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ABSTRACT. We apply the non-commutative extension of classical Itô stochastic calculus, known
as quantum stochastic calculus, to the quantum Black-Scholes model in the sense of Segal and
Segal [4]. Explicit expressions for the best quantum option price and the associated optimal
quantum portfolio are derived.
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2 A. BOUKAS

1. QUANTUM STOCHASTIC CALCULUS

Let Bt = {Bt(ω)/ ω ∈ Ω}, wheret ≥ 0, be one-dimensional classical Brownian motion.
Integration with respect toBt was defined by Itô. Stochastic integral equations of the form

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs

are thought of as stochastic differential equations of the form

(1.1) dXt = b(t,Xt) dt+ σ(t,Xt) dBt

where differentials are handled with the use of Itô’s formula

(dBt)
2 = dt, dBt dt = dt dBt = (dt)2 = 0.

In [1], Hudson and Parthasarathy defined a non-commutative analogue of classical Itô calcu-
lus as follows:

Definition 1.1. The Boson Fock spaceΓ = Γ(L2(R+, C)) overL2(R+, C) is the Hilbert space
completion of the linear span of the exponential vectorsψ(f) under the inner product

< ψ(f), ψ(g) >:= e<f,g>

wheref, g ∈ L2(R+, C) and< f, g >=
∫ +∞

0
f̄(s) g(s) ds. Here and in what follows,̄z denotes

the complex conjugate ofz ∈ C.

The annihilation, creation and conservation operatorsA(f), A†(f) andΛ(F ) respectively,
are defined on the exponential vectorsψ(g) of Γ as follows.

Definition 1.2.

Atψ(g) :=
∫ t

0
g(s) ds ψ(g),(1.2)

A†tψ(g) := ∂
∂ε
|ε=0 ψ(g + εχ[0,t]),(1.3)

Λtψ(g) := ∂
∂ε
|ε=0 ψ(eεχ[0,t])g).(1.4)

Definition 1.3. The basic quantum stochastic differentialsdAt, dA
†
t , anddΛt are defined by

dAt := At+dt − At,(1.5)

dA†t := A†t+dt − A†t ,(1.6)

dΛt := Λt+dt − Λt.(1.7)

Hudson and Parthasarathy defined stochastic integration with respect to the noise differentials
of Definition 1.3 and obtained the quantum stochastic Itô multiplication table:

Table 1.1: Itô table.

· dA†t dΛt dAt dt

dA†t 0 0 0 0

dΛt dA†t dΛt 0 0
dAt dt dAt 0 0
dt 0 0 0 0

The two fundamental theorems of the Hudson-Parthasarathy quantum stochastic calculus
listed below (see Theorems 4.1 and 4.3 of [1]), give formulas for expressing the matrix ele-
ments of quantum stochastic integrals in terms of ordinary Riemann-Lebesgue integrals. In
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ON SEGAL’ S QUANTUM OPTION PRICING 3

what follows, we coupleΓ with a "system" Hilbert spaceH and we letE :=span{u⊗ψ(f), u ∈
H, ψ(f) ∈ Γ} be the "exponential domain" ofH⊗ Γ.

Theorem 1.1.Let

M(t) =

∫ t

0

E(s) dΛ(s) + F (s) dA(s) +G(s) dA†(s) +H(s) ds

whereE, F , G, H are (in general) time dependent adapted processes. Let alsou ⊗ ψ(f) and
v ⊗ ψ(g) be in the exponential domain ofH⊗ Γ. Then

< u⊗ ψ(f),M(t) v ⊗ ψ(g) >=∫ t

0

< u⊗ ψ(f),
(
f̄(s) g(s)E(s) + g(s)F (s) + f̄(s)G(s) +H(s)

)
v ⊗ ψ(g) > ds.

Theorem 1.2.Let

M(t) =

∫ t

0

E(s) dΛ(s) + F (s) dA(s) +G(s) dA†(s) +H(s) ds

and

M ′(t) =

∫ t

0

E ′(s) dΛ(s) + F ′(s) dA(s) +G′(s) dA†(s) +H ′(s) ds

whereE, F , G, H, E ′, F ′, G′, H ′ are (in general) time dependent adapted processes. Let also
u⊗ ψ(f) andv ⊗ ψ(g) be in the exponential domain ofH⊗ Γ. Then

< M(t)u⊗ ψ(f),M ′(t) v ⊗ ψ(g) >=∫ t

0

{< M(s)u⊗ ψ(f), (f̄(s) g(s)E ′(s) + g(s)F ′(s) + f̄(s)G′(s)

+H ′(s))v ⊗ ψ(g) > + < (ḡ(s) f(s)E(s) + f(s)F (s) + ḡ(s)G(s)

+H(s))u⊗ ψ(f),M ′(s) v ⊗ ψ(g) > + < (f(s)E(s) +G(s))u⊗ ψ(f),

(g(s)E ′(s) +G′(s))v ⊗ ψ(g) >} ds.

