1-TYPE PSEUDO-CHEBYSHEV SUBSPACES IN GENERALIZED 2-NORMED SPACES

SH. REZAPOUR

Received 1 January, 2006; accepted 13 September, 2006; published 22 March, 2007.

DEPARTMENT OF MATHEMATICS, AZARBAIJAN UNIVERSITY OF TABRIT MOALLEM, AZARSHAHR, TABRIZ, IRAN.

sh.rezapour@azaruniv.edu
URL: http://www.azaruniv.edu/~rezapour

ABSTRACT. We construct a generalized 2-normed space from every normed space. We introduce 1-type pseudo-Chebyshev subspaces in generalized 2-normed spaces and give some results in this field.

Key words and phrases: Generalized 2-normed space, B-proximinal, 1-type pseudo-Chebyshev subspace, 2-functional.

2000 Mathematics Subject Classification Primary: 46A15, 41A65.

ISSN (electronic): 1449-5910
© 2007 Austral Internet Publishing. All rights reserved.
1. Introduction

The concept of linear 2-normed spaces has been investigated by Gähler in 1965 ([3]) and has been developed extensively in different subjects by others. Lewandowska published a series of papers on 2-normed sets and generalized 2-normed spaces in 1999-2003 ([5]-[9]). There are some works on characterization of 2-normed spaces, extension of 2-functionals and approximation in 2-normed spaces ([11], [2] and [4]). Also, there are some works in approximation theory (for example, [10]-[12]).

Let X be a linear space of dimension greater than 1 over K, where K is the real or complex numbers field. Suppose $\|\cdot,\|_2$ be a non-negative real-valued function on $X \times X$ satisfying the following conditions:

(i) $\|x, y\|_2 = 0$ if and only if x and y are linearly dependent vectors.

(ii) $\|x, y\|_2 = \|y, x\|_2$ for all $x, y \in X$.

(iii) $\|\lambda x, y\|_2 = |\lambda| \|x, y\|_2$ for all $\lambda \in K$ and all $x, y \in X$.

(iv) $\|x + y, z\|_2 \leq \|x, z\|_2 + \|y, z\|_2$ for all $x, y, z \in X$.

Then $\|\cdot, \cdot\|_2$ is called a 2-norm on X and $(X, \|\cdot, \cdot\|_2)$ is called a linear 2-normed space.

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X$, $p_b(x) = \|x, b\|_2$, $x \in X$, is a seminorm and the family $P = \{p_b : b \in X\}$ of seminorms generates a locally convex topology on X. But, there are no remarkable relations between normed spaces and 2-normed spaces.

We couldn’t construct any 2-norm on X by a normed space $(X, \|\cdot\|)$, and this could be a motive for definition of generalized 2-normed spaces.

Definition 1.1. ([5]-[7]) Let X and Y be linear spaces, D be a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets

$$D_x = \{y \in Y : (x, y) \in D\}, \quad D^y = \{x \in X : (x, y) \in D\}$$

are linear subspaces of the spaces Y and X, respectively. A function $\|\cdot, \cdot\| : D \longrightarrow [0, \infty)$ is called a generalized 2-norm on D if it satisfies the following conditions:

$$(N_1) \quad \|x, \alpha y\| = |\alpha| \|x, y\|_2 = \|\alpha x, y\|_2,$$

for all $(x, y) \in D$ and every scalar α.

$$(N_2) \quad \|x, y + z\|_2 \leq \|x, y\|_2 + \|x, z\|_2,$$

for all $(x, y), (x, z) \in D$.

$$(N_3) \quad \|x + y, z\|_2 \leq \|x, z\|_2 + \|y, z\|_2,$$

for all $(x, z), (y, z) \in D$.

Then, $(D, \|\cdot, \cdot\|)$ is called a 2-normed set. In particular, if $D = X \times Y$, $(X \times Y, \|\cdot, \cdot\|)$ is called a generalized 2-normed space. Moreover, if $X = Y$, then the generalized 2-normed space is denoted by $(X, \|\cdot, \cdot\|)$.

