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ABSTRACT. In this paper, we study further the generalized mveft%fﬁs of a matrix A over an
integral domain. We glve firstly some necessary and sufficient conditions for the existence of

the generalized mverseT s» an explicit expression for the elements of the generalized inverse
A( s and an explicit expression for the generalized mvettgﬁs which reduces to the {1} in-

verse Secondly, we verify that the group inverse, the Drazin inverse, the Moore-Penrose inverse
and the weighted Moore-Penrose inverse are identical with the generalized m\%@@N(G)

for an appropriate matrixz, respectively, and then we unify the conditions for the existence
and the expression for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose
inverse, the Drazin inverse and the group inverse over an integral domain. Thirdly, as a simple
application, we give the relation between some rank equation and the existence of the general-

ized inverseAg)S, and a method to compute the generalized invekgé. Finally, we give an
example of evaluating the eIementsA)?))S without calculatingAE,%{g
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2 YAOMING YU AND GUORONG WANG

1. INTRODUCTION

Over complex number fields, there are a great number of the results about the generalized
mverseA ¢ of a matrix A, for example,[[2, 11,14,]5, 12]. These results reveal that the known
generallzed inverses, such as Moore- Penrose inverses, Drazin inverses and group inverses and
so on, are all the generalized inveﬁ%)s, that some algorithms for the known generalized in-

verses are unified by the generalized inveﬁé%, and that some characteristics of the general-

ized inverseAé??9 are common characteristics of the known generalized inverses. Over integral
domains, there are many results for the existence and computing formulas about the Moore-
Penrose inverse, the Drazin inverse and the group inverse ($seé€l[3] 7,18, 9, 13]). In [14], we gave
an explicit expression for the generalized mveAé@S of a matrix A over an integral domain,

which reduces to the group inverse, and proved that over an integral domain the Moore-Penrose
inverse, the Drazin inverse and the group inverse are all the generalized iﬁ\ﬁyse

In this paper, we study further the generalized |nve=ﬁ§é3 of a matrix A over an integral
domain. We give firstly some necessary and sufficient conditions for the existence of the gener-

alized mverseél(Tg, an explicit expression for the elements of the generalized mv@f%eand

another explicit expression for the generalized mveftgé which reduces to the {1} inverse.
Secondly, we verify that the group inverse, the Drazin inverse and the Moore-Penrose inverse,
and the weighted Moore-Penrose inverse are identical with the generalized M\%&eﬁ,«;)

for an appropriate matrixs, respectively, and then we unify the conditions for the existence
and the expression for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose
inverse, the Drazin inverse and the group inverse over an integral domain. Thirdly, as a simple
application, we give the relation between some rank equation and the existence of the general-
ized inverse with prescribed image and kernel, and, consequently, obtain a method to compute
the generalized inverségg’)s. Finally, we give an example of evaluating the elementslﬁg

without calculatingAgg by using Theorerﬁ 3, in which we compute the generalized inverse
Aé?)s by using Equation (3.25) in Corollayy 3,18.

Throughout this papeF denotes an integral domain unless otherwise mentionedizérid
denotes the set o x n matrices ovel. Especially, the notatioR™ = R™*!. By ‘a module’
we mean ‘a rightR-module’. If S is a R-submodule ofR-module), then we writeS C M.

We write R with an involutiona — @ for the meaning of? with a functiona — @ such that
a+b=a+bab=1ba,0=0andl = 1. Foranm x n matrix A = (a;;) over R, we write A*
for the matrixA' = (a;;).

Let A € R™*". We write the image oft by R(A) = {Az |z € R"} and the kernel oA by
N(A) = {z € R"| Az = 0}.. Itis obvious that?(A) C R™ andN(A) C R". We denote the
maximal order of a nonvanishing minor dfby p(A), called the determinantal rank df over
R. Obviously,p(AB) < min{p(A), p(B)} and

L.1) oo B ) =ra o)

WhenR is a complex number fielgh(A) = rank(A).

For integersn > 1 andl < k < m, letQy,, stand for the sefa : @ = {1, a9, ..., a4},
1<a; <o <--- <o, <m}. If A= (a;;)isanmxnmatrix,a = {ay, as,..., a5} € Qrm
andfs = {f8;,0,,...,0,} € Qin, thenA, s, called the(«, 3)-submatrix ofA, stands for the
k x [ matrix whose(7, j)th element is théa;, 3;) element ofA, especially if| 3| = n (or |a] =
m), Ay (OI'A*ﬁ) = Aoég.
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If A = (a;;) is ann x n matrix, for fixedi and j, 72 stands for the coefficient af,; in
the expansion of the determinant Af It is evident from the Laplace Expansion Theorem that

A = Zaud"q'

Moreover IfA = (a;;) is anm x n matrix and4,, s is a submatrix o4, wherea € Q. ., and
B € Qr.n, then we deﬂnéaﬂ as above if € aandj € anda‘A“ﬂl =0ifidaorjégp.

Let Cx(A) denote thelcth compound matrix of amn x n matrix A over R, wherek <
min{m, n}. Itis easy to see that,(AB) = Cy(A)Ci(B) andp(Cya)(A)) = 1.

Let A be anm x n matrix overR with an involutiona — @, M andN be invertible matrices
of ordersm andn over R, respectively, and consider following equations

(1) AXA = A, (2) XAX = A,
(3) (AX)" = AX, (4) (XA = XA,
(3BM) (MAX)* = MAX, (4N) (NXA)* = NXA.