The fundamental result which connects classical with quantum stochastics is that the processes
Bt andPt defined by

Bt = At + A†t
and

Pt = Λt +
√
λ(At + A†t) + λt

are identified through their vacuum characteristic functionals

< ψ(0), ei s Bt ψ(0) >= e−
s2

2
t

and
< ψ(0), ei s Pt ψ(0) >= eλ (ei s−1) t

with classical Brownian motion and the Poisson process of intensityλ > 0 respectively.
Within the framework of Hudson-Parthasarathy Quantum Stochastic Calculus, classical quan-

tum mechanical evolution equations take the form

dUt = −((iH +
1

2
L∗L) dt+ L∗W dAt − LdA†t(1.8)

+ (1−W ) dΛt)Ut

with U0 = 1, where, for eacht ≥ 0, Ut is a unitary operator defined on the tensor product
H⊗Γ(L2(R+, C)) of the system Hilbert spaceH and the noise (or reservoir) Fock spaceΓ. Here
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4 A. BOUKAS

H, L,W are inB(H), the space of bounded linear operators onH, withW unitary andH self-
adjoint. Notice that forL = W = −1 equation (1.8) reduces to a classical SDE of the form ( 1.1
). Here and in what follows we identify time-independent, bounded, system space operatorsX
with their ampliationX⊗1 toH⊗Γ(L2(R+, C)). The quantum stochastic differential equation
(analogue of the Heisenberg equation for quantum mechanical observables) satisfied by the flow

jt(X) = U∗
t X Ut

whereX is a bounded system space operator, is (see [3])

djt(X) = jt

(
i [H,X]− 1

2
(L∗LX +XL∗L− 2L∗XL)

)
dt(1.9)

+ jt ([L∗, X] W ) dAt + jt (W ∗ [X,L]) dA†t + jt (W ∗XW −X) dΛt

with j0(X) = X, t ∈ [0, T ] where[x, y] := xy − yx is the usual commutator.

2. SEGAL ’ S OPTION PRICING M ODEL

In recent years the fields of Quantum Economics and Quantum Finance have appeared in
order to interpret erratic stock market behavior with the use of quantum mechanical concepts
as in [4]. Within the framework of Hudson-Parthasarathy quantum stochastic calculus, the
stock process{Xt / t ≥ 0} of the classical Black-Scholes theory is replaced by the quantum
mechanical processjt(X) = U∗

t X ⊗ 1Ut where, for eacht ≥ 0, Ut is a unitary operator
defined on the tensor productH ⊗ Γ(L2(R+, C)) of a system Hilbert spaceH and the noise
Boson Fock spaceΓ = Γ(L2(R+, C)). We assume thatUt satisfies the quantum stochastic
differential equation

dUt = −((iH +
1

2
L∗L) dt+ L∗ dAt − LdA†t)Ut, U0 = 1

whereX > 0, H, L, are inB(H), the space of bounded linear operators onH, with X andH
self-adjoint. The value processVt is defined fort ∈ [0, T ] by

Vt = at jt(X) + bt βt

with terminal condition

VT = (jT (X)−K)+ = max(0, jT (X)−K)

whereK > 0 is a bounded self-adjoint system space operator corresponding to the strike price
of the quantum option,at is a real-valued function,bt is in general an observable quantum
stochastic processes (i.ebt is a self-adjoint operator for eacht ≥ 0) and

βt = β0 e
t r

whereβ0 andr are positive real numbers. Therefore

bt = (Vt − at jt(X)) β−1
t .

We interpret the above in the sense of expectation i.e givenu⊗ψ(f) in the exponential domain
of H⊗ Γ, where we will always assumeu 6= 0 so that‖u⊗ ψ(f)‖ 6= 0,

< u⊗ ψ(f), Vt u⊗ ψ(f) >= at < u⊗ ψ(f), jt(X)u⊗ ψ(f) >

+ < u⊗ ψ(f), bt u⊗ ψ(f) > βt

i.e the value process is always in reference to a particular quantum mechanical state and

< u⊗ ψ(f), VT u⊗ ψ(f) >= max(0, < u⊗ ψ(f), (jT (X)−K)u⊗ ψ(f) >).
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As in the classical case we assume that the portfolio(at, bt), t ∈ [0, T ] is self -financing i.e

dVt = at djt(X) + bt dβt

which implies
dat · jt(X) + dat · djt(X) + dbt · βt + dbt · dβt = 0.

By the Quantum Itô table of Section 1, and the homomorphism propertyjt(x y) = jt(x) jt(y),
we obtain

djt(X) = jt(α
†) dA†t + jt(α) dAt + jt(θ) dt,

(djt(X))2 = jt(αα
†) dt

while for k ≥ 2, (djt(X))k = 0. Here, and in what follows,

α = [L∗, X], α† = [X,L]

θ = i [H,X]− 1

2
{L∗ LX +X L∗ L− 2L∗X L}.

