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1. I NTRODUCTION

Let

Γn =

{
P = (p1, p2, ..., pn)

∣∣∣∣∣pi > 0,
n∑

i=1

pi = 1

}
, n > 2,

be the set of all complete finite discrete probability distributions. For allP, Q ∈ Γn, the follow-
ing measures are well known in the literature on information theory and statistics:

• Hellinger Discrimination

(1.1) h(P ||Q) = 1−B(P ||Q) =
1

2

n∑
i=1

(
√

pi −
√

qi)
2,

where

(1.2) B(P ||Q) =
√

piqi,

is the well-known Bhattacharyya [1]coefficient.

• Triangular Discrimination

(1.3) ∆(P ||Q) = 2 [1−W (P ||Q)] =
n∑

i=1

(pi − qi)
2

pi + qi

,

where

(1.4) W (P ||Q) =
n∑

i=1

2piqi

pi + qi

,

is the well-knownharmonic mean divergence.

• Symmetric Chi-square Divergence

(1.5) Ψ(P ||Q) = χ2(P ||Q) + χ2(Q||P ) =
n∑

i=1

(pi − qi)
2(pi + qi)

piqi

,

where

(1.6) χ2(P ||Q) =
n∑

i=1

(pi − qi)
2

qi

=
n∑

i=1

p2
i

qi

− 1,

is the well-knownχ2−divergence(Pearson [10]).

• J-Divergence

(1.7) J(P ||Q) =
n∑

i=1

(pi − qi) ln(
pi

qi

).

• Jensen-Shannon Divergence

(1.8) I(P ||Q) =
1

2

[
n∑

i=1

pi ln

(
2pi

pi + qi

)
+

n∑
i=1

qi ln

(
2qi

pi + qi

)]
.
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• Arithmetic-Geometric Mean Divergence

(1.9) T (P ||Q) =
n∑

i=1

(
pi + qi

2

)
ln

(
pi + qi

2
√

piqi

)
.

After simplification, we can write

(1.10) J(P ||Q) = 4 [I(P ||Q) + T (P ||Q)] .

The measuresI(P ||Q), J(P ||Q) andT (P ||Q) can be written as

J(P ||Q) = K(P ||Q) + K(Q||P ),(1.11)

I(P ||Q) =
1

2

[
K

(
P ||P + Q

2

)
+ K

(
Q||P + Q

2

)]
,(1.12)

and

T (P ||Q) =
1

2

[
K

(
P + Q

2
||P

)
+ K

(
P + Q

2
||Q

)]
,(1.13)

where

(1.14) K(P ||Q) =
n∑

i=1

pi log

(
pi

qi

)
,

is the well known Kullback-Leibler [9]relative information.
We call the measures given in (1.1), (1.3), (1.5), (1.7), (1.9) and (1.10) assymmetric diver-

gence measures, since they are symmetric with respect to the probability distributionsP and
Q. The measure (1.1) is due to Hellinger [7]. The measure (1.5) is due to Dragomir et al. [6],
and recently has been studied by Taneja [15]. The measure (1.7) is due to Jeffreys [8], and
later Kullback-Leibler [9] studied it extensively. Some times it is called as Jeffreys-Kullback-
Leibler’s J-divergence. The measure (1.8) is due to Sibson [11], and later Burbea and Rao
[2, 3] studied it extensively. Initially, it was called asinformation radius, but now a days it is
famous asJensen-Shannon divegence. The measure (1.9) is due to Taneja [15], and is known
by arithmetic-geometric mean divergence. For one parametric generalizations of the measures
given above refer to Taneja [17, 18]. A general study of information and divergence measures
and their generalizations can be seen in Taneja [12, 13, 14].

In this paper our aim is to obtain an inequality and its improvement in terms of above sym-
metric divergence measures. This we shall do by the application of some properties of Csiszár’s
f−divergence.

2. CSISZÁR’ S f−DIVERGENCE

Given a functionf : [0,∞) → R, the f-divergencemeasure introduced by Csiszár’s [4] is
given by

(2.1) Cf (P ||Q) =
n∑

i=1

qif

(
pi

qi

)
,

for all P, Q ∈ Γn.
The following theorem is well known in the literature.

Theorem 2.1. (Csiszár’s [4, 5]).If the functionf is convex and normalized, i.e.,f(1) = 0, then
thef−divergence,Cf (P ||Q) is nonnegative and convex in the pair of probability distribution
(P, Q) ∈ Γn × Γn.
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Recently, Taneja [16, 18] established the following property of the measure (2.1).

Theorem 2.2.Letf1, f2 : I ⊂ R+ → R two generating mappings are normalized, i.e.,f1(1) =
f2(1) = 0 and satisfy the assumptions:

(i) f1 andf2 are twice differentiable on(a, b);
(ii) there exists the real constantsm, M such thatm < M and

(2.2) m 6
f ′′1 (x)

f ′′2 (x)
6 M, f ′′2 (x) > 0, ∀x ∈ (a, b),

then we have the inequalities:

(2.3) m Cf2(P ||Q) 6 Cf1(P ||Q) 6 M Cf2(P ||Q).

Proof. Let us consider the functionsηm(·) andηM(·) given by

(2.4) ηm(x) = f1(x)−m f2(x),

and

(2.5) ηM(x) = M f2(x)− f1(x),

respectively, wherem andM are as given by (2.2).
Sincef1(x) andf2(x) are normalized, i.e.,f1(1) = f2(1) = 0, thenηm(·) andηM(·) are

also normalized, i.e.,ηm(1) = 0 andηM(1) = 0. Also, the functionsf1(x) andf2(x) are twice
differentiable. Then in view of (2.2), we have

(2.6) η′′m(x) = f ′′1 (x)−m f ′′2 (x) = f ′′2 (x)

(
f ′′1 (x)

f ′′2 (x)
−m

)
> 0,

and

(2.7) η′′M(x) = M f ′′2 (x)− f ′′1 (x) = f ′′2 (x)

(
M − f ′′1 (x)

f ′′2 (x)

)
> 0,

for all x ∈ (r, R).
In view of (2.6) and (2.7), we can say that the functionsηm(·) andηM(·) given by (2.4) and

(2.5) respectively, are convex on(r, R).
According to Theorem 2.1, we have

(2.8) Cηm
(P ||Q) = Cf1−mf2(P ||Q) = Cf1(P ||Q)−m Cf2(P ||Q) > 0,

and

(2.9) CηM
(P ||Q) = CMf2−f1(P ||Q) = M Cf2(P ||Q)− Cf1(P ||Q) > 0.

