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ABSTRACT. We apply the non-commutative extension of classical It stochastic calculus, known
as quantum stochastic calculus, to the quantum Black-Scholes model in the sense of Segal and
Segal [4]. Explicit expressions for the best quantum option price and the associated optimal
quantum portfolio are derived.
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2 A. Boukas

1. QUANTUM STOCHASTIC CALCULUS

Let B, = {Bi(w)/w € Q}, wheret > 0, be one-dimensional classical Brownian motion.
Integration with respect t®; was defined by Itd. Stochastic integral equations of the form

t t
X=Xy + / b(s, X)ds + / o(s, Xs) dBs
0 0

are thought of as stochastic differential equations of the form

(1.1) dX, = b(t, X,)dt + o(t, X,) dB,

where differentials are handled with the use of It6’s formula
(dB;)* = dt, dB,dt=dtdB; = (dt)* = 0.

In [1], Hudson and Parthasarathy defined a non-commutative analogue of classical Ité calcu-
lus as follows:

Definition 1.1. The Boson Fock spade = I'(L*(R,C)) over L*(R,, C) is the Hilbert space
completion of the linear span of the exponential vectg($) under the inner product

<(f), @/}( ) >:= el

wheref,g € L*(R,,C) and< f,g >= f f s) ds. Here and in what follows; denotes
the complex conjugate af € C.

The annihilation, creation and conservation operatt(g), A'(f) and A(F) respectively,
are defined on the exponential vectorg ) of I' as follows.

Definition 1.2.

(1.2) Anb(g fo s)ds (g),

(1.3) Alv(g > = Selemo V(g + exqo),

(1.4) Aip(g) = Elemo t(e™0g).

Definition 1.3. The basic quantum stochastic differentidls;, dAI, anddA,; are defined by
(1-5) dAy == Aprar — Ag,

(1.6) dA] == Al — Al

@.7) dN; = Nppar — Ay

Hudson and Parthasarathy defined stochastic integration with respect to the noise differentials
of Definition[1.3 and obtained the quantum stochastic I1t6 multiplication table:

Table 1.1: 1t6 table.

- |aAl dn, dA, di
dAll o 0 0 0
dA, | dAT dA, 0 0
dA, | dt dA, 0 0
a0 0 0 0

The two fundamental theorems of the Hudson-Parthasarathy quantum stochastic calculus
listed below (see Theorems 4.1 and 4.3[0f [1]), give formulas for expressing the matrix ele-
ments of quantum stochastic integrals in terms of ordinary Riemann-Lebesgue integrals. In
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what follows, we couplé’ with a "system" Hilbert spacH and we le€ :=span{u®1(f),u €
H,¥(f) € I'} be the "exponential domain” 6{  I".

Theorem 1.1.Let
M(t) = / E(s)dA(s) + F(s)dA(s) + G(s) dA'(s) + H(s) ds

whereE, F, G, H are (in general) time dependent adapted processes. Letalse(f) and
v ® 1(g) be in the exponential domain &f @ I". Then

<u@P(f), Mt)v@P(g) >=
[ < e 00, (76)906) B6) + ) () + F5)Gl6) + HEs) v@ ) > s
Theorem 1.2. Let
M(t) = /0 " B(s) dA(s) + F(s) dA(s) + G(s) dAT(s) + H(s) ds

and
M'(t) = / E'(s)dA(s) + F'(s) dA(s) + G'(s) dAT(s) + H'(s) ds

whereE, F', G, H, E', F', G', H" are (in general) time dependent adapted processes. Let also
u®(f) andv ® 1 (g) be in the exponential domain &f  I'. Then

<M(t)uy(f), M'(t)v@Y(g) >=

/O{< M(s)u@b(f), (f(s) g(s)E'(s) + g(s) F'(s) + f(s) G'(s)

+H'(s))v ®1(g) > + < (g(s) f(s) E(s) + f(s) F(s) + g(s) G(s)
+H(s))u @ (f), M'(s)v ®1(g) > + < (f(s)E(s) + G(s))u @ ¥(f),
(9(s)E'(s) + G'(s))v @ ¥(g) >} ds.
The fundamental result which connects classical with quantum stochastics is that the processes
B; and P, defined by
= A+ A
and
P, = A+ VA + Al + Xt
are identified through their vacuum characteristic functionals
< (0), 6P (0) 3= e
and
< ¢(0)7€ispt ¢(0) —— e)\(e”fl)t
with classical Brownian motion and the Poisson process of inteAsity) respectively.

