
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 5, Issue 2, Article 10, pp. 1-21, 2009

STABILITY OF A MIXED ADDITIVE, QUADRATIC AND CUBIC FUNCTIONAL
EQUATION IN QUASI–BANACH SPACES

A. NAJATI AND F. MORADLOU

Received 29 July, 2007; accepted 12 May, 2008; published 31 January, 2009.

DEPARTMENT OFMATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF MOHAGHEGH ARDABILI ,
ARDABIL , IRAN.

a.nejati@yahoo.com

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF TABRIZ , TABRIZ , IRAN.
moradlou@tabrizu.ac.ir

ABSTRACT. In this paper we establish the general solution of a mixed additive, quadratic and
cubic functional equation and investigate the Hyers–Ulam–Rassias stability of this equation in
quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M.
Rassias’ stability theorem that appeared in his paper: On the stability of the linear mapping in
Banach spaces,Proc. Amer. Math. Soc.72 (1978), 297–300.

Key words and phrases:Hyers–Ulam–Rassias stability, Cubic function, Quadratic function, Additive function,Quasi-Banach
space,p-Banach space.

2000Mathematics Subject Classification.Primary 39B72, 46B03. Secondary 47Jxx.

ISSN (electronic): 1449-5910

c© 2009 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto:Abbas Najati <a.nejati@yahoo.com>
mailto:Fridoun Moradlou <moradlou@tabrizu.ac.ir>
http://www.ams.org/msc/


2 A. NAJATI AND F. MORADLOU

1. I NTRODUCTION

In 1940, S. M. Ulam [18] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

Let (G1, ∗) be a group and let(G2, �, d) be a metric group with the metricd(·, ·). Given
ε > 0, does there exist aδ(ε) > 0 such that if a functionh : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphismH : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
In 1941, D. H. Hyers [8] considered the case of approximately additive functionsf : E → E ′,

whereE andE ′ are Banach spaces andf satisfiesHyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for allx ∈ E and thatL : E → E ′ is the unique additive function satisfying

‖f(x)− L(x)‖ ≤ ε.

In 1978, Th. M. Rassias [15] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded.

Quadratic functional equation was used to characterize inner product spaces [1, 2, 9]. Several
other functional equations were also to characterize inner product spaces. A square norm on an
inner product space satisfies the important parallelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is related to a symmetric bi-additive function [1, 12]. It is natural that the equation 1.1 is
called a quadratic functional equation. In particular, every solution of the quadratic equation
(1.1) is said to be a quadratic function. It is well known that a functionf between real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive functionB such
thatf(x) = B(x, x) for all x (see [1, 12]). The biadditive functionB is given by

(1.2) B(x, y) =
1

4

(
f(x+ y)− f(x− y)

)
.

A Hyers–Ulam stability problem for the quadratic functional equation(1.1) was proved by
Skof for functionsf : E1 → E2, whereE1 is a normed space andE2 a Banach space (see [17]).
Cholewa [4] noticed that the theorem of Skof is still true if the relevant domainE1 is replaced
by an Abelian group. In the paper [5], Czerwik proved the Hyers–Ulam–Rassias stability of
the quadratic functional equation(1.1). Grabiec [7] has generalized these results mentioned
above. Jun and Lee [10] proved the Hyers–Ulam–Rassias stability of the pexiderized quadratic
equation(1.1).

Jun and Kim [11] introduced the following cubic functional equation

(1.3) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)
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ON THE STABILITY OF A FUNCTIONAL EQUATION 3

and they established the general solution and the generalized Hyers–Ulam–Rassias stability
problem for the functional equation(1.3). They proved that a functionf : E1 → E2 satisfies
the functional equation(1.3) if and only if there exists a functionB : E1 × E1 × E1 → E2

such thatf(x) = B(x, x, x) for all x ∈ E1, andB is symmetric for each fixed one variable and
additive for each fixed two variables. The functionB is given by

B(x, y, z) =
1

24
[f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z)]

for all x, y, z ∈ E1.
It is easy to see that the functionf(x) = cx3 is a solution of the functional equation(1.3).

Thus, it is natural that(1.3) is called acubic functional equationand every solution of the cubic
functional equation(1.3) is said to be acubic function.

In this paper, we deal with the following functional equation deriving from cubic, quadratic
and additive functions:

f
( 4∑

i=1

xi

)
+

∑
1≤i<j≤4

f(xi + xj) =
4∑

i=1

f(xi) +
∑

1≤i<j<k≤4

f(xi + xj + xk).(1.4)

It is easy to see that the functionf(x) = ax3+bx2+cx is a solution of the functional equation
(1.4). For some results concerning the functional equation (1.4), we refer the reader to [13].

The main purpose of this paper is to establish the general solution of Eq.(1.4) and investigate
the Hyers–Ulam–Rassias stability for Eq.(1.4).

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1. [3, 16] LetX be a real linear space. Aquasi-normis a real-valued function on
X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and allx ∈ X.

(iii) There is a constantK ≥ 1 such that‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X.

It follows from condition(iii) that∥∥∥ 2n∑
i=1

xi

∥∥∥ ≤ Kn

2n∑
i=1

‖xi‖,
∥∥∥ 2n+1∑

i=1

xi

∥∥∥ ≤ Kn+1

2n+1∑
i=1

‖xi‖

for all integersn ≥ 1 and allx1, x2, . . . , x2n+1 ∈ X.
The pair(X, ‖.‖) is called aquasi-normed spaceif ‖.‖ is a quasi-norm on X. The smallest

possibleK is called themodulus of concavityof ‖.‖. A quasi-Banach spaceis a complete
quasi-normed space.

A quasi-norm‖.‖ is called ap-norm(0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called ap-Banach space.
By the Aoki–Rolewicz theorem [16] (see also [3]), each quasi-norm is equivalent to some

p-norm. Since it is much easier to work withp-norms than quasi-norms, henceforth we restrict
our attention mainly top-norms.

2. SOLUTIONS OF EQ. (1.4)

Throughout this section,X andY will be real vector spaces. Before proceeding the proof of
Theorem 2.4 which is the main result in this section, we shall need the following lemmas.

