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2 G. ISAC AND A. B. NÉMETH

1. I NTRODUCTION

The notion of thenuclear conewas defined by G. Isac in 1983 in [7] as a mathematical
tool for the study of Pareto efficiency, a fundamental notion in the theory of multiobjective
optimization. Since its definition the notion of the nuclear cone (known also under the name
of supernormal cone) has been considered by several authors in relation to several kinds of
problems in optimization theory, in the best approximation theory, in the fixed point theory, in
the study of nuclearity of topological vector spaces (in Grothendieck’s sense), in the study of
absolute summability, in the study ofC∗-algebras, in the study of some geometrical aspects
of Ekeland’s principle, etc. About the applications of nuclear cones the reader is referred to
the references in the paper [14]. In 1990, C. Pontini introduced the notion of pseudo-nuclear
cone and applying it he studied interesting geometrical properties of convex cones in general
topological vector spaces [20].

In a recent paper [14] concerning Pareto optimization G. Isac and A. O. Bahya introduced
the notion offull nuclear coneas a tool of a deeper investigation of the existence of efficient
points of some sets in an ordered locally convex spaces. Full nuclearity is for Pareto efficiency
the expression of a kind ofmultiple scalarization. In the cited paper the important problem of
the relation between nuclearity and full nuclearity is reached. The question is if whether or no a
closed nuclear cone is full nuclear? For the particular case of well based closed convex cones in
a normed space (which are also nuclear ones) an affirmative answer follows from a paper of M.
Petschke [18] and for well based closed convex cones in locally convex Hausdorff spaces from
the results in [12] and [13]. The aim of our note is to give an affirmative answer to this question
in the case of general closed nuclear cones in locally convex Hausdorff spaces.

From the main result of the note it follows that each closed nuclear cone can be associated to
a mapping from a family of continuous seminorms of the locally convex space to its topological
dual. This way a new prospective is gained on closed nuclear cones. A relation with Pareto
efficiency is also considered.

2. PRELIMINARIES

If E is a real vector space, then a functionp : E −→ R is aseminormif:

(1) p(αx) = |α|p(x), ∀x ∈ E, ∀α ∈ R, and
(2) p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ E.

According to an approach of Treves [27], a locally convex space can be defined as a couple
(E,Spec(E)), whereE is a real vector space and Spec(E) is a family of seminorms onE such
that:

(1) λp ∈ Spec(E), wheneverλ ∈ R+ = [0,+∞), andp ∈ Spec(E),
(2) if p ∈ Spec(E) andq is a seminorm onE such thatq ≤ p, thenq ∈ Spec(E), and
(3) for everyp1, p2 ∈ Spec(E), sup(p1, p2) ∈ Spec(E), wheresup(p1, p2)(x) =

sup(p1(x), p2(x)), for anyx ∈ E.
It is known (see [27]) that if Spec(E) is given, then there exists a locally convex topologyτ

onE such thatE(τ) is a topological vector space, with the property that a seminormp onE is
τ -continuous if and only ifp ∈ Spec(E). An approach like this, offers some technical facilities
in working with locally convex spaces. All our considerations concerning them will be given in
the context of this terminology.

A subsetB ⊂ Spec(E) is said abaseof Spec(E), if for everyp ∈ Spec(E) there existsq ∈ B
and a real numberλ ∈ R+ = (0,+∞) such thatp ≤ λq. Obviously, Spec(E) is its own base.
If B is a base of Spec(E) andB ⊂ D ⊂ Spec(E), thenD is also a base of Spec(E).
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The topologyτ defined onE by Spec(E) is Hausdorff if

{x ∈ E : p(x) = 0, ∀ p ∈ Spec(E)} = {0}.
The baseB of Spec(E) is called aHausdorff baseif

{x ∈ E : p(x) = 0, ∀ p ∈ B} = {0}.
If Spec(E) possesses a Hausdorff base then(E,Spec(E)) Hausdorff.

We will denote byE∗ the topological dual of the locally convex spaceE and byK apointed
convex cone, which is a subsetK of E satisfying the following properties:

(1) (k1) K +K ⊂ K,
(2) (k2) λK ⊂ K, for everyλ ∈ R+, and
(3) (k3) K ∩ (−K) = {0}.

If a pointed convex coneK is given, we have an ordering onE defined byx ≤ y whenever
y − x ∈ K. This ordering is reflexive, transitive and antisymmetric, translation invariant and
invariant by multiplication with scalars fromR+.

