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ABSTRACT. In this paper, we study further the generalized inverseA
(2)
T,S of a matrixA over an

integral domain. We give firstly some necessary and sufficient conditions for the existence of
the generalized inverseA(2)

T,S , an explicit expression for the elements of the generalized inverse

A
(2)
T,S and an explicit expression for the generalized inverseA

(2)
T,S , which reduces to the {1} in-

verse. Secondly, we verify that the group inverse, the Drazin inverse, the Moore-Penrose inverse
and the weighted Moore-Penrose inverse are identical with the generalized inverseA

(2)
R(G),N(G)

for an appropriate matrixG, respectively, and then we unify the conditions for the existence
and the expression for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose
inverse, the Drazin inverse and the group inverse over an integral domain. Thirdly, as a simple
application, we give the relation between some rank equation and the existence of the general-
ized inverseA(2)

T,S , and a method to compute the generalized inverseA
(2)
T,S . Finally, we give an

example of evaluating the elements ofA
(2)
T,S without calculatingA(2)

T,S .
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2 YAOMING YU AND GUORONGWANG

1. I NTRODUCTION

Over complex number fields, there are a great number of the results about the generalized
inverseA

(2)
T,S of a matrixA, for example, [2, 11, 4, 5, 12]. These results reveal that the known

generalized inverses, such as Moore-Penrose inverses, Drazin inverses and group inverses and
so on, are all the generalized inverseA

(2)
T,S, that some algorithms for the known generalized in-

verses are unified by the generalized inverseA
(2)
T,S, and that some characteristics of the general-

ized inverseA(2)
T,S are common characteristics of the known generalized inverses. Over integral

domains, there are many results for the existence and computing formulas about the Moore-
Penrose inverse, the Drazin inverse and the group inverse (see [3, 7, 8, 9, 13]). In [14], we gave
an explicit expression for the generalized inverseA

(2)
T,S of a matrixA over an integral domain,

which reduces to the group inverse, and proved that over an integral domain the Moore-Penrose
inverse, the Drazin inverse and the group inverse are all the generalized inverseA

(2)
T,S.

In this paper, we study further the generalized inverseA
(2)
T,S of a matrixA over an integral

domain. We give firstly some necessary and sufficient conditions for the existence of the gener-
alized inverseA(2)

T,S, an explicit expression for the elements of the generalized inverseA
(2)
T,S and

another explicit expression for the generalized inverseA
(2)
T,S, which reduces to the {1} inverse.

Secondly, we verify that the group inverse, the Drazin inverse and the Moore-Penrose inverse,
and the weighted Moore-Penrose inverse are identical with the generalized inverseA

(2)
R(G),N(G)

for an appropriate matrixG, respectively, and then we unify the conditions for the existence
and the expression for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose
inverse, the Drazin inverse and the group inverse over an integral domain. Thirdly, as a simple
application, we give the relation between some rank equation and the existence of the general-
ized inverse with prescribed image and kernel, and, consequently, obtain a method to compute
the generalized inverseA(2)

T,S. Finally, we give an example of evaluating the elements ofA
(2)
T,S

without calculatingA(2)
T,S by using Theorem 2.3, in which we compute the generalized inverse

A
(2)
T,S by using Equation (3.25) in Corollary 3.18.
Throughout this paper,R denotes an integral domain unless otherwise mentioned, andRm×n

denotes the set ofm× n matrices overR. Especially, the notationRm = Rm×1. By ‘a module’
we mean ‘a rightR-module’. If S is aR-submodule ofR-moduleM , then we writeS ⊂ M .

We writeR with an involutiona → a for the meaning ofR with a functiona → a such that
a + b = a + b, ab = ba, 0 = 0 and1 = 1. For anm× n matrixA = (aij) overR, we writeA∗

for the matrixA
T

= (aji).
Let A ∈ Rm×n. We write the image ofA by R(A) = {Ax |x ∈ Rn} and the kernel ofA by

N(A) = {x ∈ Rn |Ax = 0}. It is obvious thatR(A) ⊂ Rm andN(A) ⊂ Rn. We denote the
maximal order of a nonvanishing minor ofA by ρ(A), called the determinantal rank ofA over
R. Obviously,ρ(AB) ≤ min{ρ(A), ρ(B)} and

(1.1) ρ(

(
A 0
0 B

)
) = ρ(A) + ρ(B)

WhenR is a complex number field,ρ(A) = rank(A).
For integersm ≥ 1 and1 ≤ k ≤ m, let Qk,m stand for the set{α : α = {α1, α2, . . . , αk},

1 ≤ α1 < α2 < · · · < αk ≤ m}. If A = (aij) is anm×n matrix,α = {α1, α2, . . . , αk} ∈ Qk,m

andβ = {β1, β2, . . . , βl} ∈ Ql,n, thenAα,β, called the(α, β)-submatrix ofA, stands for the
k × l matrix whose(i, j)th element is the(αi, βj) element ofA, especially if|β| = n (or |α| =
m), Aα∗ (orA∗β) = Aαβ.
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If A = (aij) is ann × n matrix, for fixedi andj, ∂|A|
∂aij

stands for the coefficient ofaij in
the expansion of the determinant ofA. It is evident from the Laplace Expansion Theorem that
|A| =

∑
j

aij
∂|A|
∂aij

.

Moreover IfA = (aij) is anm×n matrix andAα,β is a submatrix ofA, whereα ∈ Qk,m and
β ∈ Qk,n, then we define∂|Aα,β |

∂aij
as above ifi ∈ α andj ∈ β and ∂|Aα,β |

∂aij
= 0 if i 6∈ α or j 6∈ β.

Let Ck(A) denote thekth compound matrix of anm × n matrix A over R, wherek ≤
min{m, n}. It is easy to see thatCk(AB) = Ck(A)Ck(B) andρ(Cρ(A)(A)) = 1.

Let A be anm×n matrix overR with an involutiona −→ a, M andN be invertible matrices
of ordersm andn overR, respectively, and consider following equations

(1) AXA = A, (2) XAX = A,
(3) (AX)∗ = AX, (4) (XA)∗ = XA,
(3M) (MAX)∗ = MAX, (4N) (NXA)∗ = NXA.

X is called a {1} inverse (or g-inverse) ofA if X is satisfies (1), and denoted byX = A(1) and
A is said to be regular.X is called a{2}-inverse ofA if it satisfies (2), and denoted byA(2). X
is called the Moore-Penrose inverse ofA if it satisfies (1), (2), (3) and (4), and denoted byA†.
X is called the weighted Moore-Penrose inverse ofA (or generalized Moore-Penrose inverse of
A with respect toM, N ) if it satisfies (1), (2),(3M) and(4N), and denoted byA†

MN . (About
the weighted Moore-Penrose inverse, one can see [6]).