Lemma 2.1. If an even functionf : X → Y satisfies (1.4), thenf is quadratic.
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4 A. NAJATI AND F. MORADLOU

Proof. Note that, in view of the evenness off, we havef(−x) = f(x) for all x ∈ X. Putting
x1 = x2 = x3 = x4 = 0 in (1.4), we get thatf(0) = 0. Lettingx1 = x2 = x andx3 = x4 = y
in (1.4), we get

(2.1)
f(2x+ 2y) + 4f(x+ y) + f(2x) + f(2y)

= 2f(2x+ y) + 2f(x+ 2y) + 2f(x) + 2f(y)

for all x, y ∈ X. Lettingy = −x in (2.1) and using the evenness off, we get that

(2.2) f(2x) = 4f(x)

for all x ∈ X. Therefore it follows from (2.1) and (2.2) that

(2.3) f(2x+ y) + f(x+ 2y) = 4f(x+ y) + f(x) + f(y)

for all x, y ∈ X. Replacingy by y − x in (2.3) and using the evenness off, we get

(2.4) f(x− 2y) = f(x− y)− f(x+ y) + f(x) + 4f(y)

for all x, y ∈ X. Replacingy by−y in (2.4) and using the evenness off, we get

(2.5) f(x+ 2y) = f(x+ y)− f(x− y) + f(x) + 4f(y)

for all x, y ∈ X. Replacingx andy by y andx in (2.5), respectively, and using the evenness of
f, we get

(2.6) f(2x+ y) = f(x+ y)− f(x− y) + f(y) + 4f(x)

for all x, y ∈ X. Adding (2.5) to (2.6) and using (2.3), we get that

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. Therefore the functionf : X → Y is quadratic.

Lemma 2.2. If an odd functionf : X → Y satisfies (1.4), then the functiong : X → Y defined
byg(x) = f(2x)− 8f(x) is additive.

Proof. Note that, in view of the oddness off, we havef(−x) = −f(x) for all x ∈ X. So
f(0) = 0. Replacingy by y − x in (2.1) and using the oddness off, we get

(2.7)
f(2y − 2x) + f(2x) + f(2y) + 4f(y)

= 2f(2y − x) + 2f(x+ y)− 2f(x− y) + 2f(x)

for all x, y ∈ X. Replacingx by−x in (2.7) and using the oddness off, we get

(2.8)
f(2x+ 2y)− f(2x) + f(2y) + 4f(y)

= 2f(x+ 2y) + 2f(x+ y)− 2f(x− y)− 2f(x)

for all x, y ∈ X. Replacingx andy by y andx in (2.8), respectively, and using the oddness of
f, we get

(2.9)
f(2x+ 2y)− f(2y) + f(2x) + 4f(x)

= 2f(2x+ y) + 2f(x+ y) + 2f(x− y)− 2f(y)

for all x, y ∈ X. Adding (2.8) to (2.9) and using the oddness off, we get

(2.10) 2f(2x+ y) + 2f(x+ 2y) = 2f(2x+ 2y)− 4f(x+ y) + 6f(x) + 6f(y)

for all x, y ∈ X. It follows from (2.1) and (2.10) that

f(2x+ 2y)− 8f(x+ y) = f(2x) + f(2y)− 8f(x)− 8f(y)

for all x, y ∈ X. So by the definition ofg, we have

g(x+ y) = g(x) + g(y)
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for all x, y ∈ X. Therefore the functiong : X → Y is additive.

Lemma 2.3. If an odd functionf : X → Y satisfies (1.4), then the functionh : X → Y defined
byh(x) = f(2x)− 2f(x) is cubic.

Proof. It is clear thatf(0) = 0. Let g : X → Y be a function defined byg(x) = f(2x)− 8f(x)
for all x ∈ X. By Lemma 2.2, the functiong, is additive. It is clear that

(2.11) h(x) = g(x) + 6f(x), f(2x) = g(x) + 8f(x)

for all x ∈ X. Therefore the functional equation (2.9) means

(2.12)
g(x+ y) + 8f(x+ y) + g(x) + 12f(x)− f(2y)

= 2f(2x+ y) + 2f(x+ y) + 2f(x− y)− 2f(y)

for all x, y ∈ X. Replacingy by−y in (2.12) and using the oddness off, we get

(2.13)
g(x− y) + 8f(x− y) + g(x) + 12f(x) + f(2y)

= 2f(2x− y) + 2f(x− y) + 2f(x+ y) + 2f(y)

for all x, y ∈ X. Adding (2.12) to (2.13) and using the additivity ofg, we get

(2.14) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) + 2g(x)

for all x, y ∈ X. So it follows from (2.11) and (2.14) that

(2.15)
h(2x+ y) + h(2x− y)− [g(2x+ y) + g(2x− y)]

= 2[h(x+ y) + h(x− y)] + 12h(x)− 2[g(x+ y) + g(x− y)]

for all x, y ∈ X. Sinceg is additive, then (2.15) implies that

h(2x+ y) + h(2x− y) = 2[h(x+ y) + h(x− y)] + 12h(x)

for all x, y ∈ X. Therefore the functionh is cubic.

Theorem 2.4. A functionf : X → Y satisfies the functional equation (1.4) if and only if there
exist functionsC : X ×X ×X → Y, B : X ×X → Y andA : X → Y such that

f(x) = C(x, x, x) +B(x, x) + A(x)

for all x ∈ X, where the functionC is symmetric for each fixed one variable and additive for
fixed two variables, the functionB is symmetric bi-additive and the functionA is additive.

Proof. We first assume thatf is a solution of the functional equation(1.4). We decomposef
into the even part and the odd part by putting

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)
2

for all x ∈ X. It is clear thatf(x) = fe(x) + fo(x) for all x ∈ X. It is easy to show that each
of the functionsfe andfo satisfies(1.4). Hence by Lemmas 2.1, 2.2 and 2.3 we achieve that the
functionsh, fe, g : X → Y are cubic, quadratic and additive, respectively, where

h(x) = fo(2x)− 2fo(x), g(x) = fo(2x)− 8fo(x)

for all x ∈ X. Therefore by Theorem [11, Theorem 2.1] there exists a functionC : X ×
X × X → Y such thath(x) = 6C(x, x, x) for all x ∈ X, andC is symmetric for each fixed
one variable and is additive for fixed two variables. Also there exists a symmetric bi-additive
functionB : X ×X → Y such thatfe(x) = B(x, x) for all x ∈ X (see [1, 12]). So

f(x) = C(x, x, x) +B(x, x) + A(x)
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6 A. NAJATI AND F. MORADLOU

for all x ∈ X, whereA(x) = −1
6
g(x) for all x ∈ X.

Conversely, let
f(x) = C(x, x, x) +B(x, x) + A(x)

for all x ∈ X, where the functionC is symmetric for each fixed one variable and additive for
fixed two variables, the functionB is symmetric bi-additive and the functionA is additive. By
a simple computation one can show that the functionf satisfies the equation (1.4).

3. HYERS–ULAM –RASSIAS STABILITY OF EQ. (1.4)

Throughout this paper, assume thatX is a quasi-normed space with quasi-norm‖.‖X and
thatY is ap-Banach space withp-norm‖.‖Y . LetK be the modulus of concavity of‖.‖Y .

In this section we have four parts. In each part, using an idea of Găvruta [6] we prove the
stability of Eq. (1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the
following abbreviation for a given functionf : X ×X ×X ×X → Y :

Df(x1, x2, x3, x4) : = f
( 4∑

i=1

xi

)
+

∑
1≤i<j≤4

f(xi + xj)−
4∑

i=1

f(xi)

−
∑

1≤i<j<k≤4

f(xi + xj + xk)

for all x1, x2, x3, x4 ∈ X.
We will use the following lemma in this section.