Definition 1.2. ([5]-[7]) Let X be a linear space, χ be a non-empty subset of $X \times X$ such that $\chi = \chi^{-1}$ and the set $\chi^y = \{x \in X : (x, y) \in \chi\}$ is a linear subspace of X, for all $y \in X$. A function $\|\cdot, \cdot\| : \chi \longrightarrow [0, \infty)$ is called a generalized symmetric 2-norm on χ if it satisfies the following conditions:

$$(S_1) \quad \|x, y\| = \|y, x\|_2,$$

for all $(x, y) \in \chi$.

$$(S_2) \quad \|x, \alpha y\| = |\alpha| \|x, y\|_2,$$

for all $(x, y) \in \chi$ and every scalar α.

$$(S_3) \quad \|x + y, z\|_2 \leq \|x, z\|_2 + \|y, z\|_2,$$

for all $(x, y), (x, z) \in \chi$.
Then, \((\chi, \|\cdot\|, \|\cdot\|)\) is called a generalized symmetric 2-normed set. In particular, if \(\chi = X \times X\), the function \(\|\cdot\|\) is called a generalized symmetric 2-norm on \(\chi\) and \((X, \|\cdot\|, \|\cdot\|)\) is called a generalized symmetric 2-normed space.

Definition 1.3. (5) Let \((X \times Y, \|\cdot\|, \|\cdot\|)\) be a generalized 2-normed space.

(a) The family \(\beta\) of all sets defined by \(\bigcap_{i=1}^{n} \{x \in X : \|x, y\| < \varepsilon\}\), where \(n \in \mathbb{N}\), \(y_1, ..., y_n \in Y\) and \(\varepsilon > 0\), forms a complete system of neighborhoods of zero for a locally convex topology in \(Y\).

(b) The family \(\beta\) of all sets defined by \(\bigcap_{i=1}^{n} \{y \in Y : \|x, y\| < \varepsilon\}\), where \(n \in \mathbb{N}\), \(x_1, ..., x_n \in X\) and \(\varepsilon > 0\), forms a complete system of neighborhoods of zero for a locally convex topology in \(X\).

We will denote the above topologies by the symbols \(\tau(X, Y)\) and \(\tau(Y, X)\), respectively. In the case when \(X = Y\), we will denote these topologies by \(\tau_1(X) = \tau(X, Y)\) and \(\tau_2(X) = \tau(Y, X)\).

Let us consider the linear spaces \(X\) and \(Y\) and let \(D \subseteq X \times Y\) be a 2-normed set and \(Z\) be a normed space. A map \(f : D \longrightarrow Z\) is called 2-linear if it satisfies the following conditions:

(i) \(f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)\), for all \(x_1, x_2, y_1, y_2 \in X\) such that \(x_1, x_2 \in D^n \cap D^{m}\).

(ii) \(f(\delta x, \lambda y) = \delta \lambda f(x, y)\), for all scalars \(\delta, \lambda\) and all \((x, y) \in D\).

A 2-linear map \(f\) is said to be bounded if there exists a non-negative real number \(M\) such that \(\|f(x, y)\| \leq M\|x, y\|\) for all \((x, y) \in D\). Also, the norm of a 2-linear map \(f\) is defined by \(\|f\| = \inf\{M \geq 0 : \|f(x, y)\| \leq M\|x, y\|\\) for all \((x, y) \in D]\).

We denote by \(< b >\) the subspace of \(X\) generated by the element \(b \in X\). For a generalized 2-normed space \((X \times Y, \|\cdot\|, \|\cdot\|)\), a subspace \(W\) of \(X\) and \(b \in Y\), we denote by \(W^b\) the Banach space of all \(K\)-valued bounded 2-linear maps on \(W \times < b >\).

Let \((X \times Y, \|\cdot\|, \|\cdot\|)\) be a generalized 2-normed space, \(W\) be a subspace of \(X\) and \(b \in Y\).

(i) \(w_0 \in W\) is called b-best approximation of \(x \in X\) in \(W\), if

\[\|x - w_0, b\| = \inf\{\|x - w, b\| : w \in W\}.\]

The set of all b-best approximations of \(x \in W\) is denoted by \(P^b_W(x)\).

(ii) \(W\) is called b-proximinal if for every \(x \in X \setminus (\overline{W}W)\), there exists \(w_0 \in W\) such that \(\|x - w_0, b\| = \inf\{\|x - w, b\| : w \in W\}\), where \(\overline{W}\) denotes the closure of \(W\) in the seminormed space \((X, p_0)\).