X is called a {1} inverse (or g-inverse) of if X is satisfies (1), and denoted By= A" and
A is said to be regularX is called a{2}-inverse ofA if it satisfies (2), and denoted by/?. X
is called the Moore-Penrose inverseff it satisfies (1), (2), (3) and (4), and denoted A
X is called the weighted Moore-Penrose inversd ¢br generalized Moore-Penrose inverse of
A with respect tal, N) if it satisfies (1), (2),(3M) and(4V), and denoted by’ ... (About
the weighted Moore-Penrose inverse, one can see [6]).

An n x n matrix A over R is said to have Drazin inverse if for some positive intelgénere
exists a matrixX such that

(1%) AFXA = AF, (2) XAX = X, (5) AX = XA

If X exists, then it is unique, and called the Drazin inversd @ind denoted by,. If % is the
smallest positive integer such th&tand A satisfy(1%), (2) and(5), then it is called the Drazin
index and denoted by=Ind(A). By using [9, Proposition 6.22], it is clear to get that (Ad is
the smallest positive integérsatisfyingp(A*) = p(A*1). If k = 1, thenX is called the group
inverse ofA and denoted by,.

Lemma 1.1. ([14, Theorem 1])Let A be anm x n matrix over a commutative ring with
identity,7” C R™ andS C R™. Then the following are equivalent:

() There exists a uniqu& € R™*™ such that
(1.2) XAX =X, R(X)=T, N(X)=5.
(i) AT®S=R"andN(A)NT = {0}.

An n x m matrix X over a commutative ring? is called the generalized inverse which is
{2} inverse of matrix A with prescribed imaié“ and kernelS over a commutative ring if it

satisfies the equivalent conditions of Lemmg 1.1, and denotefdﬁf@y

2. MAIN RESULTS

We begin with the following lemma.

Lemma 2.1.[15, Theorem 2] et A be a matrix overr. If Ag?)s exists and there exists a matrix
G over R satisfyingR(G) = T and N(G) = S, then there exists a matri¥’ over R such that

(2.1) GAGW = G.
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Proof. Supposeélgg exists withR(G) = T'and N(G) = S for a matrixG. ThenAR(G) &
N(G) = R™ and so there exists an epimorphigtft — N(G) — 0. By [1, Theorem 8.1],
N(G) has afinite spanning set whose elements constitute a matrix, denatedbysG L = 0,

%%
e ) such that

and the columns ofAG, L) generateR™, that is, there exists a matr%
AGW + LW; = I,,,.
If we multiply with G the left side, then we have

GAGW =G.

|
Next theorem is our main result.

Theorem 2.2.Let A be anm x n matrix over an integral domai®, 7" C R" andS C R™. If
there exists am x m matrix G with » = p(G) over R such thatR(G) = T'and N(G) = S,
then the following statements are equivalent:

. (2) .
.(.I) AR(G).N(c) EXIStS. . N
(i) u= > |(AG),,|isaunitinR.

'YEQ'V‘,'HL

(iii) p(G) = p(GAG) andGAG is regular.
In caseu is a unit,

(2:2) Aoy v = CAG), = (GA),G
(2.3) = G(GAG)Y@,
and the elements oqg()G)vN(G) are
A
(2.4) wi; = u"t Z |Gﬁ,a|al “’ﬁ|, i=1,2,...,n;7=1,2,...,m.
Oaji
OéEQT,m,ﬁEQr,n

Proof. “(i) =(iii)” SupposeAg()G% N(G) exists. By Equatiol), we have
p(G) = p(GAGW) < p(GAG) < p(G),

and therp(G) = p(GAG). Hence there exists a matri¥ over the field of quotients ak such
thatG = MGAG. From this and Equatiof (3.1) we have

GAG = (MGAG)AG = M(GAGW)(AG)? = GW(AG)?
= (GAGW)W(AG)? = (GAG)(W?A)(GAG).
HenceG AG is regular.

“(iif) =>(ii)” Since p(G) = p(GAG), there exist matriced/ and N over the field of quo-
tients of R such that = MGAG = GAGN. Let K be a {1} inverse ofGAG. Then

AG = AGAGN = A(GAGKGAG)N = (AG)’KG.

Hencep(G) = p(GAG) < p(AG) < p((AG)?) < p(@), and therefore(G) = p(AG) =
p((AG)?). Since

(AG)? = A(GAG)K(GAG) (AG)*K(MGAG)(AG)
= (AG)P’KM(GAGKGAG)(AG) = (AG)*(KGKG)(AG)?,
we have that AG)? is regular.
By [7, Theorem 5], > |[(AG),,|isaunitinR.

’YEQr,m
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“(it) =(@1)"
Tr(C(AG)) = Y [(AG)y,] =u
’YGQr,m
isaunitinR, C,.(AG) is a nonzero matrix. This implies thatAG) > r = p(G). However
p(AG) < p(G). Thus we obtain that(AG) = p(G) = r.
Because of the invertibility o, AG has the group inverseiG), by [7, Theorem 5].
Similarly, GA has the group inversg-A), because
Tr(C.(GA)) =Tr(C.(G)C(A)) =Tr(C.(A)C(G)) = Tr(C.(AG)).
Therefore, we have that
G(AG), = GAG)((AG),)* = ((GA)))*(GAPG((AG),)*
= ((GA),)’G(AG)*((AG),)* = ((GA),)*G(AG)
(2.5) = (GA),G.
Sincep(AG) = p(G), there exists a matrid/ over the field of quotients oR such that
G = M AG. So we have

(2.6) G(AG),AG = MAG(AG),AG = MAG = G.
From Equationd (2]5) anf (2.6), we have that
N(G) C N((GA),G) = N(G(AG), C N(AG(AG),)

= N((AG),AG) C N(G(AG)g)AG) = N(G)
and
R(G) = R(G(AG),AG) C R(G(AG),) C R(G).
Thus, we have

(2.7) N(G(AG),) = N(AG(AG),) = N(G)
and
(2.8) R(G(AG),) = R(G).