Lemma 3.1. [14] Let0 < p ≤ 1 and letx1, x2, . . . , xn be non-negative real numbers. Then

(3.1)
( n∑

i=1

xi

)p

≤
n∑

i=1

xp
i .

3.1. Part I. In this part, we find some conditions that there exists a true quadratic function near
an approximately quadratic function.

Theorem 3.2.Letϕ : X4 → [0,∞) be a function such that

(3.2) lim
n→∞

4nϕ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

and

(3.3) ϕ̃e(x) :=
∞∑
i=1

4ipϕp
( x

2i
,
x

2i
,− x

2i
,− x

2i

)
<∞

for all x, x1, x2, x3, x4 ∈ X. Suppose that an even functionf : X → Y satisfies the inequality

(3.4) ‖Df(x1, x2, x3, x4)‖Y ≤ ϕ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then the limit

(3.5) Q(x) := lim
n→∞

4nf
( x

2n

)
exists for allx ∈ X andQ : X → Y is a unique quadratic function satisfying

(3.6) ‖f(x)−Q(x)‖Y ≤ 1

8
[ϕ̃e(x)]

1
p

for all x ∈ X.
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Proof. It follows from (3.2) thatϕ(0, 0, 0, 0) = 0. So by lettingx1 = x2 = x3 = x4 = 0 in
(3.4), we get thatf(0) = 0. Lettingx1 = x2 = x andx3 = x4 = −x in (3.4), we get

(3.7) ‖f(2x)− 4f(x)‖Y ≤ 1

2
ϕ(x, x,−x,−x)

for all x ∈ X. If we replacex in (3.7) by x
2n+1 and multiply both sides of(3.7) to 4n, then we

have

(3.8)
∥∥∥4n+1f

( x

2n+1

)
− 4nf

( x

2n

)∥∥∥
Y
≤ 4n

2
ϕ
( x

2n+1
,
x

2n+1
,− x

2n+1
,− x

2n+1

)
for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space, we have

(3.9)

∥∥∥4n+1f
( x

2n+1

)
− 4mf

( x

2m

)∥∥∥p

Y

≤
n∑

i=m

∥∥∥4i+1f
( x

2i+1

)
− 4if

( x
2i

)∥∥∥p

Y

≤ 2−p

n∑
i=m

4ipϕp
( x

2i+1
,
x

2i+1
,− x

2i+1
,− x

2i+1

)
for all x ∈ X and all non-negative integersm andn with n ≥ m. Therefore we conclude from
(3.3) and(3.9) that the sequence{4nf( x

2n )} is a Cauchy sequence inY for all x ∈ X. Since
Y is complete, the sequence{4nf( x

2n )} converges inY for all x ∈ X. So one can define the
functionQ : X → Y by (3.5) for all x ∈ X. Lettingm = 0 and passing the limitn → ∞ in
(3.9), we get

(3.10)

‖f(x)−Q(x)‖p
Y ≤ 2−p

∞∑
i=0

4ipϕp
( x

2i+1
,
x

2i+1
,− x

2i+1
,− x

2i+1

)
=

1

8p

∞∑
i=1

4ipϕp
( x

2i
,
x

2i
,− x

2i
,− x

2i

)
for all x ∈ X. Therefore we obtain(3.6). Now, we show thatQ is quadratic. It follows from
(3.2), (3.4) and(3.5),

‖DQ(x1, x2, x3, x4)‖Y = lim
n→∞

4n
∥∥∥Df(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)∥∥∥
Y

≤ lim
n→∞

4nϕ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

for all x1, x2, x3, x4 ∈ X. Therefore the functionQ : X → Y satisfies(1.4). Sincef is even,
thenQ is even. So by Lemma 2.1 we get that the functionQ : X → Y is quadratic.

To prove the uniqueness ofQ, let T : X → Y be another quadratic function satisfying(3.6).
Since

lim
n→∞

4npϕ̃e

( x

2n

)
= lim

n→∞
4np

∞∑
i=1

4ipϕp
( x

2n+i
,
x

2n+i
,− x

2n+i
,− x

2n+i

)
= lim

n→∞

∞∑
i=n+1

4ipϕp
( x

2i
,
x

2i
,− x

2i
,− x

2i

)
= 0

for all x ∈ X, then it follows from(3.6) that

‖Q(x)− T (x)‖p
Y = lim

n→∞
4np

∥∥∥f( x

2n

)
− T

( x

2n

)∥∥∥p

Y

≤ 1

8p
lim

n→∞
4npϕ̃e

( x

2n

)
= 0
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for all x ∈ X. SoQ = T.

Theorem 3.3.LetΦ : X4 → [0,∞) be a function such that

(3.11) lim
n→∞

1

4n
Φ(2nx1, 2

nx2, 2
nx3, 2

nx4) = 0

and

(3.12) Φ̃e(x) :=
∞∑
i=0

1

4ip
Φp(2ix, 2ix,−2ix,−2ix) <∞

for all x, x1, x2, x3, x4 ∈ X. Suppose that an even functionf : X → Y satisfies the inequality

(3.13) ‖Df(x1, x2, x3, x4)‖Y ≤ Φ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then the limit

(3.14) Q(x) := lim
n→∞

1

4n
f(2nx)

exists for allx ∈ X andQ : X → Y is a unique quadratic function satisfying

(3.15)
∥∥∥f(x)−Q(x) +

5

6
f(0)

∥∥∥
Y
≤ 1

8
[Φ̃e(x)]

1
p

for all x ∈ X.

Proof. Lettingx1 = x2 = x andx3 = x4 = −x in (3.4), we get

(3.16)
∥∥∥f(2x)− 4f(x) +

5

2
f(0)

∥∥∥
Y
≤ 1

2
Φ(x, x,−x,−x)

for all x ∈ X. If we replacex in (3.16) by 2nx and divide both side of(3.16) by 4n+1, then we
have

(3.17)

∥∥∥ 1

4n+1
f(2n+1x)− 1

4n
f(2nx) +

5

2× 4n+1
f(0)

∥∥∥
Y

≤ 1

2× 4n+1
Φ(2nx, 2nx,−2nx,−2nx)

for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space,

(3.18)

∥∥∥ 1

4n+1
f(2n+1x)− 1

4m
f(2mx) +

1

2

n∑
i=m

5

4i+1
f(0)

∥∥∥p

Y

≤
n∑

i=m

∥∥∥ 1

4i+1
f(2i+1x)− 1

4i
f(2ix) +

5

2× 4i+1
f(0)

∥∥∥p

Y

≤ 1

8p

n∑
i=m

1

4ip
Φp(2ix, 2ix,−2ix,−2ix)

for all x ∈ X and all non-negative integersm andn with n ≥ m. Since
∑∞

i=0
1
4i converges,

then it follows from (3.12) and(3.18) that the sequence{ 1
4nf(2nx) } is a Cauchy sequence in

Y for all x ∈ X. SinceY is complete, the sequence{ 1
4nf(2nx) } converges inY for all x ∈ X.