Note that, \(W\) is b-proximinal if and only if \(P^b_W(x) \neq \emptyset\) for all \(x \in X \setminus \overline{W}\).

The following basic lemma is important in the proof of main results.

Proposition 1.1. (3): Theorem 3.6). Let \((X, \|\cdot\|, \|\cdot\|)\) be a 2-normed space, \(W\) be a subspace of \(X\) and \(b \in X\). If \(x_0 \in X\) is such that

\[\delta = \inf\{\|x_0 - w, b\| : w \in W\} > 0,\]

then there exists a bounded 2-linear map \(F : X \times < b > \longrightarrow K\) such that \(F|_{W \times < b >} = 0\), \(F(x_0, b) = 1\) and \(\|F\| = \frac{1}{\delta}\).

By review of [3], we find that the following similar Lemma holds for generalized 2-normed spaces.
Lemma 1.2. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$. If $x_0 \in X$ is such that
\[
\delta = \inf \{ \|x_0 - w, b\| : w \in W \} > 0,
\]
then there exists a bounded 2-linear map $F : X \times \rightarrow K$ such that $F|_{W \times } = 0$, $F(x_0, b) = 1$ and $\|F\| = \frac{1}{\delta}$.

Lemma 1.3. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X, $b \in Y$ and $x \in X \setminus W$, where W denotes the closure of W in the seminormed space (X, p_b). Then, $M \subseteq P_b^d(x)$ if and only if there exists $f \in X^d_b$ such that $f|_{W \times } = 0$, $\|f\| = 1$ and $f(x_0 - m, b) = \|x_0 - m, b\|$ for all $m \in M$.

Proof. First suppose that there exists $f \in X^d_b$ such that $f|_{W \times } = 0$, $\|f\| = 1$ and $f(x_0 - m, b) = \|x_0 - m, b\|$ for all $m \in M$. Then,
\[
\|x_0 - m, b\| = f(x_0 - m, b) = f(x_0, b) = f(x_0 - w, b)
\]
\[
\leq \|f\| \|x_0 - w, b\| = \|x_0 - w, b\|
\]
for all $m \in M$ and all $w \in W$. Hence, $m \in P_b^d(x)$ for all $m \in M$. Conversely, fix $m_0 \in M$. Then,
\[
\delta = \|x_0 - m_0, b\| = \inf \{ \|x_0 - w, b\| : w \in W \} > 0.
\]
By Lemma 1.2, there exists $g \in X^d_b$ such that $g|_{W \times } = 0$, $g(x_0, b) = 1$ and $\|g\| = \frac{1}{\delta}$. Now for $f = \delta g$ we have, $f|_{W \times } = 0$, $f(x_0 - m, b) = \|x_0 - m, b\|$ and $\|f\| = 1$. Note that, $f(x_0 - m, b) = \|x_0 - m, b\|$ for all $m \in M$.

2. 1-type Pseudo-Chebyshev Subspaces

Definition 2.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$.

(i) W is called b-pseudo Chebyshev if for every $x \in X \setminus W$, where W denotes the closure of W in the seminormed space (X, p_b), $P_b^d(x)$ is non-empty and finite dimensional.

(ii) W is called 1-type pseudo-Chebyshev if W is b-pseudo Chebyshev for every $0 \neq b \in Y$.

Example 2.1. Let $X = \mathbb{R}^3$, $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$ and
\[
\| (x_1, x_2, x_3), (y_1, y_2, y_3) \| = \max \{ |x_1y_2 - x_2y_1| + |x_1y_3 - x_3y_1|, |x_1y_2 - x_2y_1| + |x_2y_3 - x_3y_2| \}
\]
for all $(x_1, x_2, x_3), (y_1, y_2, y_3) \in X$. Then, $\|., .\|$ is a 2-norm on X and W is 1-type pseudo-Chebyshev subspace.

Example 2.2. Let W be a pseudo-Chebyshev subspace of a normed space $(X, \|., \|_1)$ and let $(Y, \|., \|_2)$ be an arbitrary normed space. Then, $\|x, y\| = \|x\|_1 \|y\|_2$ is a generalized 2-norm on $X \times Y$ and W is 1-type pseudo-Chebyshev subspace.

