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2 G. IsAc AND A. B. NEMETH

1. INTRODUCTION

The notion of thenuclear conewas defined by G. Isac in 1983 in|[7] as a mathematical
tool for the study of Pareto efficiency, a fundamental notion in the theory of multiobjective
optimization. Since its definition the notion of the nuclear cone (known also under the name
of supernormal conehas been considered by several authors in relation to several kinds of
problems in optimization theory, in the best approximation theory, in the fixed point theory, in
the study of nuclearity of topological vector spaces (in Grothendieck’s sense), in the study of
absolute summability, in the study o6f*-algebras, in the study of some geometrical aspects
of Ekeland’s principle, etc. About the applications of nuclear cones the reader is referred to
the references in the papér [14]. In 1990, C. Pontini introduced the notion of pseudo-nuclear
cone and applying it he studied interesting geometrical properties of convex cones in general
topological vector spaces [20].

In a recent paper [14] concerning Pareto optimization G. Isac and A. O. Bahya introduced
the notion offull nuclear coneas a tool of a deeper investigation of the existence of efficient
points of some sets in an ordered locally convex spaces. Full nuclearity is for Pareto efficiency
the expression of a kind ohultiple scalarization In the cited paper the important problem of
the relation between nuclearity and full nuclearity is reached. The question is if whether or no a
closed nuclear cone is full nuclear? For the particular case of well based closed convex cones in
a normed space (which are also nuclear ones) an affirmative answer follows from a paper of M.
Petschkel[18] and for well based closed convex cones in locally convex Hausdorff spaces from
the results in[[12] and [13]. The aim of our note is to give an affirmative answer to this question
in the case of general closed nuclear cones in locally convex Hausdorff spaces.

From the main result of the note it follows that each closed nuclear cone can be associated to
a mapping from a family of continuous seminorms of the locally convex space to its topological
dual. This way a new prospective is gained on closed nuclear cones. A relation with Pareto
efficiency is also considered.

2. PRELIMINARIES

If F is areal vector space, then a functijpn £ — R is aseminormif:
(1) p(azx) = |a|p(z), Yz € E, Va € R, and
() p(z +y) <plx) +p(y), Vo, y € E.

According to an approach of Treves [27], a locally convex space can be defined as a couple
(E,SpecE)), whereFE is a real vector space and Sp&g is a family of seminorms o' such
that:

(1) \p € Spe¢FE), whenever € R, = [0, +o0), andp € SpecE),

(2) if p € Spe¢F) andq is a seminorm orE' such thay; < p, theng € Spe¢F), and

(3) for everyp,, ps € Speck), sup(pi, p2) € Spe¢k), wheresup(pi, p2)(z) =
sup(p1 (), p2(2)), foranyz € E.

It is known (seel[2[7]) that if Spé&’) is given, then there exists a locally convex topolagy
on E such thatF(7) is a topological vector space, with the property that a seminoom £ is
T-continuous if and only ip € Spe¢E). An approach like this, offers some technical facilities
in working with locally convex spaces. All our considerations concerning them will be given in
the context of this terminology.

A subset3 C Spe¢F) is said abaseof SpecF), if for everyp € SpecFE) there existg € B
and a real numbex € R* = (0, +o0) such thap < \g. Obviously, SpegF) is its own base.
If Bis a base of Spéé&’) andB C D C SpecF), thenD is also a base of SpekE).
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The topologyr defined onE by Spec¢F) is Hausdorff if
{r e E:px)=0,Vpe Speck)} ={0}.
The base3 of Spe¢F) is called aHausdorff basef
{re E: px)=0, Vpe B} ={0}.
If Sped F) possesses a Hausdorff base thEnSpe¢ £)) Hausdorff.
We will denote byE™* the topological dual of the locally convex spa€eand by K apointed
convex congwhich is a subsek’ of £ satisfying the following properties:
(1) (k1) K+ KCK,
(2) (ks) MK C K, forevery € R,, and
(3) (k3) K n(=K)={0}.
If a pointed convex con& is given, we have an ordering dndefined byx < y whenever
y —x € K. This ordering is reflexive, transitive and antisymmetric, translation invariant and
invariant by multiplication with scalars fro, .