Within the framework of Hudson-Parthasarathy Quantum Stochastic Calculus, classical quan-
tum mechanical evolution equations take the form

1
(1.8) Uy = —((iH + 5 L"L)dt+ L* W dA, — LdA}

+(1— W) A,

with U, = 1, where, for eaclt > 0, U, is a unitary operator defined on the tensor product
H®T(L*(R,,C)) of the system Hilbert spadé and the noise (or reservoir) Fock spaceHere
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H, L,W are inB(H), the space of bounded linear operators-arwith 1V unitary andH self-

adjoint. Notice that fol. = W = —1 equation|(1.8) reduces to a classical SDE of the fdrm|( 1.1

). Here and in what follows we identify time-independent, bounded, system space opérators
with their ampliationX ® 1to H @ I'(L?(R, C)). The quantum stochastic differential equation
(analogue of the Heisenberg equation for quantum mechanical observables) satisfied by the flow

J(X) = U X U,
whereX is a bounded system space operator, is (see [3])

1
1.9) dj,(X) = j (z [H.X] = 5 (L'LX + XL'L — 2L*XL)) dt

+ G ([L*, X] W) dA, + j, (W* [X, L)) dA] + j, (W* X W — X)) dA,

with jo(X) = X, t € [0,7] where[z,y] := xy — yx is the usual commutator.

2. SEGAL'S OPTION PRICING MODEL

In recent years the fields of Quantum Economics and Quantum Finance have appeared in
order to interpret erratic stock market behavior with the use of quantum mechanical concepts
as in [4]. Within the framework of Hudson-Parthasarathy quantum stochastic calculus, the
stock proces§ X, /t > 0} of the classical Black-Scholes theory is replaced by the quantum
mechanical process(X) = U X ® 1U; where, for eacit > 0, U, is a unitary operator
defined on the tensor produgt ® T'(L*(R,,C)) of a system Hilbert spack and the noise
Boson Fock spac€ = TI'(L*(R.,C)). We assume thal/; satisfies the quantum stochastic
differential equation

dU, = —((iH + %L*L) dt + L* dA, — LdA) U, Uy=1
whereX > 0, H, L, are inB(H), the space of bounded linear operatorstgrwith X and H
self-adjoint. The value proces$s is defined fort € [0, 7] by
Vi = a ji(X) + b 8,
with terminal condition
Vr = (jr(X) — K)" = max(0, j7(X) — K)

whereK > 0 is a bounded self-adjoint system space operator corresponding to the strike price
of the quantum optiong; is a real-valued functionj; is in general an observable quantum
stochastic processes (heis a self-adjoint operator for ea¢h> 0) and

By = By e'’

wheref, andr are positive real numbers. Therefore
b= (Vi — a (X)) 6"

We interpret the above in the sense of expectation i.e giver)( f) in the exponential domain
of H ® I, where we will always assume= 0 so that||u ® ¥ (f)]|| # 0,

<u@Y(f), Viu@y(f) >=ar <u@y(f), jl(X)u@P(f) >
+ <u®P(f),buP(f) > b,

i.e the value process is always in reference to a particular quantum mechanical state and
<u@Y(f),Vru®P(f) >=max(0, < u @ ¢(f), (r(X) — K)u@P(f) >).
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As in the classical case we assume that the portfalioh, ), ¢ € [0, T] is self -financing i.e
d‘/t = a¢ djt(X) + bt dﬁt
which implies
dCLt . jt(X) —i—dat . d]t<X) +dbt . ﬁt +dbt . dﬁt =0.

By the Quantum It6 table of Section 1, and the homomorphism propguty)) = j:(x) j:(v),
we obtain

djo(X) = ji(al) dA] + ji(e) dA, + j,(0) dt,
(dji(X))? = ji(aal) dt
while for k& > 2, (dj;(X))* = 0. Here, and in what follows,
a = [L*X], o' =[X, ]
0 — ilH X —%{L*LX+XL*L—2L*XL}.