Proposition 2.1. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space, W be a subspace of X and $b \in Y$. Then, W is b-pseudo Chebyshev subspace of X if and only if there do not exist $f \in X^d_b$, $x_0 \in X \setminus W$, where W denotes the closure of W in the seminormed space (X, p_b), and infinitely many linearly independent elements w_1, w_2, \ldots in W such that $f|_{W \times } = 0$, $\|f\| = 1$ and $f(x_0 - w_n, b) = \|x_0 - w_n, b\|$, for all $n \geq 1$.

AJMAA, Vol. 4, No. 1, Art. 9, pp. 1-7, 2007
Proof. Suppose that W is not b-pseudo Chebyshev subspace. Then, there exists $x \in X \setminus \overline{W}$, such that $P^b_w(x)$ is not finite dimensional. Fix $w_0 \in P^b_w(x)$. Then, there exist infinitely many elements $w_1, w_2, \ldots \in P^b_w(x)$ such that $w_0 - w_1, w_0 - w_2, \ldots$ are infinitely many linearly independent elements of W. Put $x_0 = x - w_0$ and $g_n = w_n - w_0$ for all $n \geq 1$ and note that, g_1, g_2, \ldots are infinitely many linearly independent elements of $P^b_w(x)$. By Lemma 1.3, there exists $f \in X^b_w$ such that $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x_0 - g_n, b) = \|x_0 - g_n, b\|$ for all $n \geq 1$. This is a contradiction.

Corollary 2.2. Let $(X \times Y, \|\cdot, \cdot\|)$ be a generalized 2-normed space and let W be a subspace of X. Then, W is 1-type pseudo-Chebyshev subspace if and only if there do not exist $0 \neq b_0 \in Y$, $x_0 \in X \setminus \overline{W}$, $f_{b_0} \in X^b_w$, where W denotes the closure of W in the seminormed space (X, p_{b_0}), and infinitely many linearly independent elements $w_1, w_2, \ldots \in W$ such that $\|f_{b_0}\| = 1$, $f_{b_0}|_{W^\times } = 0$ and $f_{b_0}(x_0 - w_n, b_0) = \|x_0 - w_n, b_0\|$ for all $n \geq 1$.

3. (b, ε)-pseudo Chebyshev subspaces

Definition 3.1. Let $(X \times Y, \|\cdot, \cdot\|)$ be a generalized 2-normed space, W be a subspace of X, $0 \neq b \in Y$ and $\varepsilon > 0$ be given.

(i) $w_0 \in W$ is called (b, ε)-best approximation of $x \in X$ in W, if $\|x - w_0, b\| = \inf\{\|x - w, b\| : w \in W\} + \varepsilon$.

The set of all b-best approximations of x in W is denoted by $P^b_{W, \varepsilon}(x)$.

(ii) W is called (b, ε)-pseudo Chebyshev if $P^b_{W, \varepsilon}(x)$ is finite dimensional for every $x \in X$.

Theorem 3.1. Let $(X \times Y, \|\cdot, \cdot\|)$ be a generalized 2-normed space, W be a subspace of X, $w_0 \in W$, $0 \neq b \in Y$ and $\varepsilon > 0$ be given. Then, $w_0 \in P^b_{W, \varepsilon}(x)$ if and only if there exist $f \in X^b_w$ such that $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x - w_0, b) \geq \|x - w_0, b\| - \varepsilon$.

Proof. First suppose that there exist $f \in X^b_w$ such that $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x - w_0, b) = \|x - w_0, b\| - \varepsilon$. Then, $\|x - w_0, b\| \leq f(x - w_0, b) + \varepsilon = f(x - w, b) + \varepsilon \leq \|x - w, b\| + \varepsilon$ for all $w \in W$. Hence, $w_0 \in P^b_{W, \varepsilon}(x)$. Conversely, Let $w_0 \in P^b_{W, \varepsilon}(x)$. If $x \in \overline{W}$, where W denotes the closure of W in the seminormed space (X, p_{b_0}), choose $w_0 \in W$ such that $\|x - w_0, b\| < \varepsilon$. Then, every $f \in X^b_w$ with $f|_{W^\times } = 0$ and $\|f\| = 1$, satisfies $f(x - w_0, b) \geq \|x - w_0, b\| - \varepsilon$. If $x \in X \setminus \overline{W}$, $\delta = \inf\{\|x - w, b\| : w \in W\} > 0$. Then by Lemma 1.2, there exists $g \in X^b_w$ such that $g|_{W^\times } = 0$, $g(x, b) = 1$ and $\|g\| = \frac{1}{\delta}$. Put $f = \delta g$. Then, $f \in X^b_w$, $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x - w_0, b) + \varepsilon = \delta + \varepsilon \geq \|x - w_0, b\|$.