Combining (2.8) and (2.9) we have the proof of (2.3).

Now, based on Theorem 2.1, we shall give below theconvexityand nonnegativityof the
symmetric divergence measuresgiven in Section 1.

Example 2.1. (Hellinger discrimination). Let us consider

(2.10) fh(x) =
1

2
(
√

x− 1)2, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = h(P ||Q), whereh(P ||Q) is as given by (1.1).
Moreover,

f ′h(x) =

√
x− 1

2
√

x
,
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and

(2.11) f ′′h (x) =
1

4x
√

x
.

Thus we havef ′′h (x) > 0 for all x > 0, and hence,fh(x) is strictly convex for allx > 0. Also,
we havefh(1) = 0. In view of this we can say that the Hellinger discrimination given by (1.1)
is nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.

Example 2.2. (Triangular discrimination). Let us consider

(2.12) f∆(x) =
(x− 1)2

x + 1
, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = ∆(P ||Q), where∆(P ||Q) is as given by (1.3).
Moreover,

f ′∆(x) =
(x− 1)(x + 3)

(x + 1)2
,

and

(2.13) f ′′∆(x) =
8

(x + 1)3
.

Thus we havef ′′∆(x) > 0 for all x > 0, and hence,f∆(x) is strictly convex for allx > 0.
Also, we havef∆(1) = 0. In view of this we can say that the triangular discrimination given by
(1.3) is nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.

Example 2.3. (Symmetric chi-square divergence). Let us consider

(2.14) fΨ(x) =
(x− 1)2(x + 1)

x
, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = Ψ(P ||Q), whereΨ(P ||Q) is as given by (1.5).
Moreover,

f ′Ψ(x) =
(x− 1)(2x2 + x + 1)

x2
,

and

(2.15) f ′′Ψ(x) =
2(x3 + 1)

x3
.

Thus we havef ′′Ψ(x) > 0 for all x > 0, and hence,fΨ(x) is strictly convex for allx > 0. Also,
we havefΨ(1) = 0. In view of this we can say that the symmetric chi-square divergence given
by (1.5) is nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.

Example 2.4. (J-divergence). Let us consider

(2.16) fJ(x) = (x− 1) ln x, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = J(P ||Q), whereJ(P ||Q) is as given by (1.7).
Moreover,

f ′J(x) = 1− x−1 + ln x,

and

(2.17) f ′′J (x) =
x + 1

x2
.

Thus we havef ′′J (x) > 0 for all x > 0, and hence,fJ(x) is strictly convex for allx > 0.
Also, we havefJ(1) = 0. In view of this we can say that the J-divergence given by (1.7) is
nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.
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Example 2.5. (JS-divergence). Let us consider

(2.18) fI(x) =
x

2
ln x +

x + 1

2
ln

(
2

x + 1

)
, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = I(P ||Q), whereI(P ||Q) is as given by (1.8).
Moreover,

f ′I(x) =
1

2
ln

(
2x

x + 1

)
,

and

(2.19) f ′′I (x) =
1

2x(x + 1)
.

Thus we havef ′′I (x) > 0 for all x > 0, and hence,fI(x) is strictly convex for allx > 0.
Also, we havefI(1) = 0. In view of this we can say that the JS-divergence given by (1.8) is
nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.

Example 2.6. (AG-Divergence). Let us consider

(2.20) fT (x) =

(
x + 1

2

)
ln

(
x + 1

2
√

x

)
, x ∈ (0,∞),

in (2.1), then we haveCf (P ||Q) = T (P ||Q), whereT (P ||Q) is as given by (1.9).
Moreover,

f ′T (x) =
1

4

[
1− x−1 + 2 ln

(
x + 1

2
√

x

)]
,

and

(2.21) f ′′T (x) =
x2 + 1

4x2(x + 1)
.

Thus we havef ′′T (x) > 0 for all x > 0, and hence,fT (x) is strictly convex for allx > 0.
Also, we havefT (1) = 0. In view of this we can say that the AG-divergence given by (1.9) is
nonnegative and convex in the pair of probability distributions(P, Q) ∈ Γn × Γn.

3. I NEQUALITIES AMONG THE M EASURES

In this section we shall apply the Theorem 2.2 to obtain inequalities among the measures
given in Section 1. We have considered only the symmetric measures given in (1.1), (1.3),
(1.5), (1.7)-(1.9).

Theorem 3.1.The following inequalities among the divergence measures hold:

(3.1)
1

4
∆(P ||Q) 6 I(P ||Q) 6 h(P ||Q) 6

1

8
J(P ||Q) 6 T (P ||Q) 6

1

16
Ψ(P ||Q).

The proof of the above theorem is based on the following propositions, where we have proved
each part separately.

Proposition 3.2. The following inequality hold:

(3.2)
1

4
∆(P ||Q) 6 I(P ||Q).
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Proof. Let us consider

(3.3) gI∆(x) =
f ′′I (x)

f ′′∆(x)
=

(x + 1)2

16x
, x ∈ (0,∞),

wheref ′′I (x) andf ′′∆(x) are as given by (2.19) and (2.13) respectively.
From (3.3), we have

(3.4) g′I∆(x) =
(x− 1)(x + 1)

16x2

{
> 0, x > 1

6 0, x 6 1
.

In view of (3.4), we conclude that the functiongI∆(x) is decreasing inx ∈ (0, 1) and increas-
ing in x ∈ (1,∞), and hence

(3.5) m = sup
x∈(0,∞)

gI∆(x) = gI∆(1) =
1

4
.

Applying the inequalities (2.3) for the measures∆(P ||Q) andI(P ||Q) along with (3.5) we
get the required result.

Proposition 3.3. The following inequality hold:

(3.6) I(P ||Q) 6 h(P ||Q).

Proof. Let us consider

(3.7) gIh(x) =
f ′′I (x)

f ′′h (x)
=

2
√

x

x + 1
, x ∈ (0,∞),

wheref ′′I (x) andf ′′h (x) are as given by (2.19) and (2.11) respectively.
From (3.7), we have

(3.8) g′Ih(x) = − x− 1√
x(x + 1)2

{
> 0, x 6 1

6 0, x > 1
.

In view of (3.8), we conclude that the functiongIh(x) is increasing inx ∈ (0, 1) and decreas-
ing in x ∈ (1,∞), and hence

(3.9) M = sup
x∈(0,∞)

gIh(x) = gIh(1) = 1.