A nonempty sef{ satisfying the propertieS:1) and(k2) is called aconvex cone
Thedual K* of the convex coné is the set

K ={feFE": f(x) >0, Vx € K}.

K* is a closed set ir* satisfying the axiomsk; ), (k2). K* is a pointed, convex cone if and
only if (K — K)~ = E, where the superscriptdenotes closure of the set. Using the notation

K*={zxeFE: f(x) >0, Vfe K"},

we can state thbipolar theorem(an abstract version of the lemma of Farkas), which asserts
that if K is a closed, convex cone, then
K=K
[26, Theorem IV.1.5.].
If 7 is the topology defined by Spgk€), then a pointed convex coré€ is saidnormal (with
respect tar) if one of the following equivalent assertions are satisfied:
(1) (n1) there exists a bad8 of Spe¢F) such that for every € B andz, y € K such
thatz < y it holdsp(x) < p(y),
(2) (n2) if (4)ier, (vi)ier are two arbitrary nets ik’ such that for every € I it holds
z; <y andlimie[ y; =0, then it hOldSlimieI z; = 0.
From the second point of the definition it follows that in Hausdorff spaces this condition
implies thatK is pointed.
If K is aclosed normal cone théfir = K* — K* [26, Corollary 3, Theorem V.3.3.].
LetK be a pointed convex cone. Itis said tikats well basedf there exists a convex bounded
setB C F suchthat) ¢ B~ andK = U,>¢AB. A well based cone is a normal cone.
We note that the notions and the results listed above are ones of the most important notions in
the theory of ordered topological vector spaces. For more details about these notions the reader
is referred tol[117],[[26] and [6].

3. NUCLEAR AND FULL NUCLEAR CONES

Let (F,Spe¢FE)) be a locally convex space aid C FE a pointed convex cone therein. The
following definition was introduced in [7] (see also [8]):

Definition 1. The coneK is called nuclear cone with respect to the topolaginduced by
SpeckF) if there exists a basB of Spe¢E) such that for every € 5 there existsf, € £* such
thatp(z) < f,(z), Vo € K.
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Several papers were dedicated to the study of this notion (see the paperd [1]- [5], 17] - [15],
[21] - [24], [28] - [30Q]).

For examples of nuclear cones the reader is referred to the papers|[1] * [5], [7] - [15]] In [12],
[13] it was shown that a con& in a locally convex spacéF, SpecF)) is well based if and
only if there exists a badé of Spe¢ F') and a functionalf € K* such that for each € B there
exists ac, € Rt with ¢,p(x) < f(x), Vo € K. Thus a well based cone in a locally convex
space is always nuclear. In the paper [14] is given an example of a nuclear cone in a locally
convex vector space which isn’t well based.

Let (£, SpecE)) be a locally convex spacs, C Spe¢FE) a Hausdorff base of Spgg), and
K C F aclosed, pointed, convex cone. Let B — K* an arbitrary mapping. Given the
base5 and the mapping in [14] is defined the set

K, ={z e E: p(x) < ¢(p)(z), Vp € B}.
In the cited paper it was shown th&t, is a closed, convex, pointed cone (Lemma 2, 3 and 4).

The coneK C FE is nuclear if and only if there exists a baBSeof Spe¢£) and a function
¢ : B — K*suchthatk C K.

Definition 2. Given the condy, the base3 of Spe€F) and the functiorp : B — K*, we say
that K, is the full nuclear cone associated £ B and.

For details concerning full nuclear cones the reader is referred to the papers [14]land [15].

Remark 3.1. Let us remark thal(, depends more op and less or¥. Indeed, ifB andy are
given, andK’ is a subcone of(, then K* ¢ K™ andy can be considered as function from
B to K™ \ {0} and obviouslyK, = K. Further, from the definition of<, it follows that
¢(p) € K3\ {0}, Vp € B. Hence we can assume thahas its range ir’; \ {0}.

4. NUCLEAR CONES ASSOCIATED TO A NORMAL CONE

Using the fact that for a normal cor€ it holds E* = K* — K*, in the paper[[14] it was
proved the following result:

Proposition 4.1. If K is a closed normal cone in the locally convex spatand D C K is
a closed, bounded, convex subset Witk D, then there exists a badg of Spe¢E) and a
mappingy : B — K* such thati, = U >oAD C K. ThusK,, # {0}.