An n× n matrixA overR is said to have Drazin inverse if for some positive integerk there
exists a matrixX such that

(1k) AkXA = Ak, (2) XAX = X, (5) AX = XA.

If X exists, then it is unique, and called the Drazin inverse ofA and denoted byAd. If k is the
smallest positive integer such thatX andA satisfy(1k), (2) and(5), then it is called the Drazin
index and denoted byk=Ind(A). By using [9, Proposition 6.22], it is clear to get that Ind(A) is
the smallest positive integerk satisfyingρ(Ak) = ρ(Ak+1). If k = 1, thenX is called the group
inverse ofA and denoted byAg.

Lemma 1.1. ([14, Theorem 1])Let A be anm× n matrix over a commutative ringR with
identity,T ⊂ Rn andS ⊂ Rm. Then the following are equivalent:

(i) There exists a uniqueX ∈ Rn×m such that

(1.2) XAX = X, R(X) = T, N(X) = S.

(ii) AT ⊕ S = Rm andN(A) ∩ T = {0}.

An n × m matrix X over a commutative ringR is called the generalized inverse which is
{2} inverse of matrixA with prescribed imageT and kernelS over a commutative ringR if it
satisfies the equivalent conditions of Lemma 1.1, and denoted byA

(2)
T,S.

2. M AIN RESULTS

We begin with the following lemma.

Lemma 2.1. [15, Theorem 2]LetA be a matrix overR. If A
(2)
T,S exists and there exists a matrix

G overR satisfyingR(G) = T andN(G) = S, then there exists a matrixW overR such that

(2.1) GAGW = G.
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4 YAOMING YU AND GUORONGWANG

Proof. SupposeA(2)
T,S exists withR(G) = T andN(G) = S for a matrixG. ThenAR(G) ⊕

N(G) = Rm and so there exists an epimorphismRm → N(G) → 0. By [1, Theorem 8.1],
N(G) has a finite spanning set whose elements constitute a matrix, denoted byL. ThusGL = 0,

and the columns of(AG, L) generateRm, that is, there exists a matrix

(
W
W1

)
such that

AGW + LW1 = Im.

If we multiply with G the left side, then we have

GAGW = G.

Next theorem is our main result.

Theorem 2.2. LetA be anm× n matrix over an integral domainR, T ⊂ Rn andS ⊂ Rm. If
there exists ann×m matrix G with r = ρ(G) overR such thatR(G) = T andN(G) = S,
then the following statements are equivalent:

(i) A
(2)
R(G),N(G) exists.

(ii) u =
∑

γ∈Qr,m

|(AG)γ,γ| is a unit inR.

(iii) ρ(G) = ρ(GAG) andGAG is regular.

In caseu is a unit,

A
(2)
R(G),N(G) = G(AG)g = (GA)gG(2.2)

= G(GAG)(1)G,(2.3)

and the elements ofA(2)
R(G),N(G) are

(2.4) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|Gβ,α|
∂|Aα,β|
∂aji

, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

Proof. “(i) =⇒(iii)” SupposeA
(2)
R(G),N(G) exists. By Equation (2.1), we have

ρ(G) = ρ(GAGW ) ≤ ρ(GAG) ≤ ρ(G),

and thenρ(G) = ρ(GAG). Hence there exists a matrixM over the field of quotients ofR such
thatG = MGAG. From this and Equation (2.1) we have

GAG = (MGAG)AG = M(GAGW )(AG)2 = GW (AG)2

= (GAGW )W (AG)2 = (GAG)(W 2A)(GAG).

HenceGAG is regular.
“(iii) =⇒(ii)” Since ρ(G) = ρ(GAG), there exist matricesM andN over the field of quo-

tients ofR such thatG = MGAG = GAGN . Let K be a {1} inverse ofGAG. Then

AG = AGAGN = A(GAGKGAG)N = (AG)2KG.

Henceρ(G) = ρ(GAG) ≤ ρ(AG) ≤ ρ((AG)2) ≤ ρ(G), and thereforeρ(G) = ρ(AG) =
ρ((AG)2). Since

(AG)2 = A(GAG)K(GAG) = (AG)2K(MGAG)(AG)
= (AG)2KM(GAGKGAG)(AG) = (AG)2(KGKG)(AG)2,

we have that(AG)2 is regular.
By [7, Theorem 5],

∑
γ∈Qr,m

|(AG)γ,γ| is a unit inR.
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“(ii) =⇒(i)”

Tr(Cr(AG)) =
∑

γ∈Qr,m

|(AG)γ,γ| = u

is a unit inR, Cr(AG) is a nonzero matrix. This implies thatρ(AG) ≥ r = ρ(G). However
ρ(AG) ≤ ρ(G). Thus we obtain thatρ(AG) = ρ(G) = r.

Because of the invertibility ofu, AG has the group inverse(AG)g by [7, Theorem 5].
Similarly, GA has the group inverse(GA)g because

Tr(Cr(GA)) = Tr(Cr(G)Cr(A)) = Tr(Cr(A)Cr(G)) = Tr(Cr(AG)).

Therefore, we have that

G(AG)g = G(AG)((AG)g)
2 = ((GA)g)

2(GA)3G((AG)g)
2

= ((GA)g)
2G(AG)3((AG)g)

2 = ((GA)g)
2G(AG)

= (GA)gG.(2.5)

Sinceρ(AG) = ρ(G), there exists a matrixM over the field of quotients ofR such that
G = MAG. So we have

(2.6) G(AG)gAG = MAG(AG)gAG = MAG = G.

From Equations (2.5) and (2.6), we have that

N(G) ⊂ N((GA)gG) = N(G(AG)g) ⊂ N(AG(AG)g)
= N((AG)gAG) ⊂ N(G(AG)gAG) = N(G)

and
R(G) = R(G(AG)gAG) ⊂ R(G(AG)g) ⊂ R(G).

Thus, we have

(2.7) N(G(AG)g) = N(AG(AG)g) = N(G)

and

(2.8) R(G(AG)g) = R(G).

Let x ∈ N(A) ∩ R(G). Then there exists ay such thatx = Gy. SoAGy = 0. By Equation
(2.6),

x = Gy = G(AG)gAGy = 0.

