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2 INDER JEET TANEJA

1. INTRODUCTION
Let

Fn = {P = (pl>p2>"'apn)

pi>07ipi:1}7n>27

=1
be the set of all complete finite discrete probability distributions. FaPal) € T',,, the follow-
ing measures are well known in the literature on information theory and statistics:

¢ Hellinger Discrimination

n

(1) MPIIQ) = 1= BPIQ) = 5 3 (Vi — Vi
where
1.2 B(PIIQ) = Vi,

is the well-known Bhattacharyyal[tpefficient

e Triangular Discrimination

n

(1.3) APIQ) =2[1 ~W(Pl|Q) = 3 L9 P
i=1 4
where
—~ 2p;;
1.4 WPIQ) =)  ———
(1.4) (PllQ) ;pqu

is the well-knownrharmonic mean divergence

e Symmetric Chi-square Divergence

n

— a2 (p, )
1.5 ¥(PIQ) = C(PQ) +x(@QIIP) = 3 L)
where
a6 e -y Bl Sy

i=1 =1

is the well-knowny?—divergencgPearson[10]).

¢ J-Divergence

(L.7) JPIR) =3 (pi = a) ()

¢ Jensen-Shannon Divergence

(1.8) I(P||Q) = [Zpl( Z)+Zqi1n(pi+qi>

=1
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¢ Arithmetic-Geometric Mean Divergence

o =~ (pi+q; Di + qi
(1.9) TWM”_E;C7T>m<Am@)
After simplification, we can write
(1.10) J(P|Q) = 4[I(P[|Q) + T(P||Q)].

The measure$(P||Q), J(P||Q) andT'(P||Q) can be written as

(L.11) I(PI) = K(719) + K(QI1P)
(1.12) 1Pl = & (A5 2) 4 (@1 752)].
and

(113) 1(rlQ) = & (S5 r) v 1 (T3 e)].
where

(1.14) K(P||Q) = szlog()

is the well known Kullback-Leibler [9felative information

We call the measures given in (IL.1), (1.8), [1.5),](1]7),] (1.9) and](1.18yrametric diver-
gence measuresince they are symmetric with respect to the probability distributidrand
(). The measurg (1.1) is due to Hellinger [7]. The meadure (1.5) is due to Dragomir(€t al. [6],
and recently has been studied by Tanégje [15]. The measutfe (1.7) is due to Jeifreys [8], and
later Kullback-Leibler[[9] studied it extensively. Some times it is called as Jeffreys-Kullback-
Leibler’s J-divergence The measurg (1].8) is due to Sibsonl/[11], and later Burbea and Rao
[2], 3] studied it extensively. Initially, it was called agormation radius but now a days it is
famous aslensen-Shannon divegenckhe measure (1).9) is due to Tanejal[15], and is known
by arithmetic-geometric mean divergendeor one parametric generalizations of the measures
given above refer to Taneja [17,/18]. A general study of information and divergence measures
and their generalizations can be seen in Taneja [12, 13, 14].

In this paper our aim is to obtain an inequality and its improvement in terms of above sym-
metric divergence measures. This we shall do by the application of some properties of Csiszar’s
f—divergence

2. CSISzAR’s f—DIVERGENCE

Given a functionf : [0,00) — R, thef-divergencaneasure introduced by Csiszar’s [4] is
given by

(2.1) Cy(PIIQ) = Zqz ().

forall P,Q €T,.
The following theorem is well known in the literature.

Theorem 2.1.(Csiszar’s|[4, 5])If the functionf is convex and normalized, i.¢(1) = 0, then
the f—divergence(s(P||()) is nonnegative and convex in the pair of probability distribution
(P,Q) €T, x I,..
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Recently, Tanejel [16, 18] established the following property of the medsufe (2.1).

Theorem 2.2.Let f1, f» : I C R, — R two generating mappings are normalized, ig(1) =
f2(1) = 0 and satisfy the assumptions:

(i) f1 and f, are twice differentiable ofa, b);

(ii) there exists the real constants, M such thatn < M and

(2.2) m < i:(x) <M, fi(z) >0, Vo € (a,b),
5 ()

then we have the inequalities:

(2.3) m Cp,(Pl|Q) < Cp(Pl|Q) < M Cp,(P[|Q).
Proof. Let us consider the functions, (-) andn,, () given by

(2.4) (@) = fi(z) —m fa(z),

and

(2.5) mu(x) = M fo(x) = fi(z),

respectively, wheren and M are as given by (2]2).