Lemma 3.2. Let $(X \times Y, \|\cdot, \cdot\|)$ be a generalized 2-normed space, W be a subspace of X, $\varepsilon > 0$ be given and $0 \neq b \in Y$. Then, $M \subseteq P^b_{W, \varepsilon}(x)$ if and only if there exists $f \in X^b_w$ such that $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x_0 - m, b) \geq \|x_0 - m, b\| - \varepsilon$ for all $m \in M$.

Proof. Let $M \subseteq P^b_{W, \varepsilon}(x)$ and choose $w_0 \in P^b_{W, \varepsilon}(x)$ with $\|x - w_0, b\| = \lambda + \varepsilon$, where $\lambda = \inf\{\|x - w, b\| : w \in W\}$. By Theorem 3.1, there exist $f \in X^b_w$ such that $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x - w_0, b) \geq \|x - w_0, b\| - \varepsilon$. Then, $f(x - m, b) = f(x - w_0, b) \geq \|x - w_0, b\| - \varepsilon = \lambda \geq \|x - m, b\| - \varepsilon$, for all $m \in M$.

Theorem 3.3. $(X \times Y, \|\cdot, \cdot\|)$ be a generalized 2-normed space, W be a subspace of X, $0 \neq b \in Y$ and $\varepsilon > 0$ be given. Then, W is (b, ε)-pseudo Chebyshev subspace if and only if there do not exist $f \in X^b_w$, $x \in X$ and infinitely many linearly independent elements w_1, w_2, \ldots in W such that $\|x, b\| \leq 1$, $f|_{W^\times } = 0$, $\|f\| = 1$ and $f(x - w_n, b) \geq \|x - w_n, b\| - \varepsilon$, for all $n \geq 1$.

AJMAA, Vol. 4, No. 1, Art. 9, pp. 1-7, 2007
Proof. First assume that there exist \(f \in X^b_0, x \in X \) and infinitely many linearly independent elements \(w_1, w_2, \ldots \) in \(W \) such that \(\| x, b \| \leq 1, f|_{W \times \langle b \rangle} = 0, \| f \| = 1 \) and \(f(x - w_n, b) \geq \| x - w_n, b \| - \varepsilon \), for all \(n \geq 1 \). Then, \(w_n \in P^b_{W,\varepsilon}(x) \) for all \(n \geq 1 \). It follows that \(\dim P^b_{W,\varepsilon}(x) = \infty \) and hence \(W \) is not \((b,\varepsilon)\)-pseudo Chebyshev subspace. Now, suppose that \(W \) is not \((b,\varepsilon)\)-pseudo Chebyshev subspace. Since \(P^0_{W,\varepsilon}(\lambda x) = \lambda P^0_{W,\varepsilon}(x) \) and \(P^0_{W,\varepsilon}(x) \subseteq P^0_{W,\varepsilon}(\varepsilon) \) for all \(0 < \varepsilon \leq \varepsilon_2 \), \(x \in X \) and \(\lambda > 0 \), there exist \(x_0 \in X \) with \(\| x_0, b \| \leq 1 \) such that \(\dim P^0_{W,\varepsilon}(x) = \infty \). Hence, \(P_{W,\varepsilon}(x_0) \) contains infinitely many linearly independent elements \(g_1, g_2, \ldots \). By Lemma 3.2, there exists \(f \in X^b_0 \) such that \(\| f \| = 1, f|_{W \times \langle b \rangle} = 0 \) and \(f(x_0 - g_n, b) \geq \| x_0 - g_n, b \| - \varepsilon \) for all \(n \geq 1 \).