A nonempty setK satisfying the properties(k1) and(k2) is called aconvex cone.
ThedualK∗ of the convex coneK is the set

K∗ = {f ∈ E∗ : f(x) ≥ 0, ∀x ∈ K}.
K∗ is a closed set inE∗ satisfying the axioms(k1), (k2). K∗ is a pointed, convex cone if and
only if (K −K)− = E, where the superscript− denotes closure of the set. Using the notation

K∗∗ = {x ∈ E : f(x) ≥ 0, ∀ f ∈ K∗},
we can state thebipolar theorem(an abstract version of the lemma of Farkas), which asserts
that ifK is a closed, convex cone, then

K∗∗ = K

[26, Theorem IV.1.5.].
If τ is the topology defined by Spec(E), then a pointed convex coneK is saidnormal(with

respect toτ ) if one of the following equivalent assertions are satisfied:
(1) (n1) there exists a baseB of Spec(E) such that for everyp ∈ B andx, y ∈ K such

thatx ≤ y it holdsp(x) ≤ p(y),
(2) (n2) if (xi)i∈I , (yi)i∈I are two arbitrary nets inK such that for everyi ∈ I it holds

xi ≤ yi andlimi∈I yi = 0, then it holdslimi∈I xi = 0.

From the second point of the definition it follows that in Hausdorff spaces this condition
implies thatK is pointed.

If K is a closed normal cone thenE∗ = K∗ −K∗ [26, Corollary 3, Theorem V.3.3.].
LetK be a pointed convex cone. It is said thatK is well basedif there exists a convex bounded

setB ⊂ E such that0 /∈ B− andK = ∪λ≥0λB. A well based cone is a normal cone.
We note that the notions and the results listed above are ones of the most important notions in

the theory of ordered topological vector spaces. For more details about these notions the reader
is referred to [17], [26] and [6].

3. NUCLEAR AND FULL NUCLEAR CONES

Let (E,Spec(E)) be a locally convex space andK ⊂ E a pointed convex cone therein. The
following definition was introduced in [7] (see also [8]):

Definition 1. The coneK is called nuclear cone with respect to the topologyτ induced by
Spec(E) if there exists a baseB of Spec(E) such that for everyp ∈ B there existsfp ∈ E∗ such
thatp(x) ≤ fp(x), ∀x ∈ K.
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4 G. ISAC AND A. B. NÉMETH

Several papers were dedicated to the study of this notion (see the papers [1] - [5], [7] - [15],
[21] - [24], [28] - [30]).

For examples of nuclear cones the reader is referred to the papers [1] - [5], [7] - [15]. In [12],
[13] it was shown that a coneK in a locally convex space(E,Spec(E)) is well based if and
only if there exists a baseB of Spec(E) and a functionalf ∈ K∗ such that for eachp ∈ B there
exists acp ∈ R+ with cpp(x) ≤ f(x), ∀x ∈ K. Thus a well based cone in a locally convex
space is always nuclear. In the paper [14] is given an example of a nuclear cone in a locally
convex vector space which isn’t well based.

Let (E,Spec(E)) be a locally convex space,B ⊂ Spec(E) a Hausdorff base of Spec(E), and
K ⊂ E a closed, pointed, convex cone. Letϕ : B −→ K∗ an arbitrary mapping. Given the
baseB and the mappingϕ in [14] is defined the set

Kϕ = {x ∈ E : p(x) ≤ ϕ(p)(x), ∀ p ∈ B}.
In the cited paper it was shown thatKϕ is a closed, convex, pointed cone (Lemma 2, 3 and 4).

The coneK ⊂ E is nuclear if and only if there exists a baseB of Spec(E) and a function
ϕ : B −→ K∗ such thatK ⊂ Kϕ.

Definition 2. Given the coneK, the baseB of Spec(E) and the functionϕ : B → K∗, we say
thatKϕ is the full nuclear cone associated toK, B andϕ.

For details concerning full nuclear cones the reader is referred to the papers [14] and [15].

Remark 3.1. Let us remark thatKϕ depends more onϕ and less onK. Indeed, ifB andϕ are
given, andK ′ is a subcone ofK, thenK∗ ⊂ K ′∗ andϕ can be considered as function from
B to K ′∗ \ {0} and obviouslyK ′

ϕ = Kϕ. Further, from the definition ofKϕ it follows that
ϕ(p) ∈ K∗

ϕ \ {0}, ∀ p ∈ B. Hence we can assume thatϕ has its range inK∗
ϕ \ {0}.