Thus,

(2.9) N(A) ∩R(G) = {0}.
From the idempotent ofAG(AG)g and Equations (2.7) and (2.8), by [1, Lemma 5.6] we have

Rm = R(AG(AG)g)⊕N(AG(AG)g) = AR(G(AG)g)⊕N(G)

= AR(G)⊕N(G).(2.10)

By Equations (2.9) and (2.10) and Lemma 1.1,A
(2)
R(G),N(G) exists. Therefore, we reach (i).

Since(G(AG)g)A(G(AG)g) = G(AG)g, we get Equation (2.2) by Equations (2.7), (2.8) and
(2.5), and Lemma 1.1.

Now we shall verify Equation (2.3). Sinceρ(G) = ρ(GAG), there exist matricesM andN
over the field of quotients ofR such thatG = MGAG = GAGN . From this and the regularity
of GAG, we have

(2.11) G = MGAG = M(GAG)(GAG)(1)(GAG) = G(GAG)(1)GAG
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6 YAOMING YU AND GUORONGWANG

and

(2.12) G = GAGN = (GAG)(GAG)(1)(GAG)N = GAG(GAG)(1)G.

From the above equations, we have that

R(G(GAG)(1)G) ⊂ R(G) = R(G(GAG)(1)GAG) ⊂ R(G(GAG)(1)G)

and

N(G) ⊂ N(G(GAG)(1)G) ⊂ N(GAG(GAG)(1)G) = N(G).

Thus,

(2.13) R(G(GAG)(1)G) = R(G)

and

(2.14) N(G(GAG)(1)G) = N(G).

From the idempotent of(GAG)(1)GAG, by [1, Lemma 5.6] we have

R((GAG)(1)GAG)⊕N((GAG)(1)GAG) = Rm.

By Equation (2.12), we have that

R((GAG)(1)G) = R((GAG)(1)GAG(GAG)(1)G) ⊂ R((GAG)(1)GAG)

Thus, by [14, Lemma 1(1)], we have that

(G(GAG)(1)G)A(G(GAG)(1)G) = GPR((GAG)(1)GAG),N((GAG)(1)GAG)((GAG)(1)G)

= G(GAG)(1)G,

and therefore we obtain Equation (2.3) by Equations (2.13) and (2.14) and Lemma 1.1.
Finally, we shall prove Equation (2.4). SetG = (gij). By [7, Theorem 8(ii)], the element of

(AG)g is

ykj =
∑

α,γ∈Qr,m

u−2|(AG)γ,α|
∂|(AG)α,γ|

∂xjk

,

wherexjk is the element ofAG. Thus, the elementwij of A
(2)
R(G),N(G) = G(AG)g is

wij =
m∑

k=1

gikykj =
m∑

k=1

gik

∑
α,γ∈Qr,m

u−2|(AG)γ,α|
∂|(AG)α,γ|

∂xjk

.

Note that for allα ∈ Qr,m for which j ∈ α and allγ ∈ Qr,m,

m∑
k=1

gik
∂|(AG)α,γ|

∂xjk

= |Uα,γ|

whereU is the matrix obtained fromAG by replacing thejth row of AG with the ith row
of G. We write asB the matrix obtained fromA by replacing thejth row of A with the
row (0, 0, . . . , 0, 1, . . . , 0) where theith entry is 1 and all otherwise are zero. Thus, we have
U = BG. Hence, by using the Cauchy-Binet Formula, we have

|Uα,γ| =
∑

β∈Qr,n

|Bα,β| |Gβ,γ| =
∑

β∈Qr,n

∂|Aα,β|
∂aji

|Gβ,γ|.
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Thus

wij = u−2
∑

α,β∈Qr,m

|(AG)γ,α|
∑

β∈Qr,n

∂|Aα,β|
∂aji

|Gβ,γ|

= u−2
∑

α,γ∈Qr,m

∑
β,δ∈Qr,n

|Aγ,δ| |Gδ,α| |Gβ,γ|
∂|Aα,β|
∂aji

.

Sinceρ(Cr(G)) = 1, for all α, γ ∈ Qr,m andβ, δ ∈ Qr,n we have

|Gδ,α| |Gβ,γ| = |Gδ,γ| |Gβ,α|

Thus, we get that

wij = u−2
∑

α,γ∈Qr,m

∑
β,δ∈Qr,n

|Aγ,δ| |Gδ,γ| |Gβ,α|
∂|Aα,β|
∂aji

= u−2
∑

α,γ∈Qr,m

∑
β∈Qr,n

|(AG)γ,γ| |Gβ,α|
∂|Aα,β|
∂aji

= u−1
∑

α∈Qr,m,β∈Qr,n

|Gβ,α|
∂|Aα,β|
∂aji

.

If R is a complex number field, then we have the following result because every matrix is
regular over a complex number field.

Theorem 2.3. Let A ∈ Cm×n, T ⊂ Cn andS ⊂ Cm. If there exits a matrixG ∈ Cn×m
r such

thatR(G) = T andN(G) = S, then the following statements are equivalent:

(i) A
(2)
R(G),N(G) exists.

(ii) u =
∑

γ∈Qr,m

|(AG)γ,γ| 6= 0.

(iii) rank(G) = rank(GAG).

In caseu 6= 0,

A
(2)
R(G),N(G) = G(AG)g = (GA)gG(2.15)

= G(GAG)(1)G,(2.16)

and the elements ofA(2)
R(G),N(G) are

(2.17) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|Gβ,α|
∂|Aα,β|
∂aji

, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

Remark 1: It is easy to judge whetherA(2)
R(G),N(G) exists by using the condition rank(G) =

rank(GAG). And if A
(2)
T,S exists, we can evaluate its elements without calculating itself by using

Equation (2.17).

Next theorem shows that the group inverse, the Drazin inverse, the Moore-Penrose inverse
and the weighted Moore-Penrose inverse are identical with the generalized inverseA

(2)
R(G),N(G)

for an appropriate matrixG, respectively.
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8 YAOMING YU AND GUORONGWANG

Theorem 2.4. (i) Let A be anm × n matrix overR with an involutiona → a, M andN
invertible matrices of ordersm andn overR, respectively. SetA# = N−1A∗M∗. Then
A

(2)

R(A#),N(A#)
exists andA∗MA andAN−1A∗ are symmetric if and only ifA†

MN exists.

Moreover,A(2)

R(A#),N(A#)
= A†

MN .

(ii) LetA be anm× n matrix overR with an involutiona → a. ThenA
(2)
R(A∗),N(A∗) exists if

and only ifA† exists. Moreover,A(2)
R(A∗),N(A∗) = A†.

(iii) LetA be ann× n overR andk a positive integer. ThenA(2)

R(Ak),N(Ak)
exists if and only

if Ad exists. Moreover,A(2)

R(Ak),N(Ak)
= Ad.