Applying the inequalities (2.3) for the measuresI(P ||Q) andh(P ||Q) along with (3.9) we
get the required result.

Proposition 3.4. The following inequality hold:

(3.10) h(P ||Q) 6
1

8
J(P ||Q).

Proof. Let us consider

(3.11) gJh(x) =
f ′′J (x)

f ′′h (x)
=

4(x + 1)√
x

, x ∈ (0,∞),

wheref ′′J (x) andf ′′h (x) are as given by (2.17) and (2.11) respectively.
From (3.11) we have

(3.12) g′Jh(x) =
2(x− 1)

x
√

x

{
> 0, x > 1

6 0, x 6 1
.
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In view of (3.12), we conclude that the functiongJh(x) is decreasing inx ∈ (0, 1) and
increasing inx ∈ (1,∞), and hence

(3.13) m = inf
x∈(0,∞)

gJh(x) = gJh(1) = 8.

Applying the inequalities (2.3) for the measuresh(P ||Q) andJ(P ||Q) along with (3.13) we
get the required result.

Proposition 3.5. The following inequality hold:

(3.14)
1

8
J(P ||Q) 6 T (P ||Q).

Proof. Let us consider

(3.15) gJT (x) =
f ′′J (x)

f ′′T (x)
=

4(x + 1)2

x2 + 1
, x ∈ (0,∞),

wheref ′′J (x) andf ′′T (x) are as given by (2.17) and (2.21) respectively.
From (3.15) we have

(3.16) g′JT (x) = −8(x− 1)(x + 1)

(x2 + 1)2

{
> 0, x 6 1

6 0, x > 1
.

In view of (3.16) we conclude that the functiongJT (x) is increasing inx ∈ (0, 1) and de-
creasing inx ∈ (1,∞), and hence

(3.17) M = sup
x∈(0,∞)

gJT (x) = gJT (1) = 8.

Applying the inequality (2.3) for the measuresJ(P ||Q) andT (P ||Q) along with (3.17) we
get the required result.

Proposition 3.6. The following inequality hold:

(3.18) T (P ||Q) 6
1

16
Ψ(P ||Q).

Proof. Let us consider

(3.19) gTΨ(x) =
f ′′T (x)

f ′′Ψ(x)
=

x(x2 + 1)

8(x + 1)(x3 + 1)
, x ∈ (0,∞),

wheref ′′T (x) andf ′′Ψ(x) are as given by (2.21) and (2.15) respectively.
From (3.19) we have

(3.20) g′TΨ(x) = − (x− 1)(x4 + 4x2 + 1)

8(x + 1)3(x2 − x + 1)2

{
> 0, x 6 1

6 0, x > 1
.

In view of (3.20) we conclude that the functiongTΨ(x) is increasing inx ∈ (0, 1) and de-
creasing inx ∈ (1,∞), and hence

(3.21) M = sup
x∈(0,∞)

gTΨ(x) = gTΨ(1) =
1

16
.

Applying the inequality (2.3) for the measuresT (P ||Q) andΨ(P ||Q) along with (3.21) we
get the required result.
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The proof of the inequalities given in (3.1) follows by combining the results given in (3.2),
(3.6), (3.10), 5.14) and (3.18) respectively.

Dragomir et al. [6] proved the following two inequalities involving the measures (1.3), (1.5)
and (1.7):

(3.22) 0 6
1

2
J(P ||Q)−∆(P ||Q) 6

1

12
D∗(P ||Q),

and

(3.23) 0 6
1

2
Ψ(P ||Q)− J(P ||Q) 6

1

6
D∗(P ||Q),

where

(3.24) D∗(P ||Q) =
n∑

i=1

(pi − qi)
4√

(piqi)3
.

In the following section we shall improve the inequalities given in (3.1). An improvement
over the inequalities (3.22) and (3.23) along with their unification is also presented.

4. DIFFERENCE OF DIVERGENCE M EASURES

Let us consider the followingnonnegativedifferences:

DΨT (P ||Q) =
1

16
Ψ(P ||Q)− T (P ||Q),(4.1)

DΨJ(P ||Q) =
1

16
Ψ(P ||Q)− 1

8
J(P ||Q),(4.2)

DΨh(P ||Q) =
1

16
Ψ(P ||Q)− h(P ||Q),(4.3)

DΨI(P ||Q) =
1

16
Ψ(P ||Q)− I(P ||Q),(4.4)

DΨ∆(P ||Q) =
1

16
Ψ(P ||Q)− 1

4
∆(P ||Q),(4.5)

DTJ(P ||Q) = T (P ||Q)− 1

8
J(P ||Q),(4.6)

DTh(P ||Q) = T (P ||Q)− h(P ||Q),(4.7)

DTI(P ||Q) = T (P ||Q)− I(P ||Q),(4.8)

DT∆(P ||Q) = T (P ||Q)− 1

4
∆(P ||Q),(4.9)

DJh(P ||Q) =
1

8
J(P ||Q)− h(P ||Q),(4.10)

DJI(P ||Q) =
1

8
J(P ||Q)− I(P ||Q),(4.11)

DJ∆(P ||Q) =
1

8
J(P ||Q)− 1

4
∆(P ||Q),(4.12)

DhI(P ||Q) = h(P ||Q)− I(P ||Q),(4.13)

Dh∆(P ||Q) = h(P ||Q)− 1

4
∆(P ||Q),(4.14)
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and

DI∆(P ||Q) = I(P ||Q)− 1

4
∆(P ||Q).(4.15)

In the examples below we shall show the convexity of the above measures (4.1)-(4.15). In
view of Theorem 2.1 and Examples 2.1-2.6, it is sufficient to show the nonnegativity of the
second order derivative of generating function in each case.

Example 4.1.We can write

DΨT (P ||Q) =
1

16
Ψ(P ||Q)− T (P ||Q) =

n∑
i=1

qifΨT

(
pi

qi

)
,

where

fΨT (x) =
1

16
fΨ (x)− fT (x) , x > 0.

Moreover, we have

f ′′ΨT (x) =
1

16
f ′′Ψ (x)− f ′′T (x)(4.16)

=
x3 + 1

8x3
− x2 + 1

4x2(x + 1)
=

(x− 1)2(x2 + x + 1)

8x3(x + 1)
> 0, ∀x > 0,

wheref ′′Ψ (x) andf ′′T (x) are as given by (2.15) and (2.21) respectively.