In the above framework, l8t, := F'(¢, j,(X)) whereF : [0,T] x B(H®T) — B(H®T)
is the extension to self-adjoint operatars- j;(X) of the analytic function

F(t,x) = > anx(to, xo) (t — to)" (x — 2o)"

n,k=0
wherez anda, x(to, zo) are inC, and for, u € {0, 1, ...}
ONHE
F/\u(t, 33') = W(t,iﬂ)

Notice that if1 denotes the identity operator then
1

n i (to, To) = an(to, xo) 1 = T For(to, o).
Moreover for(ty, zo) = (0,0) we have
400 +o0o
Vi= ) ani(0,0) 8" ju(X)F = > a,,(0,0) " j,(X").
n,k=0 n,k=0

By the Quantum It6 table
dV; = (a10(t, jo(X)) + a0 (t, 5i(X)) o(0) + aoa(t, jo(X)) ji(aal)) dt
+ao(t, (X)) je(al) dAT + ag1(t,3:(X)) ji(a) dA,
while using the self-financing property we obtain
dV; = (a, e (0) + Vir — ay ju(X) r) dt + ay ji(aT) dA] + @ ji(cr) d A,

Equating the coefficients @k and the quantum stochastic differentials in the two expressions
for dV, we obtain

aro(t, jo(X)) + a0 (t, je(X)) j:(0) + ao2(t, j: (X)) ji(al)
= ay ji(0) + Vir — a, i (X)r
and
ao1(t, i (X)) = a
By combining the above two equations and simplifying we obtain

aro(t, 3i(X)) + ao2(t, 5. (X)) (L7, XT[X, L)) + a0 (¢, (X)) juo(X) r = Vir = 0
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which can be written as
Fio(t, 3:(X)) + %Foz(t,MX))jt([L*,X] [X, L]) + Fou(t, jo(X)) je(X) 7

=F(t,5:(X))r
with F(T, jr(X)) = (jr(X) — K)*. Lettingx = j,(X), y = j:(L) be arbitrary elements in
B(H®T')andg(z) = [v*, 2| [z,y], h(z) = x r, we obtain

Fiolt, ) + % Foolt, ) g(x) + Fou(t2) h(x) = F(t, 2) 7.

Letting
u(t,z) = F(T —t,x),
uro(t,z) = —Fio(T —t,x),
uge(t,xr) = FooT —t,x),

UOl(t, l’) = FOl(T - t, Z’)
we obtain the Quantum Black-Scholes Equation

1
(2.1) uro(t,z) = 3 up2(t, ) g(x) + o1 (t, ¥) h(z) — u(t,z)r
with
u(0, j7(X)) = (jr(X) — K)*.
To solve the Quantum Black-Scholes Equation we assume that
jt(XQ) = jt([L*7 X] [X7 L])

which implies that X, L] = W X and[L*, X] = X W* whereW is an arbitrary unitary op-
erator acting on the system space. The Quantum Black-Scholes Eqliation (2.1) now takes the
form

1
(2.2) urot,z) = 5 ugo(t, z) 2* +ug1(t, x) xr — u(t,z)r
where we may assume thats a bounded self-adjoint operator. @& 0)
“+o0o
u(t,x) = F(T —t,z) = Y an1(0,0) (T —t)" 2*
n,k=0

and, sincer = j;(X) > 0 and K are invertible, we may let = K e¢* wherez is a bounded
self-adjoint operator commuting with. Letting

+oo
wt,z) =ult, Ke*) = > anu(0,0) (T —t)" (Ke*)",

n,k=0

and using
woal(t, 2) — woi(t, 2) = uga(t, z) 22
we obtain
1 1

(2.3) wio(t, z) = éwog(t, 2) + wo1(t, z) (r — 5) —w(t,z)r
with

w(0,27) = (jr(X) — K)*
wherezr is defined byK e*7 = j;(X). The quantum analogue of the classical Black-Scholes
option pricing model is as follows:

AJMAA Vol. 4, No. 2, Art. 2, pp. 1-7, 2007 AJMAA


http://ajmaa.org

ON SEGAL’'S QUANTUM OPTION PRICING 7

Theorem 2.1. The solution of (2]3) is given by

w(t,z) =Ke* d(g(t,Ke*)) — KO(h(t, Ke?))e
where
gt, Ke*) = zt™Y2 4 (r+0.5) 12
ht,Ke*) = zt7Y2 4 ( - 0. 5) th/2
g2l

P = — 4+ —
() +\/27r 2”n' 2n+1°

Moreover, a reasonable price for a quantum optlorw(g, 2p) Wherez, is defined byX =
K e*. The associated quantum portfolia;, b;) is given by

a; = wor(t—=T,z)
bt = (u)(T — t, Zt) — Q¢ jt(X)> €_tT 50_1
wherez, is defined by, (X ) = K e*.
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