(iv) Let A be ann × n overR. ThenA
(2)
R(A),N(A) exists if and only ifAg exists. Moreover,

A
(2)
R(A),N(A) = Ag.

Proof. (i) “⇐=” SinceAA†
MN is idempotent, by [1, Lemma 5.6], we have that

R(AA†
M,N)⊕N(AA†

M,N) = Rm.

Since

R(A†
MN) = R(N−1NA†

MNAA†
MN) = R(N−1A∗A†∗

MNN∗A†
MN)

= R(N−1A∗M∗M∗−1A†∗
MNN∗A†

MN) ⊂ R(N−1A∗M∗)

= R(N−1A∗A†∗
MNA∗M∗) = R(A†

MNAN∗−1A∗M∗)

⊂ R(A†
MN),

N(AA†
MN) ⊂ N(N−1A∗MAA†

MN) = N(N−1A∗A†∗
MNA∗M∗)

= N(N−1A∗M∗) ⊂ N(M−1A†∗
MNNN−1A∗M∗)

= N(AA†
MN),

we have

R(A†
MN) = R(A#), N(A†

MN) = N(A#)

and then

AR(A#)⊕N(A#) = RM .

Letx ∈ Rm such thatAA#x = 0. ThenA#x = A#AA#x = 0 and soN(A)∩R(A#) = {0}.
By Lemma 1.1,A(2)

R(A#),N(A#)
exists andA†

MN = A
(2)

R(A#),N(A#)
.

By [6, Theorem 8],A∗MA andAN−1A∗ are symmetric.
“=⇒” If A

(2)

R(A#),N(A∗)
exists, then we can writeX = A

(2)

R(A#),N(A#)
= A#(AA#)g = (A#A)gA

#

by Theorem 2.2. ReplacingG with A# in Equation (2.1), we have

A#AA#W = A#

and then

A = M∗−1W ∗A#∗
A∗A#∗

N∗ = M∗−1W ∗A#∗
A∗MA = M∗−1W ∗A#∗

A∗M∗A.

Thus

AXA = A((A#A)gA
#)A = M∗−1W ∗A#∗

A∗M∗A(A#A)gA
#A

= M∗−1W ∗A#∗
NA#A(A#A)gA

#A = M∗−1W ∗A#∗
NA#A

= M∗−1W ∗A#∗
A∗M∗A = A,

XAX = X,
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(MAX)∗ = X∗A∗M∗ = (A#(AA#)g)
∗A∗M∗

= (A#∗
A∗)gA

#∗
A∗M∗ = (A#∗

A∗)gMAN∗−1A∗M∗

= (A#∗
A∗)gMAN−1A∗M∗ = (A#∗

A∗)gMAA#

= (A#∗
A∗)gMAA#AA#(AA#)g

= (A#∗
A∗)gMAN−1A∗M∗AN−1A∗M∗(AA#)g

= (A#∗
A∗)gMAN∗−1A∗MAN∗−1A∗M∗(AA#)g

= (A#∗
A∗)g(A

#∗
A∗)2M∗(AA#)g

= A#∗
A∗M∗(AA#)g = MAN∗−1A∗M∗(AA#)g

= MAN−1A∗M∗(AA#)g = MAA#(AA#)g

= MAX,

(NXA)∗ = A∗X∗N∗ = A∗((A#A)gA
#)∗N∗

= A∗A#∗
(A∗A#∗

)gN
∗ = NN−1A∗MAN∗−1(A∗A#∗

)gN
∗

= NN−1A∗M∗AN∗−1(A∗A#∗
)gN

∗ = N(A#A)N∗−1(A∗A#∗
)gN

∗

= N(A#A)g(A
#A)2N∗−1(A∗A#∗

)gN
∗

= N(A#A)gN
−1A∗M∗AN−1A∗M∗AN∗−1(A∗A#∗

)gN
∗

= N(A#A)gN
−1A∗MAN∗−1A∗MAN∗−1(A∗A#∗

)gN
∗

= N(A#A)gN
−1A∗A#∗

A∗A#∗
(A∗A#∗

)gN
∗

= N(A#A)gN
−1A∗A#∗

N∗ = N(A#A)gN
−1A∗MAN∗−1N∗

= N(A#A)gN
−1A∗M∗A = N(A#A)gA

#A

= NXA.

Hence,A†
MN exists.

(ii) TakeM = Im andN = In.
(iii) “ ⇐=” By the proof in [14, Theorems 4].
“=⇒” If A

(2)

R(Ak),N(Ak)
exists. LetX = A

(2)

R(Ak),N(Ak)
= Ak(Ak+1)g = (Ak+1)gA

k by by Theo-

rem 2.2. ReplacingG with Ak in Equation (2.1), we haveAk = A2k+1W and then

AX = Ak+1(Ak+1)g = (Ak+1)gA
k+1 = XA,

AkXA = Ak((Ak+1)gA
k)A = Ak(Ak+1)gAA2k+1W = AkAk+1W

= Ak,
XAX = X.

HenceAd exists.
(iv) Takek = 1 in (iii).

In order to see that the conditions for the existence and expressions for the elements of the
known generalized inverses are unified by Theorem 2.2, we need the next result.

Lemma 2.5. (i) Let A be anm × n matrix overR with an involutiona → a, M andN
invertible matrices of ordersm andn overR, respectively. SetA# = N−1A∗M∗. Then
AA# andA#A are regular andρ(A) = ρ(A#A) = ρ(AA#) if and only ifA#AA# is
regular andρ(A#) = ρ(A#AA#).

(ii) Let A be anm × n matrix overR with an involutiona → a. ThenAA∗ andA∗A are
regular andρ(A) = ρ(A∗A) = ρ(AA∗) if and only ifA∗AA∗ is regular andρ(A∗) =
ρ(A∗AA∗).

AJMAA, Vol. 4, No. 1, Art. 16, pp. 1-20, 2007 AJMAA

http://ajmaa.org


10 YAOMING YU AND GUORONGWANG

(iii) LetA be ann× n overR andk a positive integer. ThenA2k+1 is regular andρ(Ak) =
ρ(A2k+1) if and only ifAk+1 is regular andρ(Ak) = ρ(Ak+1).

(iv) Let A be ann × n overR. ThenA3 is regular andρ(A) = ρ(A3) if and only ifA2 is
regular andρ(A) = ρ(A2).