Example 4.2.We can write

DΨJ(P ||Q) =
1

16
Ψ(P ||Q)− 1

8
J(P ||Q) =

n∑
i=1

qifΨJ

(
pi

qi

)
,

where

fΨJ(x) =
1

16
fΨ (x)− 1

8
fJ (x) , x > 0.

Moreover, we have

f ′′ΨJ(x) =
1

16
f ′′Ψ (x)− 1

8
f ′′J (x)(4.17)

=
1

8

(
x3 + 1

x3
− x + 1

x2

)
=

(x− 1)2(x + 1)

8x3
> 0, ∀x > 0,

wheref ′′Ψ (x) andf ′′J (x) are as given by (2.15) and (2.17) respectively.

Example 4.3.We can write

DΨh(P ||Q) =
1

16
Ψ(P ||Q)− h(P ||Q) =

n∑
i=1

qifΨh

(
pi

qi

)
,

where

fΨh(x) =
1

16
fΨ (x)− fh (x) , x > 0.

Moreover, we have

f ′′Ψh(x) =
1

16
f ′′Ψ (x)− f ′′h (x)(4.18)

=
1

4

(
x3 + 1

2x3
− 1

x
√

x

)
=

(x
√

x− 1)
2

8x3
> 0, ∀x > 0,

wheref ′′Ψ (x) andf ′′h (x) are as given by (2.15) and (2.11) respectively.
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Example 4.4.We can write

DΨI(P ||Q) =
1

16
Ψ(P ||Q)− I(P ||Q) =

n∑
i=1

qifΨI

(
pi

qi

)
,

where

fΨI(x) =
1

16
fΨ (x)− fI (x) , x > 0.

Moreover, we have

f ′′ΨI(x) =
1

16
f ′′Ψ (x)− f ′′I (x)(4.19)

=
1

2x

(
x3 + 1

4x2
− 1

x + 1

)
=

(x− 1)2(x2 + 3x + 1)

8x3(x + 1)
> 0, ∀x > 0,

wheref ′′Ψ (x) andf ′′I (x) are as given by (2.15) and (2.19) respectively.

Example 4.5.We can write

DΨ∆(P ||Q) =
1

16
Ψ(P ||Q)− 1

4
∆(P ||Q) =

n∑
i=1

qifΨ∆

(
pi

qi

)
,

where

fΨ∆(x) =
1

4

(
1

4
fΨ (x)− f∆ (x)

)
, x > 0.

Moreover, we have

f ′′Ψ∆(x) =
1

4

(
1

4
f ′′Ψ (x)− f ′′∆ (x)

)
=

x3 + 1

8x3
− 2

(x + 1)3
(4.20)

=
(x− 1)2(x4 + 5x3 + 12x2 + 5x + 1)

8x3(x + 1)3
> 0, ∀x > 0,

wheref ′′Ψ (x) andf ′′∆ (x) are as given by (2.15) and (2.13) respectively.

Example 4.6.We can write

DTJ(P ||Q) = T (P ||Q)− 1

8
J(P ||Q) =

n∑
i=1

qifTJ

(
pi

qi

)
,

where

fTJ(x) = fT (x)− 1

8
fJ (x) , x > 0.

Moreover, we have

f ′′TJ(x) = f ′′T (x)− 1

8
f ′′J (x)(4.21)

=
x2 + 1

4x2(x + 1)
− x + 1

8x2
=

(x− 1)2

8x2(x + 1)
> 0, ∀x > 0,

wheref ′′T (x) andf ′′J (x) are as given by (2.21) and (2.17) respectively.

Example 4.7.We can write

DTh(P ||Q) = T (P ||Q)− h(P ||Q) =
n∑

i=1

qifTh

(
pi

qi

)
,

where
fTh(x) = fT (x)− fh (x) , x > 0.
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Moreover, we have

f ′′Th(x) = f ′′T (x)− f ′′h (x) =
1

4

(
x2 + 1

x2(x + 1)
− 1

x
√

x

)
(4.22)

=
(
√

x− 1)
2
(x +

√
x + 1)

4x2(x + 1)
> 0, ∀x > 0,

wheref ′′T (x) andf ′′h (x) are as given by (2.21) and (2.11) respectively.

Example 4.8.We can write

DTI(P ||Q) = T (P ||Q)− I(P ||Q) =
n∑

i=1

qifTI

(
pi

qi

)
,

where
fTI(x) = fT (x)− fI (x) , x > 0.

Moreover, we have

f ′′TI(x) = f ′′T (x)− f ′′I (x)(4.23)

=
x2 + 1

4x2(x + 1)
− 1

2x(x + 1)
=

(x− 1)2

4x2(x + 1)
> 0, ∀x > 0,

wheref ′′T (x) andf ′′I (x) are as given by (2.21) and (2.19) respectively.

Example 4.9.We can write

DT∆(P ||Q) = T (P ||Q)− 1

4
∆(P ||Q) =

n∑
i=1

qifT∆

(
pi

qi

)
,

where

fT∆(x) = fT (x)− 1

4
f∆ (x) , x > 0.

Moreover, we have

f ′′T∆(x) = f ′′T (x)− 1

4
f ′′∆ (x) =

x2 + 1

4x2(x + 1)
− 8

(x + 1)3
(4.24)

=
(x− 1)2(x2 + 4x + 1)

4x2(x + 1)3
> 0, ∀x > 0,

wheref ′′T (x) andf ′′∆ (x) are as given by (2.21) and (2.13) respectively.

Example 4.10.We can write

DJh(P ||Q) =
1

8
J(P ||Q)− h(P ||Q) =

n∑
i=1

qifJh

(
pi

qi

)
,

where

fJh(x) =
1

8
fJ (x)− fh (x) , x > 0.

Moreover, we have

f ′′Jh(x) =
1

8
f ′′J (x)− f ′′h (x)(4.25)

=
x + 1

8x2
− 1

4x
√

x
=

(
√

x− 1)
2

8x2
> 0, ∀x > 0,

wheref ′′J (x) andf ′′h (x) are as given by (2.17) and (2.11) respectively.
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Example 4.11.We can write

DJI(P ||Q) =
1

8
J(P ||Q)− I(P ||Q) =

n∑
i=1

qifJI

(
pi

qi

)
,

where

fJI(x) =
1

8
fJ (x)− fI (x) , x > 0.