Since fi(x) and f,(z) are normalized, i.e.f;(1) = f2(1) = 0, thenn,,(-) andn,,(-) are
also normalized, i.en,,(1) = 0 andn,,(1) = 0. Also, the functionsf,(z) and f(x) are twice
differentiable. Then in view of (2]2), we have

9) tte) = 1) = f3() = £0) (553 ) 0.
and
@) dhata) = 1 £500) = 110 = s (- £ >

forall z € (r, R).

In view of (2.6) and[(2]7), we can say that the functigng-) andn,,(-) given by [2.4) and
(2.9) respectively, are convex ¢n R).
According to Theorerpn 2|1, we have

(2.8) O, (PllQ) = Cri—mp(Pl|Q) = Cp (P[|Q) —m Cp,(Pl|Q) = 0,
and
(29) CWM(PHQ) = CMfz—fl(pHQ) =M sz(PHQ) - Cfl(PHQ) = 0.

Combining [2.8) and (2]9) we have the proof|of {2.8).

Now, based on Theorefn 2.1, we shall give below tbhavexityand nonnegativityof the
symmetric divergence measugggen in Section 1.

Example 2.1. (Hellinger discrimination). Let us consider
1

(2.10) filw) = S(VE =1, 2 € (0, 00),

in (2.1), then we havé';(P||Q) = h(P||Q), whereh(P||Q) is as given by (1]1).
Moreover,
VT —1

fi(x) = BN
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and
(2.11) V(x) = 4;/5.

Thus we hav¢}/(x) > 0 for all z > 0, and hencef;(z) is strictly convex for all: > 0. Also,
we havef,(1) = 0. In view of this we can say that the Hellinger discrimination giver{ by (1.1)
is nonnegative and convex in the pair of probability distributiofs@)) € I',, x T',,.

Example 2.2. (Triangular discrimination). Let us consider
—1)?

(2.12) falw) = & - 1>

in (2.1), then we havé's(P||Q) = A(P||Q), whereA(P||Q) is as given by[ (1]3).

Moreover,

, z € (0,00),

, (x —1)(z +3)
fA(x> - (LIZ' + 1)2 ’
and
(2.13) " = 8
' alw) = (x +1)%

Thus we havgX(x) > 0 for all x > 0, and hencefa(x) is strictly convex for allz > 0.
Also, we havega (1) = 0. In view of this we can say that the triangular discrimination given by
(1.3) is nonnegative and convex in the pair of probability distributioRis)) € I',, x T',.

Example 2.3. (Symmetric chi-square divergence). Let us consider

(2.14) fale) = E= D@+ D

T

in (2.1), then we havé';(P||Q) = ¥(P||Q), where¥(P||Q) is as given by (1]5).

Moreover,

, z € (0,00),

(z—1)(22% +2+1)

fule) = e
and

3
(2.15) ") = w

Thus we havgy (xz) > 0forall z > 0, and hencefy(x) is strictly convex for alk: > 0. Also,
we havefy (1) = 0. In view of this we can say that the symmetric chi-square divergence given
by (1.5) is nonnegative and convex in the pair of probability distributighs)) € I',, x T,

Example 2.4. (J-divergence). Let us consider
(2.16) fr(x)=(r—1)Inz, z € (0,00),
in (2.1), then we havé';(P||Q) = J(P||Q), whereJ(P||Q) is as given by[ (1]7).

Moreover,
fr(x)=1—2"'+1Inx,
and

(2.17) 1y = 2

x?

Thus we haveg’/(xz) > 0 for all z > 0, and hencef,(x) is strictly convex for allz: > 0.
Also, we havef,(1) = 0. In view of this we can say that the J-divergence giver| by (1.7) is
nonnegative and convex in the pair of probability distributidf®sQ) € T',, x T',,.
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Example 2.5. (JS-divergence). Let us consider

x r+1 2
(2.18) f;(a:)—glnaﬂ— 5 In (x+1) , € (0,00),
in (2.1), then we have';(P||Q) = I(P]|Q), whereI (P||Q) is as given by[(1]8).
Moreover,
R 2z
f](x) - 2111 <Z’+1) )
and
(2.19) Vo) =
' 1= 2e(z+1)

Thus we have/(z) > 0 for all z > 0, and hencef;(z) is strictly convex for allz: > 0.
Also, we havef;(1) = 0. In view of this we can say that the JS-divergence giver by (1.8) is
nonnegative and convex in the pair of probability distributigfsQ) € I',, x T',,.

Example 2.6. (AG-Divergence). Let us consider

(2.20) friz) = (m ;F 1) In (5;—:;;) Lz € (0,00),
in (2.1), then we havé;(P||Q) = T(P||Q), whereT'(P||Q) is as given by[ (1]9).
Moreover,
fr(x) = }l [1 —z7'4+2In (Z;)] ,
and
PN o

Thus we haveg?.(z) > 0 for all x > 0, and hencefr(z) is strictly convex for alke > 0.
Also, we havefr(1) = 0. In view of this we can say that the AG-divergence giveri by (1.9) is
nonnegative and convex in the pair of probability distributiofs@) € I, x T,,.