Proof. (i)“ =⇒” From the hypothesis, there exist matricesP andQ over the field of quotients
of R such thatA = PA#A = AA#Q. So we have

A(A#A)(1)A#A = PA#A(A#A)(1)A#A = PA#A = A,
AA#(AA#)(1)A = AA#(AA#)(1)AA#Q = AA#Q = A.

From these, we have

A = AA#(AA#)(1)A(A#A)(1)A#A and A = A(A#A)(1)A#AA#(AA#)(1)A.

Thus,
A#AA# = (A#AA#)((AA#)(1)A(A#A)(1))(A#AA#).

and
ρ(A) ≤ ρ(A#AA#) ≤ ρ(A).

Hence, we obtain thatA#AA# is regular andρ(A) = ρ(A#AA#).
It is easy to see thatρ(A) = ρ(A#). Consequently, we haveρ(A#) = ρ(A#AA#).
“⇐=”Since

ρ(A) = ρ(A#) = ρ(A#AA#) ≤ ρ(A#A) ≤ ρ(A),

we haveρ(A) = ρ(A#A) and then there exists a matrixP over the field of quotients ofR such
thatA = PA#A. Hence

AA# = PA#AA# = PA#AA#(A#AA#)(1)A#AA# = AA#((A#AA#)(1)A#)AA#.

Thus,AA# is regular.
Similarly, we have thatA#A is regular andρ(A) = ρ(AA#).
(ii)TakeM = Im andN = In in (i).
(iii)“ =⇒”Since

ρ(Ak) = ρ(A2k+1) ≤ ρ(Ak+1) ≤ ρ(Ak),

we haveρ(Ak) = ρ(Ak+1). Sinceρ(Ak) = ρ(A2k+1), there exists a matrixN over the field of
quotients ofR such thatAk = A2k+1N . Then

Ak+1 = A2k+2N = A2k+1(A2k+1)(1)A2k+1AN = Ak+1(Ak(A2k+1)(1))Ak+1.

Hence,Ak+1 is regular.
“⇐=”Sinceρ(Ak) = ρ(Ak+1), there exists a matrixN over the field of quotients ofR such

thatAk = Ak+1N . Since

Ak = Ak+1N = Ak+1(Ak+1)(1)Ak+1N = Ak+1(Ak+1)(1)Ak,

there exists a matrixY overR such thatAk = A2k+1Y . Thus, we haveρ(Ak) = ρ(A2k+1) and

A2k+1 = Ak+1Ak = Ak+1(Ak+1)(1)Ak+1Ak = A2k+1(Y A(Ak+1)(1))A2k+1.

That is,A2k+1 is regular.
(iv)Takek = 1 in (iii).

From Theorems 2.2 and 2.4 and Lemma 2.5, it is easy to get the following corollaries.

Corollary 2.6. LetA be anm× n matrix withr = ρ(A) overR with an involutiona → a, M
andN invertible matrices of ordersm andn overR, respectively. SetA# = N−1A∗M∗. Then
the following are equivalent:

(i) A†
MN exists.

AJMAA, Vol. 4, No. 1, Art. 16, pp. 1-20, 2007 AJMAA

http://ajmaa.org


ON THE GENERALIZED INVERSEA
(2)
T,S OVER INTEGRAL DOMAINS 11

(ii) u =
∑

γ∈Qr,m

|(AA#)γ,γ| is a unit inR, andAN−1A∗ andA∗MA are symmetric.

(iii) ρ(A) = ρ(A#A) = ρ(AA#) andA#A andAA# are both regular.

In caseu is a unit,

A†
MN = A#(AA#)g = (A#A)gA

#(2.18)

= A#(A#AA#)(1)A#,(2.19)

and the element ofA†
MN is

(2.20) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|A#
β,α|

∂|Aα,β|
∂aji

.

Remark 2: Some of the results in Corollary 2.6 is identical with some of the results in [6,
Theorems 8].

Corollary 2.7. Let A be anm× n matrix with r = ρ(A) overR with an involutiona → a.
Then the following are equivalent:

(i) A† exists.
(ii) u =

∑
γ∈Qr,m

|(AA∗)γ,γ| is a unit inR.

(iii) ρ(A) = ρ(A∗A) = ρ(AA∗) andA∗A andAA∗ are both regular.

In caseu is a unit,

A† = A∗(AA∗)g = (A∗A)gA
∗(2.21)

= A∗(A∗AA∗)(1)A∗,(2.22)

and the element ofA† is

(2.23) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|A∗
β,α|

∂|Aα,β|
∂aji

.

Remark 3: Some of the results in Corollary 2.7 is identical with some of the results in [9,
Theorems 6.7 and 6.8]. In addition, Equation (2.22) extends the formula of Zlobec [16].

Corollary 2.8. LetA be ann× n matrix overR. Then the following are equivalent:

(i) Ad exists.
(ii) For some positive integralk, u =

∑
γ∈Qr,m

|(Ak+1)γ,γ| is a unit inR, wherer = ρ(Ak).

(iii) For some positive integralk, ρ(Ak) = ρ(Ak+1) andAk+1 is regular.

In caseu is a unit and fork ≥Ind(A),

Ad = Ak(Ak+1)g = (Ak+1)gA
k(2.24)

= Ak(A2k+1)(1)Ak,(2.25)

and the element ofAd is

(2.26) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|(Ak)β,α|
∂|Aα,β|
∂aji

,

wherer = ρ(Ak).

Remark 4: Some of the results in Corollary 2.8 is identical with some of results in [9, The-
orems 6.24] and [7, Theorem 9], and Equation (2.26) extends Equation (3.1) in [10, Theorem
3.1].
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12 YAOMING YU AND GUORONGWANG

Remark 5: The formula in [7, Theorem 8(ii)] can rewritten the following form, which is iden-
tical with Equation (2.26) whenk = 1,

(2.27) wij = u−1
∑

α∈Qr,m,β∈Qr,n

|Aβ,α|
∂|Aα,β|
∂aji

,

wherer = ρ(A). The reason is that∑
γ∈Qr,n

|(A2)γ,γ| =
∑

γ,δ∈Qr,n

|Aγ,δ| |Aδ,γ|

=
∑

γ,δ∈Qr,n

|Aγ,γ| |Aδ,δ| (since ρ(Cr(A)) = 1)

= (
∑

γ∈Qr,m

|Aγ,γ|)2.

From Remarks 2∼ 5, Theorem 2.2 unifies the conditions for the existence and the expression
for the elements of the weighted Moore-Penrose inverse, the Moore-Penrose inverse, the Drazin
inverse and the group inverse over an integral domain.

Corollary 2.9. LetA be ann× n matrix overR. If the group inverseAg of A exists, then

(2.28) Ag = A(A3)(1)A.