Moreover, we have

f ′′JI(x) =
1

8
f ′′J (x)− f ′′I (x)(4.26)

=
x + 1

8x2
− 1

2x(x + 1)
=

(x− 1)2

8x2(x + 1)
> 0, ∀x > 0,

wheref ′′J (x) andf ′′I (x) are as given by (2.17) and (2.19) respectively.

Example 4.12.We can write

DJ∆(P ||Q) =
1

8
J(P ||Q)− 1

4
∆(P ||Q) =

n∑
i=1

qifJ∆

(
pi

qi

)
,

where

fJ∆(x) =
1

8
fJ (x)− 1

4
f∆ (x) , x > 0.

Moreover, we have

f ′′J∆(x) =
1

8
f ′′J (x)− 1

4
f ′′∆ (x) =

x + 1

8x2
− 2

(x + 1)3
(4.27)

=
(x− 1)2(x2 + 6x + 1)

8x2(x + 1)3
> 0, ∀x > 0,

wheref ′′J (x) andf ′′∆ (x) are as given by (2.17) and (2.13) respectively.

Example 4.13.We can write

DhI(P ||Q) = h(P ||Q)− I(P ||Q) =
n∑

i=1

qifhI

(
pi

qi

)
,

where
fhI(x) = fh (x)− fI (x) , x > 0.

Moreover, we have

f ′′hI(x) = f ′′h (x)− f ′′I (x)(4.28)

=
1

4x
√

x
− 1

2x(x + 1)
=

(
√

x− 1)2

4x3/2(x + 1)
> 0, ∀x > 0,

wheref ′′h (x) andf ′′I (x) are as given by (2.11) and (2.19) respectively.

Example 4.14.We can write

Dh∆(P ||Q) = h(P ||Q)− 1

4
∆(P ||Q) =

n∑
i=1

qifh∆

(
pi

qi

)
,

where

fh∆(x) = fh (x)− 1

4
f∆ (x) , x > 0.
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Moreover, we have

f ′′h∆(x) = f ′′h (x)− 1

4
f ′′∆ (x) =

1

4x
√

x
− 2

(x + 1)3
(4.29)

=
(
√

x− 1)
2
[
(
√

x + 1)
2
(x + 1) + 4x

]
4x3/2(x + 1)3

> 0, ∀x > 0,

wheref ′′h (x) andf ′′∆ (x) are as given by (2.11) and (2.13) respectively.

Example 4.15.We can write

DI∆(P ||Q) = I(P ||Q)− 1

4
∆(P ||Q) =

n∑
i=1

qifI∆

(
pi

qi

)
,

where

fI∆(x) = fI (x)− 1

4
f∆ (x) , x > 0.

Moreover, we have

f ′′I∆(x) = f ′′I (x)− 1

4
f ′′∆ (x)(4.30)

=
1

2x(x + 1)
− 2

(x + 1)3
=

(x− 1)2

2x(x + 1)3
> 0, ∀x > 0,

wheref ′′I (x) andf ′′∆ (x) are as given by (2.19) and (2.13) respectively.

Thus in view of Theorem 2.1 and Examples 4.1-4.15, we can say that thedivergence mea-
suresgiven in (4.1)-(4.15) are allnonnegativeandconvexin the pair of probability distributions
(P, Q) ∈ Γn × Γn.

5. REFINEMENT I NEQUALITIES

In view of (3.1), the following inequalities are obvious:

DΨT (P ||Q) 6 DΨJ(P ||Q) 6 DΨh(P ||Q) 6 DΨI(P ||Q) 6 DΨ∆(P ||Q),(5.1)

DTJ(P ||Q) 6 DTh(P ||Q) 6 DTI(P ||Q) 6 DT∆(P ||Q),(5.2)

DJh(P ||Q) 6 DJI(P ||Q) 6 DJ∆(P ||Q)(5.3)

and

DhI(P ||Q) 6 Dh∆(P ||Q).(5.4)

In view of the relation (1.10), we have the following equality:

(5.5) DJI(P ||Q) =
1

2
DTI(P ||Q) = DTJ(P ||Q).

In this section our aim is to establish refinement inequalities improving the one given in (3.1).
This refinement is given in the following theorem.

Theorem 5.1.The following inequalities hold:

DI∆(P ||Q) 6
2

3
Dh∆(P ||Q) 6 2DhI(P ||Q) 6 DTJ(P ||Q),(5.6)

DI∆(P ||Q) 6
2

3
Dh∆(P ||Q) 6

1

2
DJ∆(P ||Q) 6

1

3
DT∆(P ||Q) 6 DTJ(P ||Q),(5.7)
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and

DTJ(P ||Q) 6
2

3
DTh(P ||Q) 6 2DJh(P ||Q) 6

1

6
DΨ∆(P ||Q)(5.8)

6
1

5
DΨI(P ||Q) 6

2

9
DΨh(P ||Q) 6

1

4
DΨJ(P ||Q) 6

1

3
DΨT (P ||Q),

The proofs of the inequalities (5.6)-(5.8) are based on the following propositions.

Proposition 5.2. We have

(5.9) DI∆(P ||Q) 6
2

3
Dh∆(P ||Q).

Proof. Let us consider

gI∆_h∆(x) =
f ′′I∆(x)

f ′′h∆(x)
=

2
√

x (x− 1)2

(x + 1)3 − 8 (
√

x)
3 , x 6= 1

=
2
√

x (
√

x + 1)
2

(
√

x + 1)
2
(x + 1) + 4x

for all x ∈ (0,∞), wheref ′′I∆(x) andf ′′h∆(x) are as given by (4.30) and (4.29) respectively.
Calculating the first order derivative of the functiongI∆_h∆(x) with respect tox, one gets

g′I∆_h∆(x) = −
(
√

x + 1)
(
x5/2 − 2x3/2 + 3x2 + 2x− 3

√
x− 1

)
√

x [x2 + 6x + 2
√

x (x + 1) + 1]
2(5.10)

= − (x− 1)(x + 1) (x + 4
√

x + 1)
√

x [x2 + 6x + 2
√

x (x + 1) + 1]
2

{
> 0, x < 1

< 0, x > 1
.

In view of (5.10) we conclude that the functiongI∆_h∆(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.11) M = sup
x∈(0,∞)

gI∆_h∆(x) = gI∆_h∆(1) =
2

3
.

By the application of (2.3) with (5.11) we get (5.9).