This proposition justifies the following definition:

Definition 3. We say that a closed pointed convex céf)gis a nhuclear cone associated to the
coneK C FE, if there exists a basB of Spe¢FE) such that for eaclp € B there exists an
f € K* such thaty(x) < f(z) for eachz € K.

The above proposition shows that - at least for the case of normal cones - this notion is
consistent: for each normal cone there exist nontrivial associated nuclear cones.

The notion of full nuclear coné&, associated to a bagg and to a functionp : B — K*
defined at the end of the preceding section is a particular form of the above introduced notion.
A test for Pareto efficiency using these notions was proved in [14] and improved in [15]. In the
last section of this note we shall comment these results.

5. CONVEX CONES REPRESENTED AS FULL NUCLEAR CONES

Let us recall first a construction of Bishop and Phelps (see [19]and [18]).
Let (£, |.||) be a normed spac¢,c E* with || f|| = 1 andp > 0. The set

K(f,p)={r € E: pllz|| < f(x)}

AIMAA Vol. 2, No. 2, Art. 13, pp. 1-10, 2005 AIJMAA


http://ajmaa.org

A RELATION BETWEEN NUCLEAR CONES AND FULL NUCLEAR CONES 5

is a closed, convex, pointed cone. From the definition of the norfritdbllows that K (f, p) =
{0} for p > 1 and it is a nontrivial cone fob < p < 1, (for p = 1 it is nontrivial if and only if
f attains its supremum on the unit ball Bj).

Suppose thal < p < 1 and consider the set

B={zeE: |z|| <1, andf(z) > p}.

Then K (f, p) is a nontrivial closed, convex, pointed corig,is a bounded, closed convex set
with 0 ¢ B and

K(f7 p) = U)\ZO/\Ba

that is the cond<(f, p) is well based. A such cone is called in [18B&hop-Phelps condn
the cited paper Petschke introduced the following notion:

Definition 4. The convex coné&’ in the normed vector spadd”, |.||) is representable as a
Bishop-Phelps cone if there is a functiornfaE £* and a normp : £ — R, equivalent with
||.]| such that

K={zreE:p()< f(x)}.
The principal result in[18] is the following theorem:

Theorem 5.1. Let (£, |.||) be a real normed space anll a closed, convex cone such that
K # {0}. Then the following assertions are equivalent:

(1) K is representable as a Bishop-Phelps cone,
(2) K possess a closed bounded base.

Now, it is easy to see that a Bishop-Phelps cone is a full nuclear cone. By the above theorem
it follows then that each cone with a closed bounded base is a full nuclear cone.

Remark 5.1. The remark at the end of Sectiph 3 and the above construction of Bishop and
Phelps suggests another natural way of constructing full nuclear cones. For an arbitrafy base
of Spec¢F) and a functiony : B — E* we define the set

K,={r € E: p(x) <~(p)(x), Vp € B}.

If B is a Hausdorff base, thefd, is a closed, convex, pointed cone witch is a full nuclear cone.
Obviously, every full nuclear cone with Sgé¢) a Hausdorff spectrum is of this form.

Let K" be a convex cone in the locally convex spaée SpecE)). Using the notation intro-
duced in the Sectidn 3 we give the following definition ([14]):

Definition 5. The conéX is said to be representable as a full nuclear cone if there exists a base
B of Spe¢FE) and a mapping : B — K* such thatk’ = K.

Obviously, the closeness éf is a necessary condition for its representability as a full nuclear
cone. In this regard the following natural question occurs (stated in [14] as an open problem):
Is it true, that for an arbitrary locally convex space, any closed nuclear cone is representable
as a full nuclear cone?