So one can define the functionQ : X → Y by (3.14).
The rest of the proof is similar to the proof of Theorem 3.2.
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Corollary 3.4. Letθ be a non-negative real number. Suppose that an even functionf : X → Y
satisfies the inequality

(3.19) ‖Df(x1, x2, x3, x4)‖Y ≤ θ

for all x1, x2, x3, x4 ∈ X. Then there exists a unique quadratic functionQ : X → Y satisfies

‖f(x)−Q(x)‖Y ≤ Kθ

2

[ 1

(4p − 1)
1
p

+
5

3

]
for all x ∈ X.

Proof. It follows from (3.19) that‖f(0)‖Y ≤ θ. Hence the result follows by Theorem 3.3.

Corollary 3.5. Letθ, {ri}i∈J be non-negative real numbers such thatri > 2 (0 < ri < 2) for all
i ∈ J, whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an even functionf : X → Y
satisfies the inequality

(3.20) ‖Df(x1, x2, x3, x4)‖Y ≤ θ
∑
i∈J

‖xi‖ri
X

for all x1, x2, x3, x4 ∈ X. Then there exists a unique quadratic functionQ : X → Y satisfies

‖f(x)−Q(x)‖Y ≤ θ

2

{∑
i∈J

1

|2pri − 4p|
‖x‖pri

X

} 1
p

for all x ∈ X.

Proof. It follows from (3.20) thatf(0) = 0. Hence the result follows by Theorems 3.2 and
3.3.

Corollary 3.6. Let θ, {ri}i∈J be non-negative real numbers such thatλ =
∑

i∈J ri ∈ (0, 2) ∪
(2,+∞), whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an even functionf : X →
Y satisfies the inequality

(3.21) ‖Df(x1, x2, x3, x4)‖Y ≤ θ
∏
i∈J

‖xi‖ri
X

for all x1, x2, x3, x4 ∈ X. Then there exists a unique quadratic functionQ : X → Y satisfies

‖f(x)−Q(x)‖Y ≤ θ

2|2λp − 4p|
1
p

‖x‖λ
X

for all x ∈ X.

Proof. The result follows by Theorems 3.2 and 3.3.

3.2. Part II. In this part, we find some conditions that there exists a true additive function near
an approximately additive function.

Theorem 3.7.Letϕ : X4 → [0,∞) be a function such that

(3.22) lim
n→∞

2nϕ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

and

(3.23)
∞∑
i=1

2ipϕp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
<∞

AJMAA, Vol. 5, No. 2, Art. 10, pp. 1-21, 2009 AJMAA

http://ajmaa.org


10 A. NAJATI AND F. MORADLOU

for all x, x1, x2, x3, x4 ∈ X andy = ±x. Suppose that an odd functionf : X → Y satisfies
the inequality (3.4) for allx1, x2, x3, x4 ∈ X. Let g : X → Y be a function defined byg(x) =
f(2x)− 8f(x) for all x ∈ X. Then the limit

(3.24) A(x) := lim
n→∞

2ng
( x

2n

)
exists for allx ∈ X andA : X → Y is a unique additive function satisfying

(3.25) ‖f(2x)− 8f(x)− A(x)‖Y ≤ K

2
[ϕ̃a(x)]

1
p

for all x ∈ X, where

(3.26) ϕ̃a(x) :=
∞∑
i=1

2ip

{
ϕp

( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pϕp

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
Proof. Lettingx1 = x2 = x3 = x4 = x in (3.4), we get

(3.27) ‖f(4x)− 4f(3x) + 6f(2x)− 4f(x)‖Y ≤ ϕ(x, x, x, x)

for all x ∈ X. Puttingx1 = x2 = x3 = x andx4 = −x in (3.4) and using the oddness off, we
have

(3.28) ‖f(3x)− 4f(2x) + 5f(x)‖Y ≤ ϕ(x, x, x,−x)
for all x ∈ X. It follows form (3.27) and(3.28) that

(3.29) ‖f(4x)− 10f(2x) + 16f(x)‖Y ≤ Kϕ1(x)

for all x ∈ X, where

(3.30) ϕ1(x) = ϕ(x, x, x, x) + 4ϕ(x, x, x,−x).
It follows from (3.29) and the definition ofg,

(3.31) ‖g(2x)− 2g(x)‖Y ≤ Kϕ1(x)

for all x ∈ X. If we replacex in (3.31) by
x

2n+1
and multiply both sides of(3.31) to 2n, we get

(3.32)
∥∥∥2n+1g

( x

2n+1

)
− 2ng

( x

2n

)∥∥∥
Y
≤ K2nϕ1

( x

2n+1

)
for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space,

(3.33)

∥∥∥2n+1g
( x

2n+1

)
− 2mg

( x

2m

)∥∥∥p

Y
≤

n∑
i=m

∥∥∥2i+1g
( x

2i+1

)
− 2ig

( x
2i

)∥∥∥p

Y

≤ Kp

n∑
i=m

2ipϕp
1

( x

2i+1

)
for all x ∈ X and all non-negative integersm andn with n ≥ m. Since0 < p ≤ 1, then by
Lemma 3.1, we get

(3.34) ϕp
1(x) ≤ ϕp(x, x, x, x) + 4pϕp(x, x, x,−x)

for all x ∈ X. Therefore it follows from(3.22), (3.23) and(3.34) that

(3.35)
∞∑
i=1

2ipϕp
1

( x
2i

)
<∞, lim

n→∞
2nϕ1

( x

2n

)
= 0

for all x ∈ X. Therefore we conclude from(3.33) and(3.35) that the sequence{2ng( x
2n )} is a

Cauchy sequence inY for all x ∈ X. SinceY is complete, the sequence{2ng( x
2n )} converges

in Y for all x ∈ X. So one can define the functionA : X → Y by (3.24) for all x ∈ X. Letting
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m = 0 and passing the limitn→∞ in (3.33), and using (3.34), we get (3.25). Now, we show
thatA is additive. It follow from(3.24), (3.32) and(3.35) that

‖A(2x)− 2A(x)‖ = lim
n→∞

∥∥∥2ng
( x

2n−1

)
− 2n+1g

( x

2n

)∥∥∥
= 2 lim

n→∞

∥∥∥2n−1g
( x

2n−1

)
− 2ng

( x

2n

)∥∥∥
≤ K lim

n→∞
2nϕ1

( x

2n

)
= 0

for all x ∈ X. Therefore

(3.36) A(2x) = 2A(x)

for all x ∈ X. On the other hand it follows from(3.4), (3.22) and(3.24),

‖DA(x1, x2, x3, x4)‖Y = lim
n→∞

2n
∥∥∥Dg(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)∥∥∥
Y

= lim
n→∞

2n

{∥∥∥Df( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)
− 8Df

(x1

2n
,
x2

2n
,
x3

2
,
x4

2n

)∥∥∥
Y

}
≤ K lim

n→∞
2n

{∥∥∥Df( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)∥∥∥
Y

+ 8
∥∥∥Df(x1

2n
,
x2

2n
,
x3

2
,
x4

2n

)∥∥∥
Y

}
≤ K lim

n→∞
2n

{
ϕ
( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)
+ 8ϕ

(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)}
= 0

for all x1, x2, x3, x4 ∈ X. Therefore the functionA : X → Y satisfies(1.4). Sincef is an odd
function, theng is odd. So(3.24) implies that the functionA : X → Y is odd. Therefore by
Lemma 2.2, the functionx 7→ A(2x) − 8A(x) is additive. So(3.36) implies that the function
A : X → Y is additive.