Proposition 5.3. We have

(5.12) Dh∆(P ||Q) 6 3DhI(P ||Q).

Proof. Let us consider

gh∆_hI(x) =
f ′′h∆(x)

f ′′hI(x)
=

(x + 1) (
√

x + 1)
2
+ 4x

(x + 1)2
, x ∈ (0,∞),

wheref ′′h∆(x) andf ′′hI(x) are as given by (4.29) and (4.28) respectively.
Calculating the first order derivative of the functiongh∆_hI(x) with respect tox, one gets

g′h∆_hI(x) = −4x3/2 + x2 − 4
√

x− 1
√

x (x + 1)3(5.13)

= −(x− 1) (x + 4
√

x + 1)
√

x (x + 1)3

{
> 0, x < 1

< 0, x > 1
.
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In view of (5.13) we conclude that the functiongh∆_hI(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.14) M = sup
x∈(0,∞)

gh∆_hI(x) = gh∆_hI(1) = 3.

By the application of (2.3) with (5.14) we get (5.12).

Remark 5.1. In view of Propositions 5.2 and 5.3, and the inequality (3.1) we conclude that

(5.15) I(P ||Q) 6
2

3
h(P ||Q) +

1

12
∆(P ||Q) 6 h(P ||Q).

Proposition 5.4. We have

(5.16) DhI(P ||Q) 6
1

2
DTJ(P ||Q).

Proof. Let us consider

ghI_TJ(x) =
f ′′hI(x)

f ′′TJ(x)
=

2
√

x

(
√

x + 1)
2 , x ∈ (0,∞),

wheref ′′hI(x) andf ′′TJ(x) are as given by (4.28) and (4.21) respectively.
Calculating the first order derivative of the functionghI_TJ(x) with respect tox, one gets

(5.17) g′hI_TJ(x) = −
√

x− 1
√

x (
√

x + 1)
3

{
> 0, x < 1

< 0, x > 1
.

In view of (5.17), we conclude that the functionghI_TJ(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.18) M = sup
x∈(0,∞)

ghI_TJ(x) = ghI_TJ(1) =
1

2
.

By the application of (2.3) with (5.18) we get (5.16).

Remark 5.2. In view of Proposition 5.4 and the inequality (3.1) we conclude the following
inequality

(5.19) h(P ||Q) 6
1

16
J(P ||Q) +

1

2
I(P ||Q) 6

1

8
J(P ||Q).

Combining the inequalities (5.9), (5.12) and (5.16) we get (5.6).

Proposition 5.5. We have

(5.20) Dh∆(P ||Q) 6
3

4
DJ∆(P ||Q).

Proof. Let us consider

gh∆_J∆(x) =
f ′′h∆(x)

f ′′J∆(x)
=

2
√

x
[
(x + 1)3 − 8x3/2

]
(x− 1)2(x2 + 6x + 1)

, x 6= 1

=
2
√

x
[
(
√

x + 1)
2
(x + 1) + 4x

]
(
√

x + 1)
2
(x2 + 6x + 1)

,

for all x ∈ (0,∞), wheref ′′h∆(x) andf ′′J∆(x) are as given by (4.29) and (4.27) respectively.
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Calculating the first order derivative of the functiongh∆_J∆(x) with respect tox, one gets

g′h∆_J∆(x) = − 1
√

x (
√

x + 1)
3
(x2 + 6x + 1)2

[
3x4 − 4x3 − 18x2 − 12x− 1(5.21)

+
√

x
(
x4 + 12x3 + 18x2 + 4x− 3

)]
= −(

√
x− 1) (x + 1)2 (x2 + 4x

√
x + 14x + 4

√
x + 1)

√
x (
√

x + 1)
3
(x2 + 6x + 1)2

{
> 0, x < 1

< 0, x > 1
.

In view of (5.21) we conclude that the functiongh∆_J∆(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.22) M = sup
x∈(0,∞)

gh∆_J∆(x) = gh∆_J∆(1) =
3

4
.

By the application of (2.3) with (5.22) we get (5.20).

Remark 5.3. In view of Proposition 5.5 and the inequality (3.1) we conclude the following
inequality

(5.23) h(P ||Q) 6
3

32
J(P ||Q) +

1

16
∆(P ||Q) 6

1

8
J(P ||Q).

Proposition 5.6. We have

(5.24) DJ∆(P ||Q) 6
2

3
DT∆(P ||Q).

Proof. Let us consider

gJ∆_T∆(x) =
f ′′J∆(x)

f ′′T∆(x)
=

x2 + 6x + 1

2(x2 + 4x + 1)
, x ∈ (0,∞),

wheref ′′J∆(x) andf ′′T∆(x) are as given by (4.27) and (4.24) respectively.
Calculating the first order derivative of the functiongJ∆_T∆(x) with respect tox, one gets

(5.25) g′J∆_T∆(x) = −(x− 1)(x + 1)

(x2 + 4x + 1)2

{
> 0, x < 1

< 0, x > 1
.

In view of (5.25) we conclude that the functiongJ∆_T∆(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.26) M = sup
x∈(0,∞)

gJ∆_T∆(x) = gJ∆_T∆(1) =
2

3
.

By the application of (2.3) with (5.26) we get (5.24).

Proposition 5.7. We have

(5.27) DT∆(P ||Q) 6 3DTJ(P ||Q).

Proof. Let us consider

gT∆_TJ(x) =
f ′′T∆(x)

f ′′TJ(x)
=

2(x2 + 4x + 1)

(x + 1)2
, x ∈ (0,∞),

wheref ′′T∆(x) andf ′′TJ(x) are as given by (4.24) and (4.21) respectively.
Calculating the first order derivative of the functiongT∆_TJ(x) with respect tox, one gets

(5.28) g′T∆_TJ(x) = −4(x− 1)

(x + 1)3

{
> 0, x < 1

< 0, x > 1
.
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In view of (5.28) we conclude that the functiongT∆_TJ(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.29) M = sup
x∈(0,∞)

gT∆_TJ(x) = gT∆_TJ(1) = 3.

By the application of (2.3) with (5.29) we get (5.27).

Remark 5.4. In view of Propositions 5.6 and 5.7, and the inequality (3.1) we conclude the
following inequality

(5.30)
1

8
J(P ||Q) 6

2

3
T (P ||Q) +

1

12
∆(P ||Q) 6 T (P ||Q).

Combining the inequalities (5.9), (5.20), (5.24) and (5.27), we get (5.7).