3. INEQUALITIES AMONG THE MEASURES

In this section we shall apply the Theorém|2.2 to obtain inequalities among the measures
given in Section 1. We have considered only the symmetric measures given]in [(1.]1), (1.3),

€3, TDAL).

Theorem 3.1. The following inequalities among the divergence measures hold:

@Y AP < I(PIQ) < hPIIQ) < SI(PIQ) < T(PIQ) < - (PIIQ)

The proof of the above theorem is based on the following propositions, where we have proved
each part separately.

Proposition 3.2. The following inequality hold:

(32) LA(PIIQ) < 1(PIIQ)
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Proof. Let us consider

_ fi(@) _ (z+1)°
wheref/(z) and f (z) are as given by (2.19) and (2]13) respectively.
From (3.3), we have

x € (0,00),

(3.4) giaw) = T DEED {

20, ==
T <

1
<0, 1

1622

In view of (3.4), we conclude that the functign, () is decreasing in: € (0, 1) and increas-
inginz € (1,00), and hence
1

(3.5) m= sup gia(x)=gra(l) = —.
z€(0,00) 4

Applying the inequalitieq (2]3) for the measur&$P||Q) andI(P||Q) along with [3.5) we
get the required resuls

Proposition 3.3. The following inequality hold:
(3.6) I(P||Q) < h(P||Q).
Proof. Let us consider

_ fie) 2y

wheref/(z) andf; (x) are as given by (2.19) and (2]11) respectively.
From (3.7), we have

-1 >0, =<
38 / — X = 9 AN
( ) glh<x> \/E((L'—I— 1)2 {< 0, >

In view of (3.8), we conclude that the functigp, () is increasing inc € (0,1) and decreas-
inginz € (1,00), and hence

(3.9) M= sup gm(z)=gm(l) =1

x€(0,00)

Applying the inequalities| (2]3) for the measu®s||Q) and(P||Q) along with [3.9) we
get the required resuli

z € (0, 00),

1
1

Proposition 3.4. The following inequality hold:
1
(3.10) h(PIIQ) < S (PIIQ).

Proof. Let us consider

_ fi(x) _ Alw+1)

(311) th(iC) - }/{(I) - \/E )

wheref’/(z) andf; (x) are as given by (2.17) and (2]11) respectively.
From (3.11) we have

200 —1) [>0, z>1
3.12 ! = ’ :
( ) th(SL’) JZ\/E {< 0, r<1

z € (0,00),
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In view of (3.12), we conclude that the functign,(z) is decreasing in: € (0,1) and
increasing inr € (1, 00), and hence

(3.13) m= inf gs(z)=gsm(l)=8.

2€(0,00)

Applying the inequalities (2|3) for the measufgs||Q) and.J(P||Q) along with [3.1B) we
get the required resuli

Proposition 3.5. The following inequality hold:

1
(3.14) 3/ (PIIQ) S T(Pl|Q)-
Proof. Let us consider

(3.15) gsr(x) = ;Eg = 4;362—:_13 ,  x € (0,00),

wheref’/(z) and f7(x) are as given by (2.17) and (2]21) respectively.
From (3.1%) we have

, S—)(@+1) [>0, 2<
3.16 = —
( ) gJT(:E) (ZE2 + 1)2 < O, >

1
L
In view of (3.16) we conclude that the functign,(z) is increasing iz € (0,1) and de-
creasing int € (1, 00), and hence
(3.17) M= sup gyr(z) =gsr(1) =8.

z€(0,00)

Applying the inequality[(2]3) for the measuré$P||Q)) andT'(P||Q) along with [3.1}) we
get the required resuli

Proposition 3.6. The following inequality hold:

1
(3.18) T(P|Q) < 75 ¥(PIIQ):
Proof. Let us consider
(3.19) gra() = 20t D (g o)

() 8(x+1)(x3+ 1)

wheref/(x) and f{ () are as given by (2.21) and (2]15) respectively.
From (3.19) we have

(3.20) G (@) = —

(z—1)(z*+42+1) |>0, =<1
8(x +1)3(x2—x+1)2 |<0, 2>1

In view of (3.20) we conclude that the functigf () is increasing inc € (0,1) and de-
creasing int € (1, 00), and hence

1
(3.21) M = sup gre(z)=gre(l) = —.
z€(0,00) 16

Applying the inequality[(2]3) for the measur&$P||Q) and ¥(P||Q) along with [3.21) we
get the required resuli
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The proof of the inequalities given if (3.1) follows by combining the results giveh i (3.2),
(3:9), (3:1D), 5.14) and (3:1.8) respectively.