To prove the uniqueness ofA, let T : X → Y be another additive function satisfying(3.25).
Since

lim
n→∞

2np

∞∑
i=1

2ipϕp
( x

2n+i
,
x

2n+i
,
x

2n+i
,
y

2n+i

)
= lim

n→∞

∞∑
i=n+1

2ipϕp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
= 0

for all x ∈ X andy ∈ {x,−x}, then

(3.37) lim
n→∞

2npϕ̃a

( x
2n

)
= 0

for all x ∈ X. It follows from (3.24), (3.25) and(3.37) that

‖A(x)− T (x)‖p
Y = lim

n→∞
2np

∥∥∥g( x

2n

)
− T

( x

2n

)∥∥∥p

Y

≤ Kp

2p
lim

n→∞
2npϕ̃a

( x

2n

)
= 0

for all x ∈ X. SoA = T.

Theorem 3.8.LetΦ : X4 → [0,∞) be a function such that

(3.38) lim
n→∞

1

2n
Φ

(
2nx1, 2

nx2, 2
nx3, 2

nx4

)
= 0

and

(3.39)
∞∑
i=0

1

2ip
Φp

(
2ix, 2ix, 2ix, 2iy

)
<∞
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12 A. NAJATI AND F. MORADLOU

for all x, x1, x2, x3, x4 ∈ X andy = ±x. Suppose that an odd functionf : X → Y satisfies
the inequality (3.13) for allx1, x2, x3, x4 ∈ X. Let g : X → Y be a function defined by
g(x) = f(2x)− 8f(x) for all x ∈ X. Then the limit

(3.40) A(x) := lim
n→∞

1

2n
g
(
2nx

)
exists for allx ∈ X andA : X → Y is a unique additive function satisfying

(3.41) ‖f(2x)− 8f(x)− A(x)‖Y ≤ K

2
[Φ̃a(x)]

1
p

for all x ∈ X, where

(3.42) Φ̃a(x) :=
∞∑
i=0

1

2ip

{
Φp

(
2ix, 2ix, 2ix, 2ix

)
+ 4pΦp

(
2ix, 2ix, 2ix,−2ix

)}
Proof. Similar to the proof of Theorem 3.7, we infer that

(3.43)
∥∥ 1

2n+1
g
(
2n+1x

)
− 1

2n
g
(
2nx

)∥∥
Y
≤ K

2n+1
Φ1

(
2nx

)
for all x ∈ X and all non-negative integersn, where

(3.44) Φ1(x) = Φ(x, x, x, x) + 4Φ(x, x, x,−x).

By Lemma 3.1, it follows from(3.38) and(3.39) that

(3.45)
∞∑
i=0

1

2ip
Φp

1

(
2ix

)
<∞, lim

n→∞

1

2n
Φ1

(
2nx

)
= 0

for all x ∈ X. SinceY is ap-Banach space,

(3.46)

∥∥ 1

2n+1
g
(
2n+1x

)
− 1

2m
g
(
2mx

)∥∥p

Y
≤

n∑
i=m

∥∥ 1

2i+1
g
(
2i+1x

)
− 1

2i
g
(
2ix

)∥∥p

Y

≤
(K

2

)p
n∑

i=m

1

2ip
Φp

1

(
2ix

)
for all x ∈ X and all non-negative integersm andn with n ≥ m. Therefore we conclude from
(3.45) and(3.46) that the sequence{ 1

2n g(2
nx)} is a Cauchy sequence inY for all x ∈ X. Since

Y is complete, the sequence{ 1
2n g(2

nx)} converges inY for all x ∈ X. So one can define the
functionA : X → Y by (3.40) for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.7

Corollary 3.9. Let θ be a non-negative real number. Suppose that an odd functionf : X → Y
satisfies the inequality (3.19) for allx1, x2, x3, x4 ∈ X. Then there exists a unique additive
functionA : X → Y satisfies

‖f(2x)− 8f(x)− A(x)‖Y ≤ Kθ
(4p + 1

2p − 1

) 1
p

for all x ∈ X.

Proof. The result follows by Theorem 3.8.

Corollary 3.10. Let θ, {ri}i∈J be non-negative real numbers such thatri > 1 (0 < ri < 1)
for all i ∈ J, whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an odd function
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f : X → Y satisfies the inequality (3.20) for allx1, x2, x3, x4 ∈ X. Then there exists a unique
additive functionA : X → Y satisfies

‖f(2x)− 8f(x)− A(x)‖Y ≤ Kθ
{∑

i∈J

4p + 1

|2pri − 2p|
‖x‖pri

X

} 1
p

for all x ∈ X.

Proof. The result follows by Theorems 3.7 and 3.8.

Corollary 3.11. Let θ, {ri}i∈J be non-negative real numbers such thatλ =
∑

i∈J ri ∈ (0, 1) ∪
(1,+∞), whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an odd functionf : X →
Y satisfies the inequality (3.21) for allx1, x2, x3, x4 ∈ X. Then there exists a unique additive
functionA : X → Y satisfies

‖f(2x)− 8f(x)− A(x)‖Y ≤ Kθ
( 4p + 1

|2λp − 2p|

) 1
p‖x‖λ

X

for all x ∈ X.

3.3. Part III. In this part, we find some conditions that there exists a true cubic function near
an approximately cubic function.