Proposition 5.8. We have

(5.31) DTJ(P ||Q) 6
2

3
DTh(P ||Q).

Proof. Let us consider

gTJ_Th(x) =
f ′′TJ(x)

f ′′Th(x)
=

(x− 1)2

2 [x2 + 1− 2
√

x (x + 1)]
, x 6= 1

=
(
√

x + 1)
2

2 (x +
√

x + 1)
,

for all x ∈ (0,∞), wheref ′′TJ(x) andf ′′Th(x) are as given by (4.21) and (4.22) respectively.
Calculating the first order derivative of the functiongTJ_Th(x) with respect tox, one gets

(5.32) g′TJ_Th(x) = −(
√

x− 1) (
√

x + 1)

4
√

x (x +
√

x + 1)

{
> 0, x < 1

< 0, x > 1
.

In view of (5.32) we conclude that the functiongTJ_Th(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.33) M = sup
x∈(0,∞)

gTJ_Th(x) = gTJ_Th(1) =
2

3
.

By the application of (2.3) with (5.33) we get (5.31).

Proposition 5.9. We have

(5.34) DTh(P ||Q) 6 3DJh(P ||Q).

Proof. Let us consider

gTh_Jh(x) =
f ′′Th(x)

f ′′Jh(x)
=

2 [x2 + 1−
√

x (x + 1)]

(x + 1) (
√

x− 1)
2 , x 6= 1

=
2(x +

√
x + 1)

x + 1
,

for all x ∈ (0,∞), wheref ′′Th(x) andf ′′Jh(x) are as given by (4.22) and (4.25) respectively.
Calculating the first order derivative of the functiongTh_Jh(x) with respect tox, one gets

(5.35) g′Th_Jh(x) = − x− 1
√

x (x + 1)2

{
< 0, x < 1

< 0, x > 1
.
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In view of (5.35) we conclude that the functiongTh_Th(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.36) M = sup
x∈(0,∞)

gTh_Jh(x) = gTh_Jh(1) = 3.

By the application of (2.3) with (5.36) we get (5.34).

Remark 5.5. In view of Propositions 5.8 and 5.9, and the inequality (3.1) we conclude the
following inequality

(5.37) h(P ||Q) 6
T (P ||Q) + 2h(P ||Q)

3
6

1

8
J(P ||Q).

Proposition 5.10.We have

(5.38) DJh(P ||Q) 6
1

12
DΨ∆(P ||Q).

Proof. Let us consider

gJh_Ψ∆(x) =
f ′′Jh(x)

f ′′Ψ∆(x)
=

x (
√

x− 1)
2
(x + 1)3

(x− 1)2 (x4 + 5x3 + 12x2 + 5x + 1)
, x 6= 1

=
x(x + 1)3

(
√

x + 1)
2
(x4 + 5x3 + 12x2 + 5x + 1)

.

for all x ∈ (0,∞), wheref ′′Jh(x) andf ′′Ψ∆(x) are as given by (4.25) and (4.20) respectively.
Calculating the first order derivative of the functiongJh_Ψ∆(x) with respect tox, one gets

g′Jh_Ψ∆(x) = − (
√

x− 1) (x + 1)2

(
√

x + 1)
3
(x4 + 5x3 + 12x2 + 5x + 1)2

×(5.39)

×
[
x5 + 5x4 + 6x2(

√
x− 1)2 + 5x + 1

+
√

x
(
x4 + 3x3 + 4x2 + 3x + 1

)]
.

From (5.39), one gets

(5.40) g′Jh_Ψ∆(x)

{
> 0, x < 1

< 0, x > 1
.

In view of (5.40) we conclude that the functiongJh_Ψ∆(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.41) M = sup
x∈(0,∞)

gJh_Ψ∆(x) = gJh_Ψ∆(1) =
1

12
.

By the application of (2.3) with (5.41) we get (5.38).

Remark 5.6. In view of Proposition 5.10, and the inequality (3.1) we conclude the following
inequality

(5.42)
3

2
J(P ||Q) +

1

4
∆(P ||Q) 6

1

16
Ψ(P ||Q) + 12h(P ||Q).

Proposition 5.11.We have

(5.43) DΨ∆(P ||Q) 6
6

5
DΨI(P ||Q).
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Proof. Let us consider

gΨ∆_ΨI(x) =
f ′′Ψ∆(x)

f ′′ΨI(x)
=

x4 + 5x3 + 2x2 + 5x + 1

(x + 1)2(x2 + 3x + 1)
, x ∈ (0,∞),

wheref ′′Ψ∆(x) andf ′′ΨI(x) are as given by (4.20) and (4.19) respectively.
Calculating the first order derivative of the functiongΨ∆_ΨI(x) with respect tox, one gets

(5.44) g′Ψ∆_ΨI(x) = −4x(x− 1)(2x + 1)(x + 2)

(x + 1)3(x2 + 3x + 1)2

{
> 0, x < 1

< 0, x > 1
.

In view of (5.44) we conclude that the functiongΨ∆_ΨI(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.45) M = sup
x∈(0,∞)

gΨ∆_ΨI(x) = gΨ∆_ΨI(1) =
6

5
.

By the application of (2.3) with (5.45) we get (5.43).

Remark 5.7. In view of Proposition 5.11, and the inequality (3.1) we conclude the following
inequality

(5.46) I(P ||Q) 6
1

6

[
1

16
Ψ(P ||Q) +

5

4
∆(P ||Q)

]
6

1

16
Ψ(P ||Q).

Proposition 5.12.We have

(5.47) DΨI(P ||Q) 6
10

9
DΨh(P ||Q).

Proof. Let us consider

gΨI_Ψh(x) =
f ′′ΨI(x)

f ′′Ψh(x)
=

(x− 1)2(x2 + 3x + 1)

(x + 1) (x
√

x− 1)
2 , x 6= 1

=
(
√

x + 1)
2
(x2 + 3x + 1)

(x + 1) (x +
√

x + 1)
2 .

for all x ∈ (0,∞), wheref ′′ΨI(x) andf ′′Ψh(x) are as given by (4.19) and (4.18) respectively.
Calculating the first order derivative of the functiongΨI_Ψh(x) with respect tox, one gets

(5.48) g′ΨI_Ψh(x) = − (x− 1) (3x +
√

x + 3)

(x +
√

x + 1)
3
(x + 1)2

{
> 0, x < 1

> 0, x > 1
.