Letx € N(A) N R(G). Then there exists asuch thatr = Gy. SoAGy = 0. By Equation

2.9),
r =Gy =G(AG),AGy = 0.

Thus,

(2.9) N(A)N R(G) = {0}.

From the idempotent olG(AG), and Equationg (2|7) and (2.8), by [1, Lemma 5.6] we have
R™ = R(AG(AG),)® N(AG(AG),) = AR(G(AG),) ® N(G)

(2.10) = AR(G) ® N(G).

By Equations) and (2.10) and Lem ]A'/J;()G),N(G) exists. Therefore, we reach (i).

Since(G(AG),)A(G(AG),) = G(AG),, we get Equatior] (2]2) by Equatiofs (2.7), {2.8) and
(2.9), and Lemmpa 1]1.

Now we shall verify Equatior (23). SingéG) = p(GAG), there exist matriced/ and N
over the field of quotients ak such thatG = MGAG = GAGN. From this and the regularity
of GAG, we have

(2.11) G = MGAG = M(GAG)(GAG)Y(GAG) = G(GAG)VGAG
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and
(2.12) G = GAGN = (GAG)(GAG)M(GAG)N = GAG(GAG)WG.
From the above equations, we have that

R(G(GAG)VG) C R(G) = R(G(GAG)MGAG) ¢ R(G(GAG)VG)

and
N(G) € N(G(GAG)VG) c N(GAG(GAG)VG) = N(G).
Thus,
(2.13) R(G(GAG)VG) = R(G)
and
(2.14) N(G(GAG)WG) = N(G).

From the idempotent oiG AG)YGAG, by [1, Lemma 5.6] we have
R((GAG)WGAG) ® N((GAG)VGAG) =
By Equation [(2.1R), we have that
R(GAG)VG) = R((GAG)VGAG(GAG)WG) ¢ R(GAG)VGAG)
Thus, by [14, Lemma 1(1)], we have that

(G(GAG)(I)G)A(G(GAG)(I)G> = GPR((GAG)(UGAG),N((GAG)<1)GAG)((GAG)(I)G)
= G(GAG)Vq,
and therefore we obtain Equatign (2.3) by Equatipns (2.13)[and| (2.14) and Ljenjma 1.1.

Finally, we shall prove Equatiof (2.4). S€t= (g;;). By [7, Theorem 8(ii)], the element of
(AG), is

mo= Y wl(AG), o L Deal

ik

« ’YEQT m
wherez;, is the element oflG. Thus, the element;; of A(Z) v = G(AG), s
- O|(AG)ay|
Wi = Z GikYk; = Z Gik Z 2‘<AG)’YOLIT’Y
k=1 k=1 a,YEQr,m ik

Note that for alla € Q,.,,, for whichj € awand ally € Q,.,,,,
- 0|(AG),
ng% = |Ua,7|
k=1 gk

whereU is the matrix obtained fromAG by replacing thejth row of AG with the ith row

of G. We write asB the matrix obtained fromA by replacing thejth row of A with the
row (0,0,...,0,1,...,0) where theith entry is 1 and all otherwise are zero. Thus, we have
U = BG. Hence, by using the Cauchy-Binet Formula, we have

0] Aa g
Uasl = D [Bagl [Gasl = D =5 551Gl
BEQrn BEQrn 7t
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Thus

- 3|A 4l
wi = u? Y [AG)yal Y TG,
a,B€Qr,m BEQrn j

0| A,
DY |A75||G5a||aﬂw|’ ﬂ‘.

o, YEQr,m B, 5€Q'r n

Sincep(C,.(G)) =1, foralla, v € Q,.,,, andg, é € Q,.,, we have

|G5,a| |Gﬁw| = |G5ﬂ| |G67a|

Thus, we get that

vy = w2 Y |A75|\GMHGM|' '

« 76@1 m ﬁ 66@7 n

= ) Z\AGMHGMW'A”'

,Y€EQr,m BEQrn

) 9 A
- u 1 Z |Gﬁ a| | aOé [3|
OCEQ'V','NL,BEQ'V' n Tt

If Ris a complex number field, then we have the following result because every matrix is
regular over a complex number field.

Theorem 2.3.LetA € C™*", T c C*andS C C™. If there exits a matrixG' € C*"™ such
that R(G) = T'and N(G) = S, then the following statements are equivalent:

. 2 .
.(.I) A;()GLN(G) exists.
(i) u= > |(AG),,| #0.

"feQr,m

(i) rank(G) = rank(GAG).

In caseu # 0,
(2.15) Aoy = G(AG), = (GA),G
(2.16) = G(GAG)VG,
and the elements of?)., . ., are

A
(2.17) wi; = u" Z |GM|8’ a"", i=1,2,...,n;7=1,2,...,m.
aeQ'r,'rruﬁeQ'r,n gt

Remark 1: It is easy to judge whetheﬁggg) N(G) exists by using the condition rafik) =
rank GAG). And if A(TQ)S exists, we can evaluate its elements without calculating itself by using

Equation[(2.1]7)xa

Next theorem shows that the group inverse, the Drazin inverse, the Moore-Penrose inverse
and the weighted Moore-Penrose inverse are identical with the generalized iﬁ\%&g—;,@
for an appropriate matrig, respectively.
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Theorem 2.4. () Let A be anm x n matrix overR with an involutiona — @, M and N
invertible matrices of orders: andn over R, respectively. Set” = N~'A*M*. Then

Ag()A#) N(A#) exists and4* M A and AN ! A* are symmetric if and only il exists.
Moreover, Al s = Abyy.

i) Le e anm x n matrix overR with an involutiona — @. Then . . existsi
LetAb t R with lut ThenAR ., v 4., exists if

),N(A*) = = Al

(i) Let A be ann x n over R andk a positive integer. Thed
N(ary = Ad.