3. RANK EQUATIONS

As a simple application we consider following theorem which characters the relation between
some rank equation and the existence of the generalized inverse with prescribed image and
kernel. In the proof we use the results in Theorem 2.2.

Firstly we need the following lemma.

Lemma 3.1. [13, Lemma 1]Let α1, α2, · · · , αw ∈ Rn (w ≤ n) and T =(α1, α2, · · · , αw).
Thenα1, α2, · · · , αw are linearly dependent overR if and only if det(Tα,w) = 0, for every
α ∈ Qw,n.

Now we show the main theorem in the section.

Theorem 3.2. Let A be anm × n matrix over an integer ringR, T ⊂ Rn, S ⊂ Rm, Suppose
G ∈ Rn×m such thatR(G) = T andN(G) = S. Then the generalized inverseA(2)

T,S exists if
and only if there exists a solution in the rank equation

(3.1) ρ(

(
GAG G

G X

)
) = ρ(GAG), R(X) ⊂ T

In this case, the solution is unique.

Proof. “=⇒”SupposeA(2)
T,S exists. We will show thatA(2)

T,S is a solution of the rank equation
(3.1).

Obviously,R(A
(2)
T,S) = R(G) = T . SinceA

(2)
T,S exists, we haveA(2)

T,S = G(GAG)(1)G and
ρ(G) = ρ(GAG) by Theorem 2.2. Thus

ρ(A
(2)
T,S) ≤ ρ(G) = ρ(GAG) = ρ(GAG(GAG)(1)GAG)

= ρ(GA(A
(2)
T,S)AG) ≤ ρ(A

(2)
T,S),

So,ρ(A
(2)
T,S) = ρ(GAG). It is easy to see thatA(2)

T,SAG = G andGAA
(2)
T,S = G. Hence(

I −GA
0 I

)(
GAG G

G A
(2)
T,S

)(
I 0

−AG I

)
=

(
0 0

G A
(2)
T,S

)(
I 0

−AG I

)
=

(
0 0

0 A
(2)
T,S

)
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and then

ρ(

(
GAG G

G A
(2)
T,S

)
) = ρ(

(
0 0

0 A
(2)
T,S

)
) = ρ(A

(2)
T,S) = ρ(GAG).

That is,A(2)
T,S satisfies Equation (3.1).

“⇐=”Suppose that

rank

(
GAG G

G X

)
= rank(GAG)

has a solution. Denoter = ρ(GAG), GAG = {α1, α2, . . . , αm}, G = {β1, β2, . . . , βm}. If
r = 0, thenG = 0 by Equation (3.1). So by Theorem 2.2,A

(2)
T,S exists andA(2)

T,S = 0.
Now supposer 6= 0. By Lemma 3.1, there existr columns ofGAG, which are linearly

independent. Also, there existr rows ofGAG, which are linearly independent, because|AT | =
|A|.

Without loss of generality, let the firstr columns ofGAG, sayα1, α2, . . . , αr, be linearly
independent. By Equation (3.1), we obtain thatα1, α2, . . . , αr andβj (j = 1, 2, . . . ,m) are
linearly dependent. That is, there exista1,j, a2,j, . . . , ar,j, bj (j = 1, 2, . . . ,m), not all 0, such
that

r∑
i=1

ai,jαi = bjβj, j = 1, . . . ,m.

Clearly,bj 6= 0, j = 1, . . . ,m. Written the above equation, we get

(α1, α2, . . . , αr, αr+1, . . . , αm)



a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

ar1 ar2 · · · arm

0 0 · · · 0
...

...
...

0 0 · · · 0


=(β1, β2, . . . , βm)


b1

b2

...
bm



and write down

(3.2) (GAG)P = GD.

Similarly we take into account the row. Then, there exist matricesQ andD′ such that

(3.3) Q(GAG) = D′G.

whereD′, as well asD, is a diagonal matrix and|D′| 6= 0. Using Equations (3.2) and (3.3), we
have (

I 0
−Q I

) (
I 0
0 D′

) (
GAG G

G X

) (
I 0
0 D

) (
I −P
0 I

)
=

(
I 0
−Q I

) (
I 0
0 D′

) (
GAG GD

G XD

) (
I −P
0 I

)
=

(
I 0
−Q I

) (
I 0
0 D′

) (
GAG 0

G XD −GP

)
=

(
I 0
−Q I

) (
GAG 0
D′G D′(XD −GP )

)
=

(
GAG 0

0 D′(XD −GP )

)
.
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Thus, using Equation (1.1), we obtain

ρ(GAG) = ρ(

(
GAG G

G X

)
) = ρ(

(
GAG 0

0 D′(XD −GP )

)
)

= ρ(GAG) + ρ(D′(XD −GP )).

SoD′(XD −GP ) = 0. Since there exist no nonzero divisors of zero in an integral domain,

(3.4) XD = GP.

Analogously, we can get

(3.5) D′X = QG.

Hence, by Equations (3.2)∼ (3.5), we have

D′XAXD = QGAGP = QGD = D′XD,
D′XAG = QGAG = D′G,
GAXD = GAGP = GD.

SinceR has no nonzero divisors of zero, we have

(3.6) XAX = X,

(3.7) XAG = G,

(3.8) GAX = G.

Thus, by Equations (3.7) and (3.8),

R(G) = R(XAG) ⊂ R(X) ⊂ T = R(G),

N(X) ⊂ N(GAX) = N(G) ⊂ N(QG) = N(D′X) = N(X).

and then

(3.9) R(G) = R(X),

(3.10) N(G) = N(X).

Hence, by Theorem 2.2 and Equations (3.6), (3.9) and (3.10), we reach thatX = A
(2)
T,S exists

uniquely.

In Theorem 3.2, we takeG = A#, G = A∗, G = Al, l ≥ Ind(A), andG = A, respectively.
Then by using Theorem 2.4, we get the results of the existences of the weighted Moore-Penrose
inverseA†

MN , the Moore-Penrose inverseA†, the Drazin inverseAd and the group inverseAg

of the matrixA overR.

Corollary 3.3. Let R be an integer ring with an involutiona → a, A ∈ Rm×n, M andN be
invertible matrices of ordersm andn overR. SetA# = N−1A∗M∗. ThenA†

MN exists if and
only if the rank equation

(3.11) ρ(

(
A#AA# A#

A# X

)
) = ρ(A#AA#), R(X) ⊂ R(A#)

has a solutionX ∈ Rn×m, andAN−1A∗ andA∗MA are symmetric.
In this case, the solution is unique.