In the above framework, letVt := F (t, jt(X)) whereF : [0, T ]× B(H⊗ Γ) −→ B(H⊗ Γ)
is the extension to self-adjoint operatorsx = jt(X) of the analytic function

F (t, x) =
+∞∑

n,k=0

an,k(t0, x0) (t− t0)
n (x− x0)

k

wherex andan,k(t0, x0) are inC, and forλ, µ ∈ {0, 1, ...}

Fλ µ(t, x) :=
∂λ+µF

∂tλ ∂xµ
(t, x).

Notice that if1 denotes the identity operator then

an,k(t0, x0) = an,k(t0, x0) 1 =
1

n! k!
Fn k(t0, x0).

Moreover for(t0, x0) = (0, 0) we have

Vt =
+∞∑

n,k=0

an,k(0, 0) tn jt(X)k =
+∞∑

n,k=0

an,k(0, 0) tn jt(X
k).

By the Quantum Itô table

dVt = (a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) + a0,2(t, jt(X)) jt(αα
†)) dt

+a0,1(t, jt(X)) jt(α
†) dA†t + a0,1(t, jt(X)) jt(α) dAt

while using the self-financing property we obtain

dVt = (at jt(θ) + Vt r − at jt(X) r) dt+ at jt(α
†) dA†t + at jt(α) dAt.

Equating the coefficients ofdt and the quantum stochastic differentials in the two expressions
for dVt we obtain

a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) + a0,2(t, jt(X)) jt(αα
†)

= at jt(θ) + Vt r − at jt(X) r

and
a0,1(t, jt(X)) = at

By combining the above two equations and simplifying we obtain

a1,0(t, jt(X)) + a0,2(t, jt(X)) jt([L
∗, X] [X,L]) + a0,1(t, jt(X)) jt(X) r − Vt r = 0
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6 A. BOUKAS

which can be written as

F1 0(t, jt(X)) +
1

2
F0 2(t, jt(X)) jt([L

∗, X] [X,L]) + F0 1(t, jt(X)) jt(X) r

= F (t, jt(X)) r

with F (T, jT (X)) = (jT (X) − K)+. Lettingx = jt(X), y = jt(L) be arbitrary elements in
B(H⊗ Γ) andg(x) = [y∗, x] [x, y], h(x) = x r, we obtain

F1 0(t, x) +
1

2
F0 2(t, x) g(x) + F0 1(t, x)h(x) = F (t, x) r.

Letting

u(t, x) = F (T − t, x),

u1 0(t, x) = −F1 0(T − t, x),

u0 2(t, x) = F0 2(T − t, x),

u0 1(t, x) = F0 1(T − t, x)

we obtain the Quantum Black-Scholes Equation

u1 0(t, x) =
1

2
u0 2(t, x) g(x) + u0 1(t, x)h(x)− u(t, x) r(2.1)

with
u(0, jT (X)) = (jT (X)−K)+.

To solve the Quantum Black-Scholes Equation we assume that

jt(X
2) = jt([L

∗, X] [X,L])

which implies that[X,L] = W X and [L∗, X] = XW ∗ whereW is an arbitrary unitary op-
erator acting on the system space. The Quantum Black-Scholes Equation (2.1) now takes the
form

u1 0(t, x) =
1

2
u0 2(t, x)x

2 + u0 1(t, x)x r − u(t, x) r(2.2)

where we may assume thatx is a bounded self-adjoint operator. At(0, 0)

u(t, x) = F (T − t, x) =
+∞∑

n,k=0

an,k(0, 0) (T − t)n xk

and, sincex = jt(X) > 0 andK are invertible, we may letx = K ez wherez is a bounded
self-adjoint operator commuting withK. Letting

ω(t, z) := u(t,K ez) =
+∞∑

n,k=0

an,k(0, 0) (T − t)n (K ez)k,

and using
ω0 2(t, z)− ω0 1(t, z) = u0 2(t, x) x

2

we obtain

ω1 0(t, z) =
1

2
ω0 2(t, z) + ω0 1(t, z) (r − 1

2
)− ω(t, z) r(2.3)

with
ω(0, zT ) = (jT (X)−K)+

wherezT is defined byK ezT = jT (X). The quantum analogue of the classical Black-Scholes
option pricing model is as follows:
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Theorem 2.1.The solution of (2.3) is given by

ω(t, z) = K ez Φ(g(t,K ez))−K Φ(h(t,K ez)) e−r t

where

g(t,K ez) = z t−1/2 + (r + 0.5) t1/2

h(t,K ez) = z t−1/2 + (r − 0.5) t1/2

Φ(x) =
1

2
+

1√
2π

+∞∑
n=0

(−1)n

2n n!

x2 n+1

2n+ 1
.

Moreover, a reasonable price for a quantum option isω(T, z0) wherez0 is defined byX =
K ez0. The associated quantum portfolio(at, bt) is given by

at = ω0 1(t− T, zt)

bt = (ω(T − t, zt)− at jt(X)) e−t r β0
−1

wherezt is defined byjt(X) = K ezt.
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