(iv) Let A be ann x n overR. ThenA R(A).N(a) EXists if and only ifA, exists. Moreover,

(2)
Ag R(A),N A)_A

and only ifAT exists. Moreovemg() 1
(2)

k) v (ar) EXiSts if and only

if A, exists. MoreoverA(z)

Proof. (i) “ <" SinceAAEWN is idempotent, by [1, Lemma 5.6], we have that

R(AAl, ) & N(AAL, ) = R™

Since
R(A;[\/[N) R(N 1NA}L\/[NAA}L\/[N) = R(NAA*AE\ZNN*A}L\/[N)
= R(N“'A*M*M+* A N*Al ) C R(N“LA*M*)
= R(NTA*Al: A*M) = R(Al,yAN*TA*M¥)
C R(Aly),

N(AAl,\y) © N(NT'A*MAAL, ) = N(N“'A*Al: A*M*)
= N(N-1A*M*) C N(M AV NN-TA*M*)
= N(AALN>7

we have
R(Aly) = R(A%),  N(Aly) = N(A%)
and then

AR(A*) ® N(A*) = RM.
Letx € R™ suchthatd A%z = 0. ThenA#z = A* AA#z = 0 and saN (A)NR(A#) = {0}.
By Lemm,A(Q) exists anddf, = A%
R(A#),N(A#) MN R(A#),N(A#)"
By [6, Theorem 8],4* M A and AN ' A* are symmetric.
“—="1f A Q)A#),N(A*) exists, then we can writ& = Ag()A#) N = AT (AAT) = (AT A) A*
by Theore. Replacing with A# in Equation|(2.1L), we have

A*AATW = A*
and then
A = M TUWHART AT APTNY = MW ATTATMA = MFTUWEART A M A.
Thus

AXA = A((A7A),A")A M*TWHA#TA*M* A(A% A) A% A
M T'TWHA# N A# A(A* A) ,A* A M*~'W*A# N A* A

= M 'WrA#TA*M*A = A,
XAX = X

Y
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(MAX)* = X*A*M* = (A% (AA#))) A*M*
(A#*A*) AP A M = (A*TAY),MAN*"A*M*
(AF" A MANTTA*M* = (A*" A*), M AA*
(A# AY) M AAT AA#(AAT),
= (A*"AY),MANTA*M* AN~ A* M*(AA™),
(
(

*

\/\/\/\/

AFT A MAN* A" MAN*' A* M*(AAT),
AP A (AT A% M (AAT),
= APTATMY(AA?), = MAN*'A*M*(AA™),
= MAN'A*M*(AA?), = MAA#(AA#),
= MAX,
(NXA)* = A X*N* = A*((A*A),A*)*N
ATAFT(A*AF) N* = NNTTA*MAN*' (A" A*"),N*
NNTPA*M*AN* YA A#),N* = N(A*A)N*'(A*A*"),N*
N(A*A), (A*A2N*H (AT A*T), N*

)g
= N(A*A)N'A*M*AN'A*M*AN* "' (A*A#") N*
N(A*A),NTTA"MAN* " A*MAN*" (A*A#*") ,N*
N(A*A),N7LA*A#"A* A# (A" A*T)  N*
N(A*A),NTTA*A*'N* = N(A*A),N'A*MAN*"'N*
= N(A*A),N'A*M*A = N(A#A),A*A
= NXA.

Hence Al , exists.
(i) Take M = I,, andN = I,,.
(iii) * <" By the proof in [14, Theorems 4].

“—="|f Ag()Ak)’N(Ak) exists. LetX = A Rty nak) = AN(AR) = (AR AP by by Theo-
rem[2.2. Replacing with A* in Equation|(2.1L), we havﬂk A1 and then
AX = AFFL(ARFLY = (AR, AR — XA,
ARX A = Ak((AkJrl) Ak)A — Ak(Ak+1)gAA2k+1W = AFAMIW
— AP
XAX = X.

HenceA, exists.
(iv) Takek = 1in (iii). n

In order to see that the conditions for the existence and expressions for the elements of the
known generalized inverses are unified by Thedrern 2.2, we need the next result.

Lemma 2.5. () Let A be anm x n matrix overR with an involutiona — @, M and N
invertible matrices of orders: andn over R, respectively. Set” = N~1A*M*. Then
AA# and A% A are regular andp(A) = p(A# A) = p(AA*) if and only if A% AA# is
regular andp(A*) = p(A#* AA#).
(i) Let A be anm x n matrix over R with an involutiona — a@. ThenAA* and A*A are
regular andp(A) = p(A*A) = p(AA*) if and only if A*AA* is regular andp(A*) =
p(A*AA*).
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(iii) LetA be ann x n over R andk a positive integer. TheAd?**! is regular andp(A*) =
p(A?*1Yif and only if AL is regular andp(A*) = p(A*1).