Dragomir et al. [[6] proved the following two inequalities involving the measyres (1.3), (1.5)

and [1.7):

(3.22) 0< SI(PIQ) ~ APQ) < 5 D(PIQ),
and
(3.23) 0< SU(PIIQ) — J(PIIQ) < £ D°(P|Q),
where

* - (pi — @)
3.24 D*(P = .
(3.24) (PllQ) 223 =7

In the following section we shall improve the inequalities giver{in](3.1). An improvement
over the inequalities (3.22) and (3]23) along with their unification is also presented.

4. DIFFERENCE OF DIVERGENCE MEASURES
Let us consider the followingonnegativaifferences:
1

@1) Dur(PlIQ) = 15 ¥(PIIQ) ~ T(PI|Q)
(4.2) Duy(PIIQ) = - ¥(PIIQ) — SJ(PIQ),
@3) Dun(PIIQ) = - (PlQ) ~ h(P|Q),
(4.9 Dur(PIIQ) = 1, ¥(PIIQ) - I(PlQ),
(45) Dua(PIIQ) = LU (PIQ) - 7A(PIQ),
(@6) Dry(PIIQ) = T(PI|@) - é(PIIQ),
@) Dr(PlIQ) = T(PIQ) — h(P||@)
@8) Dr(PIQ) = T(PQ) = (Pl
(@9) Dra(PllQ) = T(PIIQ) - {AP]Q),
(4.10) Du(PlQ) = SI(PIIQ) ~ HPIQ),
(@11) D(PIIQ) = SI(PIIQ) — 1(PIQ),
(4.12) Dia(PQ) = LI(PIQ) ~ JAPIIR)
(413) DuFIIQ) = HPIIQ) - 1(FIQ)
(4.14) Dis(PllQ) = h(PIlQ) ~ 1AP]Q),
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and

(4.15) Dia(PlQ) = I(PIIQ) — ;A(P)Q).

In the examples below we shall show the convexity of the above meagureg (4.1)-(4.15). In
view of Theorem 2.1 and Examples 2.1-2.6, it is sufficient to show the nonnegativity of the
second order derivative of generating function in each case.

Example 4.1. We can write

Dur(Pl|Q) = =W (P)Q) - T(P|[Q) = Zquw(pz)

where X
for(z) = 1—6f\11 () — fr(z), x> 0.

Moreover, we have

1
@16)  fiple) = - f @)~ @)
3 2 C1\2(2
41l 241 :(x 1)*(z +£E+1)>0,Vx>0,
83 de2(z + 1) 8x3(x + 1)

wheref} (z) and f7 (x) are as given by (2.15) anfl (2]21) respectively.
Example 4.2. We can write

Duy(PIQ) = 5 ¥(PIIQ) ~ SI(PIIQ) = qufw ().

where ' ,
fui(z) = Ef\P (x) — ng (z), > 0.

Moreover, we have

1 1
(4.17) wi(2) = pfu (@) = o f5 (@)
1/2*+1 x+1 (x —1)*(z+1)
1 _ _ >0,V >0,
8 < a3 x? ) 83 v

wheref} (z) and f/ (z) are as given by (2.15) anfl (2]17) respectively.
Example 4.3. We can write

Dun(PlIQ) = 3 ¥(PIIQ) — h(PIIQ) = Zqu%<pl>

where .
f\I/h(x) = 1—6f\1/ (iE) —fn (:L") , x> 0.

Moreover, we have

1
(@18 () = = ) — £ (@)
1 /%41 1 (zy/z — 1)
= = - = 2 ) )
4 < 223 xﬁ) 83 0, v >0

wherefy (z) and f/ (z) are as given by (2.15) anfl (2]11) respectively.
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Example 4.4. We can write

Dur(PIIQ) = LW (PIIQ) ~ 1(P)Q) = Z%fw( )

where X
for(z) = 1—6f\lf () — fr(z), > 0.

Moreover, we have

1
@19)  fli(e) = L) A (@)
1 (2341 1 (x —1)*(2* + 3z + 1)
= 5 - - 2 ) )
2z ( 42 m+1) 8x3(x + 1) 0, vz >0

wheref} (z) and f} (z) are as given by (2.15) anfl (2]19) respectively.
Example 4.5. We can write

Dua(PlIQ) = - W(PIQ) ~ {A(PIIQ) = Zqum (p)

where 4
Joa(z) = 1 <Zf\p () — fa (x)) , x> 0.

Moreover, we have
1/1 3+ 1 2
(4.20) a0 =1 (A0 -A0) =T -
1\2(4 3 2
_ (x —1)%(a* + 5z° 4+