The question is answered into affirmative for well based closed cones in a normed space by
the above cited result of Petschkel[18] and for well based closed cones in locally convex spaces
by the results in[12] and [13]. We shall give next the affirmative answer to the above question
for locally convex spaces.
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6. EVERY CLOSED NUCLEAR CONE IS REPRESENTABLE AS A FULL NUCLEAR CONE

Let (F, Spe¢F)) be a locally convex space and I§tC E be a closed nuclear cone therein.
This according to the definition given in Sectign 3 means fias closed convex and pointed
cone for which there exists a baBeC Spe¢FE), B = {p; : i € I} and a functionp : B —

K*\ {0} with the property that fo¥p; € B there holdp;(x) < ¢(p;)(x) Vz € K.

In the terminology of the last definition of the preceding section we shall see that each closed

nuclear cone is representable as a full nuclear cone. That is, we have the following result:

Theorem 6.1.If K is a closed nuclear cone in the locally convex spateSpec¢F)), then
there exists a basP of Spe¢FE) and a function) : D — K* such thatk’ = K,,, wherek,
is the full nuclear cone associated 6, D and .

Proof. Let B = {p; : i € I} be the base of SpéE) andy : B — K* \ {0} be the function
which occur in the definition of the nuclearity &f. (See the notations at the beginning of the
section.)

|. Case(K — K)~ = E.

(a) Let us fixp; € B. From the bipolar theorem/(** = K since K is closed), for each
y in the complementarys© of K, there existsf, € K* such thatf,(y) < 0. Hence for an
appropriate\ > 0 we can realize that

(¢(py) + Afy)(y) <O.

For the sake of simplicity we shall denote in what follows the elemgite K™ attached in
the above way tg simply by f,.
(b) We shall define another bage of seminorms indexed by the elementsiok K°¢ as
follows:
¢y = pi if 1 # j and
Gy = p; + [ fyl,
wherey € K¢ andf, is the element of{* attached tg by the above construction in (a), and
|f,| is defined by f,|(z) = |f,(z)|. It can happen that somg, coincides with some;, with
i # 7, in this case it is considered oncelhrepresented ag,,.

Obviously,g;, is a continuous seminorm and hence itis in §p8c D is a base of Spg&)
sinceB is. If B is Hausdorff, then so i®.

(c) Letus define now : D — K*\ {0} as followsy(q;,) = ¢(p;) if ¢;, is not representable
as somey;., andy(q;,) = ¢(p;) + fy-

We have to see thatis well defined. Problem can occur only in the case wjgr= ¢;. and
fy # f.. From the definition, in this case we must hayg = |f.|. According the condition
(K — K)~ = FE f, and f, are determined by their values dn. But on K f, and f, takes
nonnegative values and these must coincide difijge= | f.|. Thus we must havg, = f..

(d) Letz € K be arbitrary. Ifg;, is not representable asg., theny(¢;,) = ¢(p;) and we have

Giy(r) = pi(z) < @(pi)(7) = V(giy) (2).
Forg;, it holds
Gy(x) = pi() + | fy(@)| = p; (@) + fy(2) < @(p;)(2) + fy(z) = () (2).
The above relations show that
KCKy={zel: qgylr) <(qy)(r)V(i,y) € I x K}

(e) Letbey € K¢. Then from the definition of, we have(q;,)(v) = »(p;)(y)+ f,(y) <0,
relation which shows that ¢ K. Thus K C K, and hences, C K.
Il. CaseEy = (K — K)~ # E.
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We handle this case as follows:

(a) We proceed withk' C E,, K; = K* N E, after restricting the seminormsin B and
the linear functionalg(p) to E, as we have done it at the case |. Then we obtain a Base
Sped Ey) andy, : Dy — K \ {0} such that

K={z€ Ey:q(x) <y(q)(x)Yq € Dy}.

We can extend using the geometric form of the Hahn-Banach theorem the funciiprals;
to functionals inE' that supporti{and hence are ifk*. We use for extension of, the same
notation.

(b) The subspacé, is the intersection of a familyH; : j € J} of distinct closed hyper-
planes through. Letg; € E*\ {0} be the normal of the hyperplaifé;. Consider the family
C of seminorms defined as follows:

C ={lgjl. 129;| : 5 € T}

Observe that the elements@nare distinct since the hyperplan&s were so. Observe that
gj, —2g; € K* since these functionals vanish én

(c) Let be nowD = Dy U C whereD, is the family of seminorms constructed at (a) and
extended ta& such that the extension ¢f £, is takeny and the extension of,-s are those in
K* with the same notation, extensions whose existence is justified at (a).