In view of (5.48) we conclude that the functiongΨI_Ψh(x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.49) M = sup
x∈(0,∞)

gΨI_Ψh(x) = gΨI_Ψh(1) =
10

9
.

By the application of (2.3) with (5.49) we get (5.47).

Remark 5.8. In view of Proposition 5.12, and the inequality (3.1) we conclude the following
inequality

(5.50) h(P ||Q) 6
1

10

[
1

16
Ψ(P ||Q) + 9I(P ||Q)

]
6

1

16
Ψ(P ||Q).
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Proposition 5.13.We have

(5.51) DΨh(P ||Q) 6
9

8
DΨJ(P ||Q).

Proof. Let us consider

gΨh_ΨJ(x) =
f ′′Ψh(x)

f ′′ΨJ(x)
=

(x +
√

x + 1)
2

(
√

x + 1)2(x + 1)
, x ∈ (0,∞),

wheref ′′Ψh(x) andf ′′ΨJ(x) are as given by (4.18) and (4.17) respectively.
Calculating the first order derivative of the functiongΨh_ΨJ(x) with respect tox, one gets

(5.52) g′Ψh_ΨJ(x) = −(
√

x− 1) (x +
√

x + 1)

(
√

x + 1)3(x + 1)2

{
> 0, x < 1

< 0, x > 1

In view of (5.52) we conclude that the functiongΨh_ΨJ(x) is monotonically increasing in
x ∈ (0, 1) and decreasing inx ∈ (1,∞), and hence

(5.53) M = sup
x∈(0,∞)

gΨh_ΨJ(x) = gΨh_ΨJ(1) =
9

8
.

By the application of (2.3) with (5.53) we get (5.51).

Remark 5.9. In view of Proposition 5.13, and the inequality (3.1) we conclude the following
inequality

(5.54)
1

8
J(P ||Q) 6

1

9

[
1

16
Ψ(P ||Q) + 8h(P ||Q)

]
6

1

16
Ψ(P ||Q).

Proposition 5.14.We have

(5.55) DΨJ(P ||Q) 6
4

3
DΨT (P ||Q).

Proof. Let us consider

gΨJ_ΨT (x) =
f ′′ΨJ(x)

f ′′ΨT (x)
=

(x + 1)2

x2 + x + 1
, x ∈ (0,∞),

wheref ′′ΨJ(x) andf ′′ΨT (x) are as given by (4.17) and (4.16) respectively.
Calculating the first order derivative of the functiongΨJ_ΨT (x) with respect tox, one gets

(5.56) g′ΨJ_ΨT (x) = −(x− 1)(x + 1)

(x2 + x + 1)2

{
> 0, x < 1

< 0, x > 1
.

In view of (5.56) we conclude that the functiongΨJ_ΨT (x) is increasing inx ∈ (0, 1) and
decreasing inx ∈ (1,∞), and hence

(5.57) M = sup
x∈(0,∞)

gΨJ_ΨT (x) = gΨJ_ΨT (1) =
4

3
.

By the application of (2.3) with (5.57) we get (5.55).

Remark 5.10. In view of Proposition 5.14, and the inequality (3.1) we conclude the following
inequality

(5.58) T (P ||Q) 6
1

32

[
1

2
Ψ(P ||Q) + 3J(P ||Q)

]
6

1

16
Ψ(P ||Q).

Combining (5.31), (5.34), (5.38), (5.43), (5.47), (5.51) and (5.55) we get (5.8). Thus the
combination of the Propositions 5.2-5.14 completes the proof of the Theorem 5.1.
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6. FINAL COMMENTS

(i) In view of inequalities (5.15), (5.19), (5.24), (5.31), (5.38) and (5.58), we have the
following improvement over the inequality (3.1):

1

4
∆(P ||Q) 6 I(P ||Q) 6

2

3
h(P ||Q) +

1

12
∆(P ||Q) 6 h(P ||Q)(6.1)

6
1

16
J(P ||Q) +

1

2
I(P ||Q) 6

1

3
T (P ||Q) +

2

3
h(P ||Q)

6
1

8
J(P ||Q) 6

2

3
T (P ||Q) +

1

12
∆(P ||Q) 6 T (P ||Q)

6
1

32

[
1

2
Ψ(P ||Q) + 3J(P ||Q)

]
6

1

16
Ψ(P ||Q).

(ii) For simplicity, if we write, the divergence measures given in (4.1)-(4.15) byD1 −D15

respectively, then the Theorem 5.1 resumes in the following inequalities:

(a) D15 6 2
3
D14 6 2D13 6 D6;

(b) D15 6 2
3
D14 6 1

2
D12 6 1

3
D9 6 D6;

(c) D6 6 2
3
D7 6 2D10 6 1

6
D5 6 1

5
D4 6 2

9
D3 6 1

4
D2 6 1

3
D1.

(iii) Following the similar lines of the propositions given in section 5, we can easily prove
the following inequality,

(6.2) DΨT (P ||Q) 6
1

64
D∗(P ||Q).

whereD∗(P ||Q) is as given by (3.24).
The inequality (6.2) together with Theorem 5.1 gives us the following improvement

over the inequalities (3.22) and (3.23):

(6.3) DJ∆(P ||Q) 6
1

2
DΨJ(P ||Q) 6

2

3
DΨT (P ||Q) 6

1

96
D∗(P ||Q).

or equivalently,

D12 6
1

2
D2 6

2

3
D1 6

1

96
D∗.

From the inequality (6.3) and item (ii)(b)-(c), we observe that there are manydi-
vergence measuresin betweenDJ∆(P ||Q) andDΨJ(P ||Q). Thus the inequality (6.3)
improves the results due to Dragomir et al. [6].

(iv) The inequalities (5.42) and (5.54) can be written as

1

8
J(P ||Q) 6

1

12

[
1

16
Ψ(P ||Q) + 12h(P ||Q)− 1

4
∆(P ||Q)

]
(6.4)

6
1

9

[
1

16
Ψ(P ||Q) + 8h(P ||Q)

]
6

1

16
Ψ(P ||Q).

The middle inequalities of (6.4) follow in view of (5.7) and (5.8).
(v) The inequalities (5.50) and (5.54) can be written as

h(P ||Q) 6
1

10

[
1

16
Ψ(P ||Q) + 9I(P ||Q)

]
(6.5)

6
1

9

[
1

16
Ψ(P ||Q) + 8h(P ||Q)

]
6

1

16
Ψ(P ||Q).
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