Proof. TakeG = A# in Theorem 3.2 and afterward use Theorem 2.4(i).
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Corollary 3.4. Let R be an integer ring with an involutiona → a, A ∈ Rm×n. ThenA† exists
if and only if the rank equation

(3.12) ρ(

(
A∗AA∗ A∗

A∗ X

)
) = ρ(A∗AA∗), R(X) ⊂ R(A∗)

has a solutionX ∈ Rn×m.
In this case, the solution is unique.

Corollary 3.5. Let R be an integer ring,A ∈ Rn×n. ThenAd exists if and only if the rank
equation

(3.13) ρ(

(
A2l+1 Al

Al X

)
) = ρ(A2l+1), R(X) ⊂ R(Al)

has a solutionX ∈ Rn×n, wherel ≥ Ind(A).
In this case, the solution is unique.

Corollary 3.6. Let R be an integer ring,A ∈ Rn×n. ThenAg exists if and only if the rank
equation

(3.14) ρ(

(
A3 A
A X

)
) = ρ(A3), R(X) ⊂ R(A)

has a solutionX ∈ Rn×n.
In this case, the solution is unique.

If R is the complex number field, we can omit the restricted conditionR(X) ⊂ T in Theorem
3.2. Thus, we have the following theorem and its corollaries.

Theorem 3.7. Let A ∈ Cm×n
r , T ⊂ Cn, S ⊂ Cm, dim(T ) = s ≤ r, dim(S) = m − s. Let

G ∈ Cn×m such thatR(G) = T andN(G) = S. ThenA
(2)
T,S exists if and only if there exists a

solution in the rank equation

(3.15) rank(

(
GAG G

G X

)
) = rank(GAG).

In this case, the solution is unique.

Proof. Using Equation (3.4) in the proof of Theorem 3.2, we have thatX = GPD−1. and then
R(X) ⊂ R(G) = T . It is to say that the rank equation in (3.1) impliesR(X) ⊂ T . Therefore,
by Theorem 3.2, the result is true.

WhenG = N−1A∗M , whereM andN are Hermitian positive definite matrices of orders
m andn respectively,G = A∗ or G = Al, wherel ≥ Ind(G), in the above theorem, we have
following corollaries respectively in view of the existence ofA†

MN , A† andAd of a matrixA
overC.

Corollary 3.8. LetA ∈ Cm×n, M andN are Hermitian positive definite matrices of ordersm
andn, respectively. ThenA†

MN is a unique solution of

(3.16) rank(

(
A#AA# A#

A# X

)
) = rank(A#AA#),

whereA# = N−1A∗M .

Corollary 3.9. LetA ∈ Cm×n. ThenA† is a unique solution of

(3.17) rank(

(
A∗AA∗ A∗

A∗ X

)
) = rank(A∗AA∗).
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Corollary 3.10. LetA ∈ Cn×n. ThenAd is a unique solution of

(3.18) rank(

(
A2l+1 Al

Al X

)
) = rank(A2l+1),

for any integerl ≥ Ind(A).

TakingG = A in Theorem 3.2, we get the following result.

Corollary 3.11. LetA ∈ Cn×n. ThenAg exist if and only if there exists a solution of

(3.19) rank(

(
A3 A
A X

)
) = rank(A3).

In this case, the solution is unique.

Now we continue to study the properties ofA
(2)
T,Sof A over an integer domain. First, we show

the following lemma, whose proof is similar to that overC. Here we need Equation (1.1).

Lemma 3.12.Over an integer domainR, suppose that the submatrixA of the matrix

P =

(
A B
C D

)
is invertible. Thenρ(P ) = ρ(A) if and only ifD = CA−1B.

The following theorem fines Equation (3.17).

Theorem 3.13.Let R an integer domain,A ∈ Rm×n, T ⊂ Rn andS ⊂ Rm. G ∈ Rn×m with
R(G) = T andN(G) = S. Denoter = ρ(G). If there existα ∈ Qr,n, β ∈ Qr,m such that
(GAG)α,β is invertible inR, then the generalized inverseA(2)

T,S exists and

(3.20) A
(2)
T,S = G∗β((GAG)α,β)−1Gα∗.

Proof. Clearly, we haveρ(GAG) ≤ ρ(G). From the invertibility of(GAG)α,β, we getρ(GAG) ≥
r = ρ(G). Thus,ρ(GAG) = ρ(G).

From the invertibility of(GAG)α,β, we obtain

1

|(GAG)α,β|
|(GAG)α,β|+

∑
γ∈Qr,n,δ∈Qr,m,(γ,δ) 6=(α,β)

0 · |(GAG)γ,δ| = 1.

By [8, Theorem 8], we know thatGAG is regular. Therefore, by Theorem 3.2,A
(2)
T,S exists.

Now we shall show Equation (3.20). Set

P =

(
(GAG)α,β Gα∗

G∗β A
(2)
T,S

)
It is evident that

ρ(P ) ≥ ρ((GAG)α,β) = ρ(G) = ρ(GAG).

SinceP is a submatrix of the matrix

(
GAG G

G A
(2)
T,S

)
,

ρ(P ) ≤ ρ(

(
GAG G

G A
(2)
T,S

)
).

Thus, by Equation (3.1) in Theorem 3.2 we obtain

ρ(

(
GAG G

G A
(2)
T,S

)
) = ρ(GAG).
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becauseA(2)
T,S exists. Hence

ρ(P ) = ρ((GAG)α,β).

According to Lemma 3.12, we have

A
(2)
T,S = G∗β((GAG)α,β)−1Gα∗.

From the above theorem we have following results about known generalized inverses.

Corollary 3.14. Let R be an integer ring with an involutiona → a, A ∈ Rm×n, Denoter =
ρ(A). LetM andN be invertible matrices overR of ordersm andn, respectively, andAN−1A∗

andA∗MA be symmetric. DenoteA# = N−1A∗M∗. If there existα ∈ Qr,n, β ∈ Qr,m such
that (A#AA#)α,β is invertible, then the weighted Moore-Penrose inverseA†

MN exists, and

(3.21) A†
MN = A#

∗β((A#AA#)α,β)−1A#
α∗.

Corollary 3.15. Let R be an integer ring with an involutiona → a, A ∈ Rm×n. Denote
r = ρ(A). If there existα ∈ Qr,n, β ∈ Qr,m such that(A∗AA∗)α,β is invertible, then the
Moore-Penrose inverseA† exists, and

(3.22) A† = A∗
∗β((A∗AA∗)α,β)−1A∗

α∗.