(iv) Let A be ann x n over R. ThenA? is regular andp(A) = p(A?) if and only if A is
regular andp(A) = p(A?).

Proof. (i) =" From the hypothesis, there exist matricBsand ) over the field of quotients
of R suchthatd = PA#* A = AA#(). So we have
AAFA)WAFA = PATA(ATA)WA*A = PATA = A,
AAF(AAFYDA = AAF(AAT)VAAZQ = AA*Q = A
From these, we have
A= AA*(AATYDA(A* A)W A# A and A = A(A* A)W AF AA* (AA#)D A
Thus,
AT AAT = (A* AATF)((AAT)D A(A* A)D)(AF AAF).
and
p(A) < p(ATAAF) < p(A).
Hence, we obtain that” AA* is regular angh(A) = p(A* AA¥).
It is easy to see that( A) = p(A#). Consequently, we havé A#) = p(A# AA*).
“«<="Since
p(A) = p(A%) = p(A*AAT) < p(A* A) < p(A),
we havep(A) = p(A# A) and then there exists a matidXover the field of quotients ak such
that A = PA# A. Hence

AA# = PA* AA* = PA? AA% (A% AAT) D A# AA# = AAT (A* AAF)D AF)AAF

Thus,AA* is regular.

Similarly, we have thati# A is regular angh(A) = p(AA¥).

(ilTake M = I, andN = [, in (i).

(iii)* ="Since

p(AF) = p(APF1) < p(AFFY) < p(AD),

we havep(A*) = p(A*1). Sincep(A*) = p(A%+1), there exists a matrix/ over the field of
quotients ofR such thatd* = A%**1 V. Then

Ak+1 — A2k+2N — A2k+1(A2k+1)(1)A2k+1AN — Ak+1(Ak(A2k+1)(1))Ak+l.

Hence,A**! is regular.
“<="Since p(A*) = p(A**t1), there exists a matri®/ over the field of quotients aR such
thatA* = A*1N. Since

Ak _ Ak+1N _ Ak+1<Ak+1)(1)Ak+1N _ Ak+1(Ak+1)(1)Ak
there exists a matriX” over R such thatd* = A%**1Y". Thus, we have(A*) = p(A%**1) and
A2k+1 _ Ak+1Ak _ Ak+1<Ak+l)(1)Ak+1Ak _ A2k+1(YA<Ak+1)(1))A2k+1.
That is,A?**! is regular.
(iv)Takek = 1 in (jii).
From Theoremp 2|2 afd 2.4 and Lenm4 2.5, it is easy to get the following corollaries.

Corollary 2.6. Let A be anm x n matrix withr = p(A) over R with an involutiona — @, M
and N invertible matrices of orders: andn over R, respectively. Set# = N~tA*M*. Then
the following are equivalent:

(i) Al exists.
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(i) u= Y |(AA*), . |isaunitinR, and AN~ A* and A*M A are symmetric.
76@7',7n

(i) p(A) = p(A*A) = p(AA*) and A# A and AA* are both regular.
In caseu is a unit,

(2.18) Al = AF(AA?), = (A*A), A"
(2.19) AF(A* AAT)D AF
and the element ot is

A
(2.20) wy—ut YAt |0I aal

aeQr,rrmﬂeQr,n

Remark 2: Some of the results in Corollafy 2.6 is identical with some of the results|in [6,
Theorems 8]§

Corollary 2.7. Let A be anm x n matrix withr = p(A) over R with an involutiona — a.
Then the following are equivalent:

(i) AT exists.
(i) u= > |(AA"),,|isaunitinR.
YEQr,m

(i) p(A) = p(A*A) = p(AA*) and A*A and AA* are both regular.
In caseu is a unit,

(2.21) Al = A*(AAY), = (A%A), A"
(2.22) = A" (A*AANWD A*,
and the element of' is
_ 0| Aa 5
_ 1 * a,3
(2.23) Wy = u > 145 Gas
aEQr,myﬁEQr,n

Remark 3: Some of the results in Corollafy 2.7 is identical with some of the resultslin [9,
Theorems 6.7 and 6.8]. In addition, Equatipn (2.22) extends the formula of Zlobea[16].

Corollary 2.8. Let A be ann x n matrix overR. Then the following are equivalent:
(i) A, exists.
(i) For some positive integral, u = > [(A*™),,|is aunitin R, wherer = p(A").
YEQr,m
(iii) For some positive integral, p(A*) = p(A**') and A**! is regular.

In caseu is a unit and fork >Ind(A),

(2.24) Ag = AF(AMY, = (AMh), A
(2.25) = AR(AZFH D gF
and the element ol is

_ 9] Aa sl
(2.26) wi; =u"" Z ’(Ak)ﬁ’a‘aTji’

aEQr,mﬂGQr,n
wherer = p(A*).

Remark 4: Some of the results in Corollafy 2.8 is identical with some of resultslin [9, The-
orems 6.24] and [7, Theorem 9], and Equation (2.26) extends Equation (3.1) in [10, Theorem
3.1]. 1
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Remark 5: The formula in[7, Theorem 8(ii)] can rewritten the following form, which is iden-
tical with Equation[(2.26) wheh = 1,
_ 0| A gl
JR— 1 a’ﬁ
(2.27) wij = U > \Aﬁ,a’aTﬂa
aeQr,m,aﬁeQTﬂl

wherer = p(A). The reason is that

2: |@4%7m| = E: |A%ﬂ‘A&ﬂ

'YGQr,n 'Yy(seQ'r',n

= 2 [Aysl[Ass] (since p(Cr(A)) = 1)

V,6€Qrn

= ( Z ‘A%7|)2'

'YGQr,m

From Remarks 2- 5, Theorenj 2.2 unifies the conditions for the existence and the expression
for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose inverse, the Drazin
inverse and the group inverse over an integral domain.