Theorem 3.12.Letψ : X4 → [0,∞) be a function such that

(3.47) lim
n→∞

8nψ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

and

(3.48)
∞∑
i=1

8ipψp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
<∞

for all x, x1, x2, x3, x4 ∈ X andy = ±x. Suppose that an odd functionf : X → Y satisfies the
inequality

(3.49) ‖Df(x1, x2, x3, x4)‖Y ≤ ψ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Leth : X → Y be a function defined byh(x) = f(2x) − 2f(x) for
all x ∈ X. Then the limit

(3.50) C(x) := lim
n→∞

8nh
( x

2n

)
exists for allx ∈ X andC : X → Y is a unique cubic function satisfying

(3.51) ‖f(2x)− 2f(x)− C(x)‖Y ≤ K

8
[ψ̃c(x)]

1
p

for all x ∈ X, where

(3.52) ψ̃c(x) :=
∞∑
i=1

8ip

{
ψp

( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pψp

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
Proof. Similar to the proof of Theorem 3.7, we infer that

(3.53) ‖h(2x)− 8h(x)‖Y ≤ Kψ1(x)

for all x ∈ X, where

(3.54) ψ1(x) = ψ(x, x, x, x) + 4ψ(x, x, x,−x).
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By Lemma 3.1, it follows from(3.47) and (3.48) that

(3.55)
∞∑
i=1

8ipψp
1

( x
2i

)
<∞, lim

n→∞
8nψ1

( x

2n

)
= 0

for all x ∈ X. If we replacex in (3.53) by
x

2n+1
and multiply both sides of(3.53) by 8n, we get

(3.56)
∥∥∥8n+1h

( x

2n+1

)
− 8nh

( x

2n

)∥∥∥
Y
≤ K8nψ1

( x

2n+1

)
for all x ∈ X and all non-negative integersn. SinceY is ap-Banach space,

(3.57)

∥∥∥8n+1h
( x

2n+1

)
− 8mh

( x

2m

)∥∥∥p

Y
≤

n∑
i=m

∥∥∥8i+1h
( x

2i+1

)
− 8ih

( x
2i

)∥∥∥p

Y

≤ Kp

n∑
i=m

8ipψp
1

( x

2i+1

)
for all x ∈ X and all non-negative integersm andn with n ≥ m. Therefore we conclude from
(3.55) and(3.57) that the sequence{8nh( x

2n )} is a Cauchy sequence inY for all x ∈ X. Since
Y is complete, the sequence{8nh( x

2n )} converges inY for all x ∈ X. So one can define the
functionC : X → Y by (3.50) for all x ∈ X. Lettingm = 0 and passing the limitn → ∞ in
(3.57), we get (3.51). Now, we show thatC is cubic. It follow from (3.50),(3.55) and(3.56)
that

‖C(2x)− 8C(x)‖ = lim
n→∞

∥∥∥8nh
( x

2n−1

)
− 8n+1h

( x

2n

)∥∥∥
= 8 lim

n→∞

∥∥∥8n−1h
( x

2n−1

)
− 8nh

( x

2n

)∥∥∥
≤ K lim

n→∞
8nψ1

( x

2n

)
= 0

for all x ∈ X. Therefore

(3.58) C(2x) = 8C(x)

for all x ∈ X. On the other hand it follows from(3.47), (3.49) and(3.50),

‖DC(x1, x2, x3, x4)‖Y = lim
n→∞

8n
∥∥∥Dh(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)∥∥∥
Y

= lim
n→∞

8n

{∥∥∥Df( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)
− 2Df

(x1

2n
,
x2

2n
,
x3

2
,
x4

2n

)∥∥∥
Y

}
≤ K lim

n→∞
8n

{∥∥∥Df( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)∥∥∥
Y

+ 2
∥∥∥Df(x1

2n
,
x2

2n
,
x3

2
,
x4

2n

)∥∥∥
Y

}
≤ K lim

n→∞
8n

{
ψ

( x1

2n−1
,
x2

2n−1
,
x3

2n−1
,
x4

2n−1

)
+ 2ψ

(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)}
= 0

for all x1, x2, x3, x4 ∈ X. Therefore the functionC : X → Y satisfies(1.4). Sincef is an odd
function, thenh is odd. So(3.50) implies that the functionC : X → Y is odd. Therefore by
Lemma 2.3, the functionx 7→ C(2x) − 2C(x) is cubic. So(3.58) implies that the function
C : X → Y is cubic.
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To prove the uniqueness ofC, let T : X → Y be another cubic function satisfying(3.51).
Since

lim
n→∞

8np

∞∑
i=1

8ipψp
( x

2n+i
,
x

2n+i
,
x

2n+i
,
y

2n+i

)
= lim

n→∞

∞∑
i=n+1

8ipψp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
= 0

for all x ∈ X andy ∈ {x,−x}, then

(3.59) lim
n→∞

8npψ̃c

( x
2n

)
= 0

for all x ∈ X. It follows from (3.50), (3.51) and(3.59) that

‖C(x)− T (x)‖p
Y = lim

n→∞
8np

∥∥∥h( x

2n

)
− T

( x

2n

)∥∥∥p

Y

≤ Kp

8p
lim

n→∞
8npψ̃c

( x

2n

)
= 0

for all x ∈ X. SoC = T.

Theorem 3.13.LetΨ : X4 → [0,∞) be a function such that

(3.60) lim
n→∞

1

8n
Ψ(2nx1, 2

nx2, 2
nx3, 2

nx4) = 0

and

(3.61)
∞∑
i=0

1

8ip
Ψp(2ix, 2ix, 2ix, 2iy) <∞

for all x, x1, x2, x3, x4 ∈ X andy = ±x. Suppose that an odd functionf : X → Y satisfies the
inequality

(3.62) ‖Df(x1, x2, x3, x4)‖Y ≤ Ψ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Leth : X → Y be a function defined byh(x) = f(2x) − 2f(x) for
all x ∈ X. Then the limit

(3.63) C(x) := lim
n→∞

1

8n
h(2nx)

exists for allx ∈ X andC : X → Y is a unique cubic function satisfying

(3.64) ‖f(2x)− 2f(x)− C(x)‖Y ≤ K

8
[Ψ̃c(x)]

1
p

for all x ∈ X, where

(3.65) Ψ̃c(x) :=
∞∑
i=0

1

8ip

{
Ψp(2ix, 2ix, 2ix, 2ix) + 4pΨp(2ix, 2ix, 2ix,−2ix)

}
Proof. Similar to the proof of Theorem 3.12, we infer that

(3.66)
∥∥∥ 1

8n+1
h(2n+1x)− 1

8n
h(2nx)

∥∥∥
Y
≤ K

8n+1
Ψ1(2

nx)

for all x ∈ X and all non-negative integersn, where

(3.67) Ψ1(x) = Ψ(x, x, x, x) + 4Ψ(x, x, x,−x).
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By Lemma 3.1, it follows from(3.60) and (3.61) that

(3.68)
∞∑
i=1

1

8ip
Ψp

1(2
ix) <∞, lim

n→∞

1

8n
Ψ1(2

nx) = 0

for all x ∈ X. SinceY is ap-Banach space,

(3.69)

∥∥∥ 1

8n+1
h(2n+1x)− 1

8m
h(2mx)

∥∥∥p

Y
≤

n∑
i=m

∥∥∥ 1

8i+1
h(2i+1x)− 1

8i
h(2ix)

∥∥∥p

Y

≤
(K

8

)p
n∑

i=m

1

8ip
Ψp

1

(
2ix

)
for all x ∈ X and all non-negative integersm andn with n ≥ m. Therefore we conclude from
(3.68) and(3.69) that the sequence{ 1

8nh(2
nx)} is a Cauchy sequence inY for all x ∈ X. Since

Y is complete, the sequence{ 1
8nh(2

nx)} converges inY for all x ∈ X. So one can define the
functionC : X → Y by (3.63) for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.12

Corollary 3.14. Letθ be a non-negative real number. Suppose that an odd functionf : X → Y
satisfies the inequality (3.19) for allx1, x2, x3, x4 ∈ X. Then there exists a unique cubic function
C : X → Y satisfies

‖f(2x)− 2f(x)− C(x)‖Y ≤ Kθ
(4p + 1

8p − 1

) 1
p

for all x ∈ X.