Corollary 3.16. LetR be an integer ring,A ∈ Rn×n, Denoter = ρ(Al), wherel ≥ Ind(A). If
there existα, β ∈ Qr,n such that(A2l+1)α,β is invertible, then the Drazin inverseAd exists, and

(3.23) Ad = Al
∗β((A2l+1)α,β)−1Al

α∗.

Corollary 3.17. Let R be an integer ring,A ∈ Rn×n, Denoter = ρ(A). If there existα, β ∈
Qr,n such that(A3)α,β is invertible, then the group inverseAg exists, and

(3.24) Ag = A∗β((A3)α,β)−1Aα∗.

Especially, for matrices overC, we have

Corollary 3.18. Let A ∈ Cm×n, T ⊂ Cn and S ⊂ Cm. G ∈ Cn×m with R(G) = T and
N(G) = S, Denoter = ρ(G). If there existα ∈ Qr,n, β ∈ Qr,m such that(GAG)α,β is
nonsingular, then the generalizedA(2)

T,S exists, and

(3.25) A
(2)
T,S = G∗β((GAG)α,β)−1Gα∗.

4. EXAMPLE

Here we give an example of evaluating the elements ofA
(2)
T,S without calculatingA(2)

T,S by
using Theorem 2.3.

Example. Let

A =


1 0 3 0
0 −2 0 1
1 0 2 0
0 0 −1 0

 ∈ R4×4
3 .

GivenS = R((−1533/4072, 479/694,−1549/2743, 511/2036)T ) ⊂ R4 andT = R(V ) ⊂ R4

where

V =


2 3 5
3 4 6
3 1 1
1 1 1


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Taking

G =


2 3 5 6
3 4 6 7
3 1 1 4
1 1 1 1

 ∈ R4×4
3 ,

we can show easily thatR(G) = T , N(G) = S and rank(G)=rank(GAG). Thus, by Theorem
2.3,A(2)

T,S exists.

Consider the elementw21 of A
(2)
T,S. Thus, we have

{(α, β)|1 ∈ α, 2 ∈ β} = {({1, 2, 3}, {1, 2, 3}), ({1, 2, 3}, {1, 2, 4}), ({1, 2, 3}, {2, 3, 4}),
({1, 2, 4}, {1, 2, 3}), ({1, 2, 4}, {1, 2, 4}), ({1, 2, 4}, {2, 3, 4}),
({1, 3, 4}, {1, 2, 3}), ({1, 3, 4}, {1, 2, 4}), ({1, 3, 4}, {2, 3, 4})}

and make two lists as follows

α β Gβ,α |Gβ,α| Aα,β
∂

∂a12
|Aα,β|

{1,2,3} {1,2,3}

 2 3 5
3 4 6
3 1 1

 -4

 1 0 3
0 −2 0
1 0 2

 (−1)1+2 ×
∣∣∣∣ 0 0

1 2

∣∣∣∣ = 0

{1,2,3} {1,2,4}

 2 3 5
3 4 6
1 1 1

 0 don’t need don’t calculate

{1,2,3} {2,3,4}

 3 4 6
3 1 1
1 1 1

 4

 0 3 0
−2 0 1
0 2 0

 (−1)1+1 ×
∣∣∣∣ 0 1

2 0

∣∣∣∣ = −2

{1,2,4} {1,2,3}

 2 3 6
3 4 7
3 1 4

 -9

 1 0 3
0 −2 0
0 0 −1

 (−1)1+2 ×
∣∣∣∣ 0 0

0 −1

∣∣∣∣ = 0

{1,2,4} {1,2,4}

 2 3 6
3 4 7
1 1 1

 0 don’t need don’t calculate

{1,2,4} {2,3,4}

 3 4 7
3 1 4
1 1 1

 9

 0 3 0
−2 0 1
0 −1 0

 (−1)1+1 ×
∣∣∣∣ 0 1
−1 0

∣∣∣∣ = 1

{1,3,4} {1,2,3}

 2 5 6
3 6 7
3 1 4

 -11

 1 0 3
1 0 2
0 0 −1

 (−1)1+2 ×
∣∣∣∣ 1 2

0 −1

∣∣∣∣ = 1

{1,3,4} {1,2,4}

 2 5 6
3 6 7
1 1 1

 0 don’t need don’t calculate

{1,3,4} {2,3,4}

 3 6 7
3 1 4
1 1 1

 11

 0 3 0
0 2 0
0 −1 0

 (−1)1+1 ×
∣∣∣∣ 2 0
−1 0

∣∣∣∣ = 0
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and
γ (AG)γ,γ |(AG)γ,γ|

{1,2,3}

 11 6 8
−5 −7 −11
8 5 7

 -4

{1,2,4}

 11 6 18
−5 −7 −13
−3 −1 −4

 -9

{1,3,4}

 11 8 18
8 7 14
−3 −1 −4

 0

{2,3,4}

 −7 −11 −13
5 7 14
−1 −1 −4

 6

where

AG =


11 6 8 18
−5 −7 −11 −13
8 5 7 14
−3 −1 −1 −4

 .

Hence,u = −4− 9 + 0 + 6 = −7. Thus, by using Equation (2.17), we have

w21 = −1

7
(4× (−2) + 9× 1 + (−11)× 1) =

10

7
.

In order to compare with the method for evaluating elements by the aid ofA
(2)
T,S, we calculate

a matrixX by using Equation (3.25) in Corollary 3.18 and show thatX satisfies the conditions
in [2, Theorem 2.13], that is,X is the generalized inverseA(2)

T,S.
We compute

GAG =


29 10 12 43
40 13 15 58
24 12 16 39
11 3 3 15


and then takeα = {1, 3, 4}, β = {2, 3, 4}. Since

|(GAG)α,β| =

∣∣∣∣∣∣
10 12 43
12 16 39
3 3 15

∣∣∣∣∣∣ = −42 6= 0,

we have

X = G∗,β(GAG)−1
α,βGα,∗ =


3 5 6
4 6 7
1 1 4
1 1 1


 10 12 43

12 16 39
3 3 15

−1  2 3 5 6
3 1 1 4
1 1 1 1



=


1/7 0 6/7 15/7
10/7 −1 −17/7 −4/7
4/7 0 −4/7 −3/7
9/7 −1 −23/7 −19/7

 .
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Obviously,dim(T ) = dim(S⊥) = 3 = rank(A). It is easy to show thatAT ⊕ S = R4

andX is {2} inverse ofA with N(X) = S andR(X) = T . Therefore, by [2, Theorem 2.13],
A

(2)
T,S = (wij) exists andA(2)

T,S = X.
Thus, we havew21 = 10

7
. They are identical.
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