Corollary 2.9. Let A be ann x n matrix overR. If the group inversel, of A exists, then
(2.28) A, = A(AHWD A
3. RANK EQUATIONS

As a simple application we consider following theorem which characters the relation between
some rank equation and the existence of the generalized inverse with prescribed image and
kernel. In the proof we use the results in Theofem 2.2.

Firstly we need the following lemma.

Lemma 3.1. [13, Lemma 1]Let oy, cva, - -+, € R" (w < n) andT =(aq, g, -+, Qy).
Thenay, as, - -+, ay, are linearly dependent oveR if and only if det(7,.,) = 0, for every
a € Qun-

Now we show the main theorem in the section.

Theorem 3.2.Let A be anm x n matrix over an integer ring?, T’ C R", S C R™, Suppose
G € R™™ such thatR(G) = T'and N(G) = S. Then the generalized inverséﬁg exists if
and only if there exists a solution in the rank equation

(GAGG
G X

In this case, the solution is unique.

(3.1) )) = p(GAG), R(X)CT

Proof. “="SupposeA{ exists. We will show thati{7s is a solution of the rank equation

@G.D).
Obviously,R(Ag)S) = R(G)=T. SlnceA(TS exists, we have4 T5 = = G(GAG)MG and

p(G) = p(GAG) by Theoreni 2]2. Thus
p(AT) < p(G) = p(GAG) = p(GAG(GAG)VGAG)
= (GA(ATS)AG) < (A2 ):

So, p(A s) = p(GAG). Itis easy to see thaﬁtg? AG =( andGAA%)S = (. Hence
([_GAXGAG GX I 0)_ 0 OX I 0)_(0 O)
0 I ¢ AP N\ —AG 1 G AP \ —AG T 0 APy
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and then
GAG G 0 0
_ _ (2)y _
(67 A D =ot(g s, )= rah) = piGaG)
That is ATS satisfies Equat|0|. (3.2).
"Suppose that
GAG G
rank( o X ) = rank(GAG)

has a solution. Denote = p(GAG), GAG = {aj, as, ... am} G = {51,52,.. Bt I

r =0, thenG = 0 by Equatlon) So by TheorA!TS exists andATS =0.

Now suppose: # 0. By Lemma[ 3.1, there exist columns of GAG, which are linearly
independent. Also, there existows of G AG, which are linearly independent, becalidé| =
|Al.

Without loss of generality, let the firstcolumns of GAG, sayaq, as, ..., a,, be linearly
independent. By Equation (3.1), we obtain thatay, ..., a, andg; (j = 1,2,...,m) are
linearly dependent. That is, there exist;, as, . . ., a,;,b; (j = 1,2,...,m), not all 0, such
that
,m.

r
Zai,jai = jﬁj, ] = 1, .
i=1

Clearly,b; # 0,7 =1, ..., m. Written the above equation, we get

ail a2 A1m
a.21 a.22 A2m by
by
(1, 9y ey Qe i1y ey Q)| Gt Gy arm | =81, By -+ B)
. . b
0 0 0
and write down
(3.2) (GAG)P = GD.
Similarly we take into account the row. Then, there exist matrigesid D’ such that
(3.3) Q(GAG) = D'G.

whereD’, as well asD, is a diagonal matrix anf)’| # 0. Using Equationd (3]2) anfl (3.3), we
have

I 0 GAG G I 0

AJMAA Vol. 4, No. 1, Art. 16, pp. 1-20, 2007

~NO ~NO ~NO ~O

o N~ ~—

)(
)(
(
(

0 D

I 0
0 D

I 0
0 D

GAG

0

)(
)(
)(

(XD — GP)

G X

)(

0 D

GAG GD 1
G XD 0

GAG 0
G XD-GP

0
D'G D'(XD - GP) )

)

) (6

o

)
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Thus, using Equation (1.1), we obtain

weac) = ol 57 ) =o( 0% pixp-ar )

= p(GAG) + p(D'(XD — GP)).

SoD'(XD — GP) = 0. Since there exist no nonzero divisors of zero in an integral domain,

(3.4) XD =GP.
Analogously, we can get
(3.5 D'X = QG.

Hence, by Equation$ (3.2) (3.5), we have
D'XAXD = QGAGP = QGD = D'XD,

D'XAG = QGAG = DG,
GAXD = GAGP = GD.
SinceR has no nonzero divisors of zero, we have
(3.6) XAX = X,
(3.7) XAG =G,
(3.8) GAX =G.

Thus, by Equationg (3.7) and (8.8),
R(G) = R(XAG) C R(X) Cc T = R(G),
N(X) C N(GAX) = N(G) C N(QG) = N(D'X) = N(X).

and then

(3.9) R(G) = R(X),

(3.10) N(G) = N(X).

Hence, by Theore@.z and Equatio(S. (3.9) and|(3.10), we reack thaﬂgg exists
uniquely.n

In Theoren] 3.2, we také' = A#, G = A*, G = Al > Ind(A), andG = A, respectively.
Then by using Theorem 2.4, we get the results of the existences of the weighted Moore-Penrose
inverseA!, ., the Moore-Penrose inverst, the Drazin inversel, and the group inversd,
of the matrixA over R.