(d) Let us define the function : D — K* \ {0} as follows:

¥ (q) = the extension ofy,(q) to K* if ¢ € Dy \ C. (Here in the first formula denotes the
extension of; € Spe¢E,) to £ in the mode outlined at (a)).

Y(lg;]) = g; andy(|2g;|) = —2g, for the seminorms ig.

(If for somex € E one haslg;(z)| = |g;l(x) < v(|g;)(x) = g;(x) and [2g;(x)| =
12g;|(z) < ¥(]2¢9;/(x) = —2g;(x), then we must have;(z) = 0, thatisz € H;. This is
the intuitive reason of the introduction of the famdyof seminorms, which have the role in
the definition of K, to restrictz to be in the subspaceH; = E, where we can follow the
construction at I.)

A case analysis similar to those in the points (d) and (e) of the case | shows that we have also
in this casel = K.

|

Remark 6.1. From the above theorem and the remarks at the ends of Sektion 3 and Section 5 a
new prospective is gained on closed nuclear cones. Indeed, a closed nuclear cone is everything
associated to a functionfrom a bases of Spe¢ F) into £*. The question of whether two such
functions give rise to the same nuclear cone is resolved via the bipolar theorem as follows: If
¢ andt are two such functions (may be associated to different bases), then the nuclear cones
defined by them are identic if and only(€oner(¢))~ = (coner(y))~, where coné/ stands

for the conical hull of the set/, (i. e., the minimal convex cone containidd), »() denotes

the range of the function and the closure is taken with respect to the weakology in £*.

7. RELATION WITH PARETO EFFICIENCY

Let (F, Spe¢F)) be a locally convex space ordered by a closed convex normali€ohet
X be anonempty setand: X — F afunction. In some practical problems we are interested
to consider the following optimization problem:

minimize F'(x)
reX
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In this problem minimization means to find all the solutions thaRareto (minimal) efficient
pointsin X, i.e., the points;, € X such that

F(X) N (F(z0) — K) = {F(x0)}-
This approach give rise to the following abstract minimization problem:

Given a nonempty subset of £ we ask for conditions of existence ofRareto (minimal)
efficient points with respect t& of A4, i.e., pointsz, € A with the property

AN (2, — K) = {x.}.
The geometrical background of a result stated in the papér [14, Theorem 7] is the following.

Proposition 7.1. If M C FE is a set having the property thatis a (Pareto minimal) efficient
point of M and D C FE contains a pointz, such thatD — x, C M, thenz, is an efficient point
of D.

Proof. Indeed, in this case € D — x, and sinceD — z, C M, and0 is efficient point ofM by
hypothesis, it will follow that is efficient point ofD — x,. Thatis,(—K) N (D — z,) = {0}
and hencézx, — K) N D = {z.}. 1

Proposition 7.2. Let K,, be a nuclear cone associated to the cdtien the Hausdorff locally
convex space E. Thenis an efficient point of<,, with respect tak’, that is, we havé—K) N
K, = {0}.

Proof. Indeed, if it would existr € (—K) N K, with x # 0, then there would exist in
Spe¢FE) such thaip(xz) > 0. Thus there must be@e B whereB is the base which occurs in
the definition ofK,, such thay(z) > 0. Let be f € K* the functional for whichy(z) < f(z).
Then it must bef(z) > 0. On the other hanad € —K and hence we must hayéz) < 0 and
we arrive to a contradictiors

From the above two propositions we conclude:

Proposition 7.3. If K is a cone in the Hausdorff locally convex spdceand K, is a nuclear
cone associated to it, iD is a subset inE’ which contains a point, such thatD — z, C K,,,
thenz, is an efficient point oD with respect tax'.

The result given by Propositign 7.3 is the essential part of main theorem proved in [14] and it
was stated and proved for full nuclear codésassociated to a closed normal cddeFor the
first sight it seems to be rather restrictive in comparison with the geometrical idea deduced from
Propositior] 7.[L. But the minimization with respect to a full nuclear cone offers the possibility
of using a sort of multiple scalarization, the basic reason for introducing nuclear cones.
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