4. NUCLEAR CONES ASSOCIATED TO A NORMAL CONE

Using the fact that for a normal coneK it holdsE∗ = K∗ − K∗, in the paper [14] it was
proved the following result:

Proposition 4.1. If K is a closed normal cone in the locally convex spaceE andD ⊂ K is
a closed, bounded, convex subset with0 /∈ D, then there exists a baseB of Spec(E) and a
mappingϕ : B −→ K∗ such thatKD = ∪λ≥0λD ⊂ Kϕ. ThusKϕ 6= {0}.

This proposition justifies the following definition:

Definition 3. We say that a closed pointed convex coneKn is a nuclear cone associated to the
coneK ⊂ E, if there exists a baseB of Spec(E) such that for eachp ∈ B there exists an
f ∈ K∗ such thatp(x) ≤ f(x) for eachx ∈ Kn.

The above proposition shows that - at least for the case of normal cones - this notion is
consistent: for each normal cone there exist nontrivial associated nuclear cones.

The notion of full nuclear coneKϕ associated to a baseB, and to a functionϕ : B −→ K∗

defined at the end of the preceding section is a particular form of the above introduced notion.
A test for Pareto efficiency using these notions was proved in [14] and improved in [15]. In the
last section of this note we shall comment these results.

5. CONVEX CONES REPRESENTED AS FULL NUCLEAR CONES

Let us recall first a construction of Bishop and Phelps (see [19] and [18]).
Let (E, ‖.‖) be a normed space,f ∈ E∗ with ‖f‖ = 1 andρ > 0. The set

K(f, ρ) = {x ∈ E : ρ‖x‖ ≤ f(x)}
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is a closed, convex, pointed cone. From the definition of the norm off it follows thatK(f, ρ) =
{0} for ρ > 1 and it is a nontrivial cone for0 < ρ < 1, (for ρ = 1 it is nontrivial if and only if
f attains its supremum on the unit ball ofE).

Suppose that0 < ρ < 1 and consider the set

B = {x ∈ E : ‖x‖ ≤ 1, andf(x) ≥ ρ}.

ThenK(f, ρ) is a nontrivial closed, convex, pointed cone,B is a bounded, closed convex set
with 0 /∈ B and

K(f, ρ) = ∪λ≥0λB,

that is the coneK(f, ρ) is well based. A such cone is called in [18] aBishop-Phelps cone. In
the cited paper Petschke introduced the following notion:

Definition 4. The convex coneK in the normed vector space(E, ‖.‖) is representable as a
Bishop-Phelps cone if there is a functionalf ∈ E∗ and a normp : E −→ R+ equivalent with
‖.‖ such that

K = {x ∈ E : p(x) ≤ f(x)}.

The principal result in [18] is the following theorem:

Theorem 5.1. Let (E, ‖.‖) be a real normed space andK a closed, convex cone such that
K 6= {0}. Then the following assertions are equivalent:

(1) K is representable as a Bishop-Phelps cone,
(2) K possess a closed bounded base.

Now, it is easy to see that a Bishop-Phelps cone is a full nuclear cone. By the above theorem
it follows then that each cone with a closed bounded base is a full nuclear cone.

Remark 5.1. The remark at the end of Section 3 and the above construction of Bishop and
Phelps suggests another natural way of constructing full nuclear cones. For an arbitrary baseB
of Spec(E) and a functionγ : B −→ E∗ we define the set

Kγ = {x ∈ E : p(x) ≤ γ(p)(x), ∀ p ∈ B}.

If B is a Hausdorff base, thenKγ is a closed, convex, pointed cone witch is a full nuclear cone.
Obviously, every full nuclear cone with Spec(E) a Hausdorff spectrum is of this form.

LetK be a convex cone in the locally convex space(E,Spec(E)). Using the notation intro-
duced in the Section 3 we give the following definition ([14]):

Definition 5. The coneK is said to be representable as a full nuclear cone if there exists a base
B of Spec(E) and a mappingϕ : B −→ K∗ such thatK = Kϕ.

Obviously, the closeness ofK is a necessary condition for its representability as a full nuclear
cone. In this regard the following natural question occurs (stated in [14] as an open problem):
Is it true, that for an arbitrary locally convex space, any closed nuclear cone is representable
as a full nuclear cone?

The question is answered into affirmative for well based closed cones in a normed space by
the above cited result of Petschke [18] and for well based closed cones in locally convex spaces
by the results in [12] and [13]. We shall give next the affirmative answer to the above question
for locally convex spaces.
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6 G. ISAC AND A. B. NÉMETH

6. EVERY CLOSED NUCLEAR CONE IS REPRESENTABLE AS A FULL NUCLEAR CONE

Let (E,Spec(E)) be a locally convex space and letK ⊂ E be a closed nuclear cone therein.
This according to the definition given in Section 3 means thatK is closed convex and pointed
cone for which there exists a baseB ⊂ Spec(E), B = {pi : i ∈ I} and a functionϕ : B −→
K∗ \ {0} with the property that for∀pi ∈ B there holdpi(x) ≤ ϕ(pi)(x) ∀x ∈ K.