Corollary 3.3. Let R be an integer ring with an involution — a, A € R™*", M and N be
invertible matrices of orders: andn over R. SetA# = N~1A*M*. ThenAl,, exists if and
only if the rank equation
AT AA#  AF
(3.11) p(( * oy
has a solutionX € ™™, and AN~ A* and A* M A are symmetric.
In this case, the solution is unique.

Proof. TakeG' = A# in Theoren) 3.2 and afterward use Theofen 2.4(i).

)) = p(A*AA?), R(X) C R(A?)
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Corollary 3.4. Let R be an integer ring with an involution — @, A € R™*". ThenA' exists
if and only if the rank equation

A*AA* A*
p(

(3.12) oy

)= ptaran), RX) < R
has a solutionX € R™**™,
In this case, the solution is unique.

Corollary 3.5. Let R be an integer ring,A € R™*". ThenA, exists if and only if the rank
equation

Al X

has a solutionX € R™*", wherel > Ind(A).
In this case, the solution is unique.

(3.13) p<(A2l“ Al)>=p<A2l“>, R(X) C R(AY

Corollary 3.6. Let R be an integer ring,A € R"*". ThenA, exists if and only if the rank
equation

A3 A 3
(3.14) p({ 4 x ))=pA), R(X)CR(A)

has a solutionX € R™*".
In this case, the solution is unique.

If Ris the complex number field, we can omit the restricted cond@i) C 7" in Theorem
[3.9. Thus, we have the following theorem and its corollaries.

Theorem 3.7.LetA € C", T c C*, S Cc C",dim(T) = s < r,dim(S) = m — s. Let
G € €™ such thatR(G) = T and N(G) = S. ThenAY exists if and only if there exists a
solution in the rank equation

(3.15) rank(( GéG )G( )) = rank(GAG).

In this case, the solution is unique.

Proof. Using Equation[(3]4) in the proof of Theor¢m|3.2, we have that GPD~!. and then
R(X) C R(G) =T. Itis to say that the rank equation [n (B.1) impliB6X) C 7. Therefore,
by Theoreni 3]2, the result is trug.

WhenG = N'A*M, whereM and N are Hermitian positive definite matrices of orders
m andn respectivelyG = A* or G = A!, wherel > Ind(G), in the above theorem, we have
following corollaries respectively in view of the existence,ﬁjt,N, AT and A, of a matrix A
overC.

Corollary 3.8. Let A € C"™*", M and N are Hermitian positive definite matrices of orders
andn, respectively. Theﬁ}m is a unique solution of

# # #
rank(< A*AA* A

(3.16) w 'y

)) = rank(A* AA?),

whereA# = N-1A*M.

Corollary 3.9. Let A € C™*". ThenA' is a unique solution of

(3.17) rank(( AZ{*A 1;1( )) = rank(A*AAY).
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Corollary 3.10. Let A € C™*". ThenA, is a unique solution of

2A+1 gl
(3.18) rank(( AAZ 1;1( )) — rank(A%*),

for any integerl > Ind(A).
TakingG = A in Theorenj 3.2, we get the following result.

Corollary 3.11. Let A € C"*". ThenA, exist if and only if there exists a solution of

(3.19) rank(< ﬁg 3? )) = rank(A?).

In this case, the solution is unique.

Now we continue to study the properties/d)fgof A over an integer domain. First, we show
the following lemma, whose proof is similar to that ovérHere we need Equatiop (1.1).

Lemma 3.12. Over an integer domai®, suppose that the submatrkof the matrix
A B
(¢ )
is invertible. Therp(P) = p(A) ifand only if D = CA™' B.
The following theorem fines Equation (3]17).

Theorem 3.13.Let R an integer domaind € R"™*", T C R"andS C R™. G € R™™ with
R(G) = T and N(G) = S. Denoter = p(G). If there exista € Q,.,,, 3 € Q,,, such that

(GAG), s is invertible inR, then the generalized inversé%)s exists and
(3.20) APL = Gs((GAG) a5) G-

Proof. Clearly, we have(GAG) < p(G). From the invertibility ol GAG),, s, we geto(GAG) >
r = p(G). Thus,p(GAG) = p(
From the invertibility of(GAG

—

IN 3

~—

3, We obtain

~—

1
a1 (GAG)a sl +
|(GAG)OC7B| ’ YEQr ,L,ﬁeQer,('y,é)i(a,ﬂ)
By [8, Theorem 8], we know that AG is regular. Therefore, by Theor&% exists.

Now we shall show Equatiofn (3.20). Set

. (GAG)as Gl
- G.s A%

0-|(GAG), 4| = 1.

It is evident that
p(P) > p((GAG)ap) = p(G) = p(GAG).

, . : [ GAG (G
SinceP is a submatrix of the matri @ |
G Arg

P < GAG G
pP)=p(l 4 A, )
Thus, by Equatior] (3}1) in Theorgm B.2 we obtain

(g Aﬁ ) = sicac)
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becauseﬁl% exists. Hence
p(P) = p((GAG)ap).
According to Lemma 3.312, we have

2 _
AP = Gp((GAG) ap) ™ G
|
From the above theorem we have following results about known generalized inverses.