Proof. The result follows by Theorem 3.13.

Corollary 3.15. Let θ, {ri}i∈J be non-negative real numbers such thatri > 3 (0 < ri < 3)
for all i ∈ J, whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an odd function
f : X → Y satisfies the inequality (3.20) for allx1, x2, x3, x4 ∈ X. Then there exists a unique
cubic functionC : X → Y satisfies

‖f(2x)− 2f(x)− C(x)‖Y ≤ Kθ
{∑

i∈J

4p + 1

|2pri − 8p|
‖x‖pri

X

} 1
p

for all x ∈ X.

Proof. The result follows by Theorems 3.12 and 3.13.

Corollary 3.16. Let θ, {ri}i∈J be non-negative real numbers such thatλ =
∑

i∈J ri ∈ (0, 3) ∪
(3,+∞), whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that an odd functionf : X →
Y satisfies the inequality (3.21) for allx1, x2, x3, x4 ∈ X. Then there exists a unique cubic
functionC : X → Y satisfies

‖f(2x)− 2f(x)− C(x)‖Y ≤ Kθ
( 4p + 1

|2λp − 8p|

) 1
p‖x‖λ

X

for all x ∈ X.
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3.4. Part IV. In this part, we give our main results. We find some conditions that there exist a
true cubic function, a true quadratic function, and a true additive function near an approximately
linear combination of cubic, quadratic and additive functions.

Theorem 3.17.LetΘ : X4 → [0,∞) be a function such that

(3.70) lim
n→∞

8nΘ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

and

(3.71)
∞∑
i=1

8ipΘp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
<∞,

∞∑
i=1

8ipΘp
( x

2i
,
x

2i
,
−x
2i
,
−x
2i

)
<∞

for all x, x1, x2, x3, x4 ∈ X and y = ±x. Suppose that a functionf : X → Y satisfies the
inequality

(3.72) ‖Df(x1, x2, x3, x4)‖Y ≤ Θ(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exist a unique cubic functionC : X → Y, a unique
quadratic functionQ : X → Y, and a unique additive functionA : X → Y such that

(3.73)
‖f(x)− C(x)−Q(x)− A(x)‖Y

≤ K2

96

{
K2[L(x)]

1
p + 4K2[M(x)]

1
p + 6[N(x)]

1
p

}
for all x ∈ X, where

Γ(x1, x2, x3, x4) := Θp(x1, x2, x3, x4) + Θp(−x1,−x2,−x3,−x4)

L(x) :=
∞∑
i=1

8ip
{

Γ
( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pΓ

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
M(x) :=

∞∑
i=1

2ip
{

Γ
( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pΓ

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
N(x) :=

∞∑
i=1

4ipΓ
( x
2i
,
x

2i
,− x

2i
,− x

2i

)
for all x, x1, x2, x3, x4 ∈ X.

Proof. Let fe andf0 be the even and the odd part off, respectively. It follows from (3.72) that

‖Dfe(x1, x2, x3, x4)‖Y ≤ K

2

[
Θ(x1, x2, x3, x4) + Θ(−x1,−x2,−x3,−x4)

]
(3.74)

‖Dfo(x1, x2, x3, x4)‖Y ≤ K

2

[
Θ(x1, x2, x3, x4) + Θ(−x1,−x2,−x3,−x4)

]
(3.75)

for all x1, x2, x3, x4 ∈ X. For convenience, let

Λ(x1, x2, x3, x4) :=
K

2

[
Θ(x1, x2, x3, x4) + Θ(−x1,−x2,−x3,−x4)

]
for all x1, x2, x3, x4 ∈ X. By Lemma 3.1, it follows from (3.70) and (3.71) that

(3.76) lim
n→∞

8nΛ
(x1

2n
,
x2

2n
,
x3

2n
,
x4

2n

)
= 0

and

(3.77)
∞∑
i=1

8ipΛp
( x

2i
,
x

2i
,
x

2i
,
y

2i

)
<∞,

∞∑
i=1

4ipΛp
( x

2i
,
x

2i
,− x

2i
,− x

2i

)
<∞
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18 A. NAJATI AND F. MORADLOU

for all x, x1, x2, x3, x4 ∈ X andy = ±x. Therefore by Theorems 3.2, 3.7 and 3.12, there exist
a unique quadratic functionQ : X → Y, a unique additive functionA1 : X → Y, and a unique
cubic functionC1 : X → Y such that

A1(x) = lim
n→∞

2ng
( x

2n

)
, Q(x) = lim

n→∞
4nf

( x

2n

)
, C1(x) = lim

n→∞
8nh

( x

2n

)
,

‖fe(x)−Q(x)‖Y ≤ 1

8
[Λ̃e(x)]

1
p(3.78)

‖g(x)− A1(x)‖Y ≤ K

2
[Λ̃a(x)]

1
p(3.79)

‖h(x)− C1(x)‖Y ≤ K

8
[Λ̃c(x)]

1
p(3.80)

for all x ∈ X, where

g(x) = fo(2x)− 8fo(x), h(x) = fo(2x)− 2fo(x),

Λ̃e(x) :=
∞∑
i=1

4ipΛp
( x

2i
,
x

2i
,− x

2i
,− x

2i

)
(3.81)

Λ̃a(x) :=
∞∑
i=1

2ip

{
Λp

( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pΛp

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
(3.82)

Λ̃c(x) :=
∞∑
i=1

8ip

{
Λp

( x
2i
,
x

2i
,
x

2i
,
x

2i

)
+ 4pΛp

( x
2i
,
x

2i
,
x

2i
,− x

2i

)}
.(3.83)

It follows from (3.78), (3.79) and (3.80) that

(3.84)

∥∥∥f(x)− 1

6
C1(x)−Q(x) +

1

6
A1(x)

∥∥∥
Y

≤ K

48

{
6[Λ̃e(x)]

1
p + 4K2[Λ̃a(x)]

1
p +K2[Λ̃c(x)]

1
p

}
for all x ∈ X. Therefore we obtain (3.73) by Lemma 3.1 and lettingC(x) = 1

6
C1(x) and

A(x) = −1
6
A1(x) for all x ∈ X.