In the terminology of the last definition of the preceding section we shall see that each closed
nuclear cone is representable as a full nuclear cone. That is, we have the following result:

Theorem 6.1. If K is a closed nuclear cone in the locally convex space(E,Spec(E)), then
there exists a baseD of Spec(E) and a functionψ : D −→ K∗ such thatK = Kψ, whereKψ

is the full nuclear cone associated toK,D andψ.

Proof. Let B = {pi : i ∈ I} be the base of Spec(E) andϕ : B → K∗ \ {0} be the function
which occur in the definition of the nuclearity ofK. (See the notations at the beginning of the
section.)

I. Case(K −K)− = E.
(a) Let us fixpj ∈ B. From the bipolar theorem (K∗∗ = K sinceK is closed), for each

y in the complementaryKc of K, there existsfy ∈ K∗ such thatfy(y) < 0. Hence for an
appropriateλ > 0 we can realize that

(ϕ(pj) + λfy)(y) < 0.

For the sake of simplicity we shall denote in what follows the elementλfy ∈ K∗ attached in
the above way toy simply byfy.

(b) We shall define another baseD of seminorms indexed by the elements ofI × Kc as
follows:

qiy = pi if i 6= j and

qjy = pj + |fy|,
wherey ∈ Kc andfy is the element ofK∗ attached toy by the above construction in (a), and
|fy| is defined by|fy|(x) = |fy(x)|. It can happen that someqjy coincides with someqiz with
i 6= j; in this case it is considered once inD represented asqjy.

Obviously,qiy is a continuous seminorm and hence it is in Spec(E). D is a base of Spec(E)
sinceB is. If B is Hausdorff, then so isD.

(c) Let us define nowψ : D −→ K∗\{0} as followsψ(qiy) = ϕ(pi) if qiy is not representable
as someqjz, andψ(qjy) = ϕ(pj) + fy.

We have to see thatψ is well defined. Problem can occur only in the case whenqjy = qjz and
fy 6= fz. From the definition, in this case we must have|fy| = |fz|. According the condition
(K − K)− = E fy andfz are determined by their values onK. But onK fy andfz takes
nonnegative values and these must coincide since|fy| = |fz|. Thus we must havefy = fz.

(d) Letx ∈ K be arbitrary. Ifqiy is not representable asqjz, thenψ(qiy) = ϕ(pi) and we have

qiy(x) = pi(x) ≤ ϕ(pi)(x) = ψ(qiy)(x).

For qjy it holds

qjy(x) = pj(x) + |fy(x)| = pj(x) + fy(x) ≤ ϕ(pj)(x) + fy(x) = ψ(qjy)(x).

The above relations show that

K ⊂ Kψ = {x ∈ E : qiy(x) ≤ ψ(qiy)(x) ∀(i, y) ∈ I ×Kc}.
(e) Let bey ∈ Kc. Then from the definition offy we haveψ(qjy)(y) = ϕ(pj)(y)+fy(y) < 0,

relation which shows thaty 6∈ Kψ. ThusKc ⊂ Kc
ψ and henceKψ ⊂ K.

II. CaseE0 = (K −K)− 6= E.
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We handle this case as follows:
(a) We proceed withK ⊂ E0, K∗

0 = K∗ ∩ E0 after restricting the seminormsp in B and
the linear functionalsϕ(p) toE0 as we have done it at the case I. Then we obtain a baseD0 in
Spec(E0) andψ0 : D0 −→ K∗

0 \ {0} such that

K = {x ∈ E0 : q(x) ≤ ψ0(q)(x) ∀q ∈ D0}.

We can extend using the geometric form of the Hahn-Banach theorem the functionalsfy ∈ K∗
0

to functionals inE that supportKand hence are inK∗. We use for extension offy the same
notation.

(b) The subspaceE0 is the intersection of a family{Hj : j ∈ J} of distinct closed hyper-
planes through0. Let gj ∈ E∗ \ {0} be the normal of the hyperplaneHj. Consider the family
C of seminorms defined as follows:

C = {|gj|, |2gj| : j ∈ J}.

Observe that the elements inC are distinct since the hyperplanesHj were so. Observe that
gj, −2gj ∈ K∗ since these functionals vanish onK.

(c) Let be nowD = D0 ∪ C whereD0 is the family of seminorms constructed at (a) and
extended toE such that the extension ofϕ|E0 is takenϕ and the extension offy-s are those in
K∗ with the same notation, extensions whose existence is justified at (a).