Corollary 3.14. Let R be an integer ring with an involution — @, A € R™*", Denoter =
p(A). LetM and N be invertible matrices oveR of ordersm andn, respectively, andl N ! A*
and A*M A be symmetric. Denotd# = N~'A*M*. If there existv € Q,.,,, 8 € Q,,, SUch
that (A# AA#), 5 is invertible, then the weighted Moore-Penrose invetsg, exists, and

(3:21) Al = AL((AFAAF), 5) T AL
Corollary 3.15. Let R be an integer ring with an involution — a, A € R™*". Denote

r = p(A). If there exista € Q,,,0 € Q.. such that(A*AA*), s is invertible, then the
Moore-Penrose inversa’ exists, and

(3.22) Al = A (AT AA") o ) AL,

Corollary 3.16. Let R be an integer ringA € R"*", Denoter = p(A'), wherel > Ind(A). If
there existy, 3 € Q,.,, such that( A%*1),, 5 is invertible, then the Drazin invers¢; exists, and

(3.23) A= Ap((A*)a5) ™ Ag-

Corollary 3.17. Let R be an integer ringA € R"*", Denoter = p(A). If there existo, 8 €
Q. such that(A%), s is invertible, then the group inversg, exists, and

(3.24) Ay = As((A%ap) H As.
Especially, for matrices ovét, we have

Corollary 3.18. Let A € C™*", T c C"andS C C™. G € C"™ with R(G) = T and
N(G) = S, Denoter = p(G). If there exista € Q.0 € Q.. such that(GAG), s is

nonsingular, then the generalizeﬁtﬁ?g exists, and
(3.25) AP = Gop((GAG) 45) " G
4. EXAMPLE

Here we give an example of evaluating the elementﬂ% without calculatingA% by
using Theorerp 2]3.

Example. Let

1 0 3 0
10 -2 0 1 axd
A= 1 0 2 0 € R3™%.
0O 0 -1 20

GivenS = R((—1533/4072,479/694, —1549/2743,511/2036)T) c R* andT = R(V) Cc R*
where

2 35
3 4 6
V=13 11
111
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Taking

€ R3*4,

W W N
— =W
— = O Ot
— s~ O

we can show easily that(G) = T, N(G) = S and rankG)=rank GAG). Thus, by Theorem

2.3, AQ) exists.
2)

Consider the element,; of AEF’S. Thus, we have

{(a; PN e 2 B} = {({1,2,3},{1,2,3}), ({1,2,3},{1,2,4}), ({1, 2,3}, {2,3,4}),
({1,2,4},{1,2,3}), ({1,2,4},{1,2,4}), ({1,2,4},{2,3,4}),
{ { {

1,3,4},{1,2,3}), ({1,3,4},{1,2,4}), ({1, 3,4}, {2, 3,4})}

and make two lists as follows

a g G |Gs.al A gy [ Aol
2 35 1 0 3 00
{1,2,3} | {1,2,3} 3 46 -4 0 -2 0 (—1)12 x 1 2 ':O
3 1 1 1 0 2
2 35
{1,2,3} | {1,2,4} 3 46 0 don’'t need don’t calculate
11 1
346 0 30 01
{1,2,3} | {2,3,4} 311 4 -2 01 (=) x 5 0 ‘:—2
1 11 0 20
2 36 1 0 3 0 0
{1,2,4} | {1,2,3} 3 47 -9 -2 0 (=112 x 0 —1 ‘:O
3 1 4 0 0 -1
2 36
{1,2,4} | {1,2,4} 3 47 0 don’t need don’t calculate
11 1
3 47 0 3 0 0 1
{1,2,4} | {2,3,4} 31 4 9 -2 0 1 (=) x 10 =1
1 11 0 -1 0
2 56 10 3 1 9
{1,3,4} | {1,2,3} 3 6 7 -11 10 2 (=12 x 0 1 =1
31 4 00 —1
2 56
{1,3,4} | {1,2,4} 3 6 7 0 don’t need don't calculate
11 1
3 6 7 0 3 0 2 0
{1,3,4} | {2,3,4} 31 4 11 0 2 0 (=) x 10 ‘:O
1 11 0 -1 0
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and
Y (ACUWW |(ACUWV|
11 6 8
{1,2,3} -5 =7 —-11 -4
8 5 7
11 6 18
{1,2,4} -5 =7 —13 -9
-3 -1 —4
11 8 18
{1,3,4} 8 7 14 0
-3 -1 —4
-7 —11 -13
{2,3,4} 5 7 14 6
-1 -1 -4
where

11 6 8 18
—5 -7 —11 -13
8 5 7 14
3 -1 -1 -4

Henceu = —4 — 94 0+ 6 = —7. Thus, by using Equatiof (2.[L7), we have

1 10
Wy = —?(4 X (=2)4+9x14+(-11)x1) = -
In order to compare with the method for evaluating elements by the aﬁlé?bf we calculate
a matrixX by using Equatior{(3.25) in Corollafy 3]18 and show tNasatisfies the conditions

in [2, Theorem 2.13], that isY is the generalized mvers@n .
We compute

AG =

29 10 12 43
40 13 15 58
24 12 16 39
11 3 3 15

and then taker = {1, 3,4}, 6 = {2, 3,4}. Since

GAG =

10 12 43
(GAG)apl =| 12 16 39 | = —42 40,
3 3 15
we have
Zgg 10 12 43\ ' /2 3 5 6
X = Gp(GAG) 5Gas = | { 1 4 12 16 39 311 4
L1 3 3 15 1111

17 0  6/T 15)7
10/7 —1 —17/7 —4/7
47 0 —4)7 —3/7
9/7 —1 —23/7 —19/7
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Obviously,dim(7") = dim(S+) = 3
andX is {2} inverse ofA with N(X) =

YAOMING YU AND GUORONG WANG

= rank(A). Itis easy to show thatlT & S = R*
SandR(X) = T. Therefore, by[[2, Theorem 2.13],

Ag)s = (wij) exists andA(T%g = X.
Thus, we haveu,; = 2. They are identicaly
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