To prove the uniqueness ofC,Q,A, letC0, Q0, A0 : X → Y be another cubic, quadratic and
additive functions, respectively, satisfying(3.73). It follows from (3.71) that

lim
n→∞

8npL
( x
2n

)
= lim

n→∞
2npM

( x
2n

)
= lim

n→∞
4npN

( x
2n

)
= lim

n→∞
8npN1

( x
2n

)
= 0

for all x ∈ X, where

N1(x) :=
∞∑
i=1

8ipΓ
( x
2i
,
x

2i
,− x

2i
,− x

2i

)
.

LetC ′ = C − C0, Q
′ = Q−Q0, andA′ = A− A0. Therefore we have

(3.85)

‖C ′(x) +Q′(x) + A′(x)‖Y ≤ K
{
‖f(x)− C(x)−Q(x)− A(x)‖Y

+ ‖f(x)− C0(x)−Q0(x)− A0(x)‖Y

}
≤ K3

48

{
K2[L(x)]

1
p + 4K2[M(x)]

1
p + 6[N(x)]

1
p

}
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for all x ∈ X. Hence

lim
n→∞

2n
∥∥∥C ′( x

2n

)
+Q′

( x
2n

)
+ A′

( x
2n

)∥∥∥
Y

= 0

lim
n→∞

4n
∥∥∥C ′( x

2n

)
+Q′

( x
2n

)
+ A′

( x
2n

)∥∥∥
Y

= 0

for all x ∈ X. SinceA′, Q′ andC ′ are additive, quadratic and cubic functions, respectively, then
it follows from the last relations thatA′ = Q′ = 0. Therefore it follows from (3.85) that

‖C ′(x)‖Y ≤ K3

48

{
5K2[L(x)]

1
p + 6[N1(x)]

1
p

}
for all x ∈ X. SinceC ′ is cubic, thenC ′ = 0. This proves the uniqueness ofA,Q andC.

Theorem 3.18.Let∆ : X4 → [0,∞) be a function such that

lim
n→∞

1

2n
∆

(
2nx1, 2

nx2, 2
nx3, 2

nx4

)
= 0

and
∞∑
i=0

1

2ip
∆p

(
2ix, 2ix, 2ix, 2iy

)
<∞,

∞∑
i=0

1

2ip
∆p

(
2ix, 2ix,−2ix,−2ix

)
<∞

for all x, x1, x2, x3, x4 ∈ X and y = ±x. Suppose that a functionf : X → Y satisfies the
inequality

‖Df(x1, x2, x3, x4)‖Y ≤ ∆(x1, x2, x3, x4)

for all x1, x2, x3, x4 ∈ X. Then there exist a unique cubic functionC : X → Y, a unique
quadratic functionQ : X → Y, and a unique additive functionA : X → Y such that∥∥f(x) +

5

6
f(0)− C(x)−Q(x)− A(x)

∥∥
Y

≤ K2

96

{
K2[L(x)]

1
p + 4K2[M(x)]

1
p + 6[N(x)]

1
p

}
for all x ∈ X, where

Υ(x1, x2, x3, x4) := ∆p(x1, x2, x3, x4) + ∆p(−x1,−x2,−x3,−x4)

L(x) :=
∞∑
i=0

1

8ip

{
Υ(2ix, 2ix, 2ix, 2ix) + 4pΥ(2ix, 2ix, 2ix,−2ix)

}
M(x) :=

∞∑
i=0

1

2ip

{
Υ(2ix, 2ix, 2ix, 2ix) + 4pΥ(2ix, 2ix, 2ix,−2ix)

}
N(x) :=

∞∑
i=0

1

4ip
Υ(2ix, 2ix,−2ix,−2ix)

for all x, x1, x2, x3, x4 ∈ X.

Proof. Similar to the proof of Theorem3.17, the result follows from Theorems3.3, 3.8 and
3.13.

Corollary 3.19. Let θ be a non-negative real number. Suppose that a functionf : X → Y
satisfies the inequality (3.19) for allx1, x2, x3, x4 ∈ X. Then there exist a unique cubic function
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C : X → Y and a unique quadratic functionQ : X → Y and a unique additive function
A : X → Y satisfies

‖f(x)− C(x)−Q(x)− A(x)‖Y

≤ K3θ

12

{
K2

(2(4p + 1)

8p − 1

) 1
p

+K2
(2(4p + 1)

2p − 1

) 1
p

+ 3
( 2

4p − 1

) 1
p

}
+

5

6
Kθ

for all x ∈ X.

Proof. It follows from (3.19) that‖f(0)‖Y ≤ θ. Hence the result follows by Theorem 3.18.

Corollary 3.20. Let θ, {ri}i∈J be non-negative real numbers such thatri > 3 (0 < ri < 1) for
all i ∈ J, whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that a functionf : X → Y
satisfies (3.20) for allx1, x2, x3, x4 ∈ X. Then there exist a unique cubic functionC : X → Y
and a unique quadratic functionQ : X → Y and a unique additive functionA : X → Y
satisfies

‖f(x)− C(x)−Q(x)− A(x)‖Y

≤ K2θ

12

{
K2

[ ∑
i∈J

2(4p + 1)

|2pri − 8p|
‖x‖pri

X

] 1
p

+K2
[ ∑

i∈J

2(4p + 1)

|2pri − 2p|
‖x‖pri

X

] 1
p

+ 3
[ ∑

i∈J

2

|2pri − 4p|
‖x‖pri

X

] 1
p

}
for all x ∈ X.

Proof. It follows from (3.20) thatf(0) = 0. Hence the result follows by Theorems 3.17 and
3.18.

Corollary 3.21. Let θ, {ri}i∈J be non-negative real numbers such thatλ =
∑

i∈J ri ∈ (0, 1) ∪
(3,+∞), whereJ is a non-empty subset of{1, 2, 3, 4}. Suppose that a functionf : X → Y
satisfies the inequality (3.21) for allx1, x2, x3, x4 ∈ X. Then there exist a unique cubic function
C : X → Y and a unique quadratic functionQ : X → Y and a unique additive function
A : X → Y satisfies

‖f(x)− C(x)−Q(x)− A(x)‖Y

≤ K2θ

12

{
K2

( 2(4p + 1)

|2λp − 8p|

) 1
p

+K2
( 2(4p + 1)

|2λp − 2p|

) 1
p

+ 3
( 2

|2λp − 4p|

) 1
p

}
‖x‖λ

X

for all x ∈ X.

Proof. The result follows by Theorems 3.17 and 3.18.
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[1] J. ACZÉL and J. DHOMBRES,Functional Equations in Several Variables, Cambridge University
Press, 1989.

[2] D. AMIR, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
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