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ABSTRACT. A short history of certain inequalities by Martins, Bennett as well as Alzer, is pro-
vided. It is shown that, the inequality of Alzer for negative powels [6], or Martin’s reverse
inequality [7] are due in fact to Alzef[2]. Some related results, as well as a conjecture, are
stated.
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1. INTRODUCTION

By investigating a question on Lorentz sequence spaces, in 1988 Martins [11] discovered
certain inequalities for the sum ofh powers(r > 0) of the first positive integers. Put

Sp(n) == Zi” (r>0,n>1)
i=1

Then one of his results states that

<n+1>s7«<n>]l” <

(1.1) L,(n) = { ST

wherez,, ;= V/n!/ "/ (n +1)! (n > 1).

In 1993 Alzer [1] established the reverse inequality

1.2) L:(n) = yn,
wherey,, := " Z ] (n>1).
Because O,ﬁf% L.(n) = x,, Tli_% L.(n) =y, (see e.g.[[9], p.15), it follows that both bounds
in[L.] and 1.p are best possible.
In 1992 Bennett [4] proved the inequalities
1.3) L.(n) <ypypqiforr>1
and
(1.4) L.(n) >ypforo<r <1

Sincex,, > y,41 foralln > 1 (see e.g.[[9] or[19]), ang,, ., > y,, relationg 1.3 and 1.4 are
refinements df I]1 arid 1.2 for> 1, and respectively < r < 1.

The proofs of 1., as well as 1.3-]L.4 are quite involved. The author has obtained in 1995 a
proof of[1.2, based on mathematical induction and Cauchy’s mean value theorem of differential
calculus (seel[14]). The same method, based on Lagrange’s mean value theorem has been
applied fo 1.8 anfl 1}4 (sele [15]). Since then, many new proofs and extensjons of 1.2 have been
given (see e.gl [21]).

Let

Pi(n):=>» i (n>1,7r>0),
=1

and define
[+ 1D)B)]Y
In the above mentioned papér [4], Bennett proved also the following remarkable companion
of relation[1.1:

(1.5) Qr(n) <
Yn+1
He gave also an interesting application of his regults 1.3 and 1.5, by deriving a sharp lower
bound for the so-called power means matrices (for details| seé[3], [4]).
In 1994 Alzer [2] has improved Bennett's redqult|1.5 to

(1.6) Q.(n) < -

Tn

(n>1,r>0)
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1 1 . : . . :
As — < (which follows also by the fact that the 1‘unct|o£3‘/f5—)1 is strictly decreasing
Tn Yn+1 X

for 2 > 1, wheref(z) = ('(z + 1))"/*, see[[13.19]), 1|6 offers indeed an improvement td 1.5.
As a corollary (stated also inl[2]), from 1/2, 1.1, 1.6 we can write the following chain of
inequalities:

a.7) Yn < Ly(n) <z, <

Qr(n)

2. MAIN REMARKS

Relationg 1.J7 sharpens the inequality of Minc and Sathre [12]:

n

n - n!
n+1 " (n+1)!

See also |13, 16] for related results.
Another remark is that, the first and last term§ of 1.7 are

1
(2.2) Yn £ S0

@n(r)

(2.1) (n>1)

SlnceQ— is nothing else, thad._,.(n); i.e., when #" is replaced with " in Alzer’s
r

inequality,@ is in fact "Alzer’s inequality for negative powers"! For this result, Chen and Qi
[5],16] gave in 2003 and 2004 a proof based on mathematical induction and convex functions. A
proof, similar to the one of [14] is given by the author in|[18]. [n][20] however, this result is
generalized to convex function, by a method of Ch. Kuang [10].

Alzer’s classical inequality 112 has been rediscovered in 1998 by Dragomir and van der Hoek,
too (seel[8]), in the form:

- (n+1)"
n" — (n+4 1)t —prtl

(2.3) G,(n) ==

It is easy to see thdt, 2.3 is equivalenf ig 1.2, as well as to another inequality, having applica-
tions in "guessing theory" (for details, seel[17]).
We note here that, in a similar manner, inequality 1.1 of Martins can be rewritten as follows:

Sy(n) Vn!
(n+1)r = (n+1) "/ (n+ 1! —n¥n!

In the recent paper [7] Chen, Qi and Dragomir have studied the reverse of Martins’ inequality
as follows:

1 n 1 n+1 1/5
25 <= / s
29 oe (33 /3

wheres < 0. Puts = —r, wherer > 0. Then a simple computation shows that inequélity 2.5
is in fact equivalent to the last inequality[of [L.7 (i.e[ 0] 1.6).
Relatior] 1.7 improves also the interesting inequality

(2.6) L(n)Qu(n) < 1,

(2.4)
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or written equivalently:

<)
2.7) A=A Gk al

Let

Ap(n) = [Sr(n)l 1/T.

n

As an application of 1]7, the following additive analogue of Martins’ inequality holds true
(seell2]):

(2.8) Ar(n+1) — A.(n) > z,,
wherez, = "{/(n+ 1)! — ¥/n! (n > 1) is the additive analogue of. Since the authof [13]
X

has proved thaf(z) = I'(z + 1)*/* is strictly concave for: > 7, it follows thatz, > 2,
for n > 7. A direct computation shows that, > z,,; for 1 < n < 6, too. Hence(z,) is
a strictly decreasing sequence forall> 1. (The sequencéz,) is called also as the Traian

. _ 1
Lalescu sequence, seée[13] 18, 19]). Since it is well-known lihatz, = o by we get the
sharp inequality:

(2.9) A(n+1)— A (n) > é (r>0,n>1)

Finally, we mention a conjecture by Alzer (seé [2]): Put

1 n 1/r
&@o:<5§:¢) (r > 0)

Prove or disprove that

1 1
B.(n+1)— B.(n) < — r>0n>1).
A T eI )
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