λw-lower semicontinuity property of the objective mapping (8.5), it immediately fol-
lows from the weak continuity of this mapping in Lp(Ω) with respect to the w-convergence.

Thus, in view of Theorems 5.6–7.5, we can give the following conclusion: the set of Λw-
efficient solutions to the vector optimization problem (8.1)–(8.6) is nonempty,

Solw(Ξ; I; Λ) ⊆ GenSolw (Ξ; I; Λ),

and the generalized Λw-solutions can be obtained as cluster points of the solutions sequence
{(u∗ε, y∗ε)}ε>0 to the following penalized optimal control problem

J̃ε,λ∗(u, y) =

∫
Ω

λ∗(x)

(
n∑
i=1

∣∣∣∣∂y(x)

∂xi

∣∣∣∣
)
dx

+ε−1 sup
ϕ∈S∗1∩Λ∗

[
µ

(∫
D
ϕ(x) (β − |y(x)− ξ(x)|) dx

)]∫
Ω

λ∗(x) dx→ inf

subject to the restrictions (8.1)–(8.3), where λ∗ is any element of Λ] ⊂ Lq(Ω).
We conclude the paper with the following observation. As follows from definition of the

Λw-lower semicontinuity for vector-valued mappings I : Ξ → Z, this property essentially
depends on the domain Ξ ⊂ U × Y . In fact, the assertion: “if I : U × Y → Z is a Λw-
lower semicontinuous mapping then its restriction on any bounded subset Ξ ⊂ U ×Y preserves
this property at every point of Ξ” can be wrong in general. However such a situation is both
natural and typical in the vectorial case. Indeed, for different sets of admissible solutions Ξ1,Ξ2

(Ξ1 ∩Ξ2 6= ∅) and any pair (u0, y0) such that (u0, y0) ∈ Ξ∩Ξ2, the sets Λw− Inf Lw(I(u0, y0))
and Λw − Inf

(u,y)∈Ξi

I(u, y) are not singletons in general. So, the sets

Λw − Inf Lw(I(u0, y0)) ∩ Λw − Inf
(u,y)∈Ξ1

I(u, y),

Λw − Inf Lw(I(u0, y0)) ∩ Λw − Inf
(u,y)∈Ξ2

I(u, y),

can be drastically different as well. Thus, in view of Definition 3.5 and condition (4.2), the
mappings I : Ξ1 → Z and I : Ξ2 → Z can be distinguished by the Λw-lower semicontinuity
property at the point (u0, y0) ∈ Ξ ∩ Ξ2.
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