(d) Let us define the functionψ : D → K∗ \ {0} as follows:
ψ(q) = the extension ofψ0(q) toK∗ if q ∈ D0 \ C. (Here in the first formulaq denotes the

extension ofq ∈ Spec(E0) toE in the mode outlined at (a)).
ψ(|gj|) = gj andψ(|2gj|) = −2gj for the seminorms inC.
(If for some x ∈ E one has|gj(x)| = |gj|(x) ≤ ψ(|gj|)(x) = gj(x) and |2gj(x)| =

|2gj|(x) ≤ ψ(|2gj|(x) = −2gj(x), then we must havegj(x) = 0, that isx ∈ Hj. This is
the intuitive reason of the introduction of the familyC of seminorms, which have the role in
the definition ofKψ to restrictx to be in the subspace∩Hj = E0 where we can follow the
construction at I.)

A case analysis similar to those in the points (d) and (e) of the case I shows that we have also
in this caseK = Kψ.

Remark 6.1. From the above theorem and the remarks at the ends of Section 3 and Section 5 a
new prospective is gained on closed nuclear cones. Indeed, a closed nuclear cone is everything
associated to a functionϕ from a baseB of Spec(E) intoE∗. The question of whether two such
functions give rise to the same nuclear cone is resolved via the bipolar theorem as follows: If
ϕ andψ are two such functions (may be associated to different bases), then the nuclear cones
defined by them are identic if and only if(coner(ϕ))− = (coner(ψ))−, where coneM stands
for the conical hull of the setM , (i. e., the minimal convex cone containingM ), r(γ) denotes
the range of the functionγ and the closure is taken with respect to the weak∗ topology inE∗.

7. RELATION WITH PARETO EFFICIENCY

Let (E,Spec(E)) be a locally convex space ordered by a closed convex normal coneK. Let
X be a nonempty set andF : X −→ E a function. In some practical problems we are interested
to consider the following optimization problem:{

minimizeF (x)
x ∈ X
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8 G. ISAC AND A. B. NÉMETH

In this problem minimization means to find all the solutions that arePareto (minimal) efficient
pointsin X, i.e., the pointsx0 ∈ X such that

F (X) ∩ (F (x0)−K) = {F (x0)}.
This approach give rise to the following abstract minimization problem:
Given a nonempty subsetA of E we ask for conditions of existence of aPareto (minimal)

efficient points with respect toK of A, i.e., pointsx∗ ∈ A with the property

A ∩ (x∗ −K) = {x∗}.
The geometrical background of a result stated in the paper [14, Theorem 7] is the following.

Proposition 7.1. If M ⊂ E is a set having the property that0 is a (Pareto minimal) efficient
point ofM andD ⊂ E contains a pointx∗ such thatD− x∗ ⊂M , thenx∗ is an efficient point
ofD.

Proof. Indeed, in this case0 ∈ D− x∗ and sinceD− x∗ ⊂M , and0 is efficient point ofM by
hypothesis, it will follow that0 is efficient point ofD − x∗. That is,(−K) ∩ (D − x∗) = {0}
and hence(x∗ −K) ∩D = {x∗}.

Proposition 7.2. LetKn be a nuclear cone associated to the coneK in the Hausdorff locally
convex space E. Then0 is an efficient point ofKn with respect toK, that is, we have(−K) ∩
Kn = {0}.

Proof. Indeed, if it would existx ∈ (−K) ∩ Kn with x 6= 0, then there would existp in
Spec(E) such thatp(x) > 0. Thus there must be aq ∈ B whereB is the base which occurs in
the definition ofKn, such thatq(x) > 0. Let bef ∈ K∗ the functional for whichq(x) ≤ f(x).
Then it must bef(x) > 0. On the other handx ∈ −K and hence we must havef(x) ≤ 0 and
we arrive to a contradiction.

From the above two propositions we conclude:

Proposition 7.3. If K is a cone in the Hausdorff locally convex spaceE andKn is a nuclear
cone associated to it, ifD is a subset inE which contains a pointx∗ such thatD − x∗ ⊂ Kn,
thenx∗ is an efficient point ofD with respect toK.

The result given by Proposition 7.3 is the essential part of main theorem proved in [14] and it
was stated and proved for full nuclear conesKn associated to a closed normal coneK. For the
first sight it seems to be rather restrictive in comparison with the geometrical idea deduced from
Proposition 7.1. But the minimization with respect to a full nuclear cone offers the possibility
of using a sort of multiple scalarization, the basic reason for introducing nuclear cones.
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