Definition 3.2. Let \((X 	imes Y, \| . \|, \| . \|)\) be a generalized 2-normed space, \(0 \neq b \in Y, \varepsilon > 0 \) be given and \(f \in X^b_0 \). Define

\[
M^b_{f,\varepsilon} = \{ x \in X : f(x, b) \geq \| x, b \| - \varepsilon, \| x, b \| \leq 1 + \varepsilon \}.
\]

Theorem 3.4. Let \((X 	imes Y, \| . \|, \| . \|)\) be a generalized 2-normed space, \(W \) be a subspace of \(X \), \(0 \neq b \in Y \) and \(\varepsilon > 0 \) be given. If \(M^b_{f,\varepsilon} \) is finite dimensional for all \(f \in X^b_0 \) with \(\| f \| = 1 \) and \(f|_{W \times \langle b \rangle} = 0 \), then \(W \) is \((b,\varepsilon)\)-pseudo Chebyshev subspace.

Proof. Assume that \(W \) is not \((b,\varepsilon)\)-pseudo Chebyshev subspace. Then by Theorem 3.3 there exist \(f \in X^b_0, x_0 \in X \) with \(\| x_0, b \| \leq 1 \) and infinitely many linearly independent elements \(w_1, w_2, \ldots \) in \(W \) such that \(\| f \| = 1, f|_{W \times \langle b \rangle} = 0 \), and \(f(x_0 - w_n, b) \geq \| x_0 - w_n, b \| - \varepsilon \) for all \(n \geq 1 \). Since \(\| x_0 - w_n, b \| \leq \| x_0 - w_n, b \| + \varepsilon = \| f(x_0, b) \| + \varepsilon \leq 1 + \varepsilon \), \(x_0 - w_n \in M^b_{f,\varepsilon} \) for all \(n \geq 1 \). This is a contradiction.

Definition 3.3. Let \((X 	imes Y, \| . \|, \| . \|)\) be a generalized 2-normed space, \(0 \neq b \in Y, \varepsilon > 0 \) be given and let \(M \) be a subspace of \(X^b_0 \). For each \(x \in X \), put

\[
D^{M,b}_{x,\varepsilon} = \{ y \in X : f(y, b) = f(x, b) \text{ for all } f \in M \text{ & } \| y, b \| \leq \| x, b \| + \varepsilon \},
\]

where \(\| x, b \| = \sup \{ \| f(x, b) \| : \| f \| \leq 1, f \in M \} \).

It is clear that \(D^{M,b}_{x,\varepsilon} \) is a non-empty, closed and convex subset of \((X, p_b)\), for all \(x \in X \).

We say that \(M \) has the property \((b,\varepsilon) - F^* \) if \(D^{M,b}_{x,\varepsilon} \) is finite dimensional for all \(x \in X \).

Theorem 3.5. Let \((X 	imes Y, \| . \|, \| . \|)\) be a generalized 2-normed space, \(W \) be a subspace of \(X \), \(\varepsilon > 0 \) be given, \(0 \neq b \in Y \) and let \(M_0 = \{ f \in X^b_0 : f|_{W \times \langle b \rangle} = 0 \} \). Then, \(W \) is \((b,\varepsilon)\)-pseudo Chebyshev subspace if and only if \(M_0 \) has the property \((b,\varepsilon) - F^* \).

Proof. If \(\dim D^{M_0}_{x,\varepsilon} = \infty \) for some \(x \in X \), then there exist infinitely many linearly independent elements \(y_1, y_2, \ldots \) in \(D^{M_0}_{x,\varepsilon} \). Hence, \(y_1 - y_n \in W \) for all \(n \geq 1 \) and

\[
\| y_1 - (y_1 - y_n), b \| = \| y_n, b \| \leq \| x, b \| = \| y_1 - (y_1 - y_n), b \| + \varepsilon
\]

for all \(n \geq 1 \). Therefore, \(y_1 - y_n \in P^b_{W,\varepsilon}(y_1) \) for all \(n \geq 1 \). It follows that \(W \) is not \((b,\varepsilon)\)-pseudo Chebyshev subspace. Now, suppose that \(\dim P^b_{W,\varepsilon}(x_0) = \infty \) for some \(x_0 \in X \). Then, there exist infinitely many linearly independent elements \(g_1, g_2, \ldots \) in \(P^b_{W,\varepsilon}(x_0) \). It is easy to see that, \(\| x_0 - g_n, b \| \leq \| x_0 - g_n, b \| + \varepsilon = \| x_0, b \| + \varepsilon \) for all \(n \geq 1 \). It follows that \(x_0 - g_n \in D^{M_0,b}_{x_0,\varepsilon} \) for all \(n \geq 1 \), which is a contradiction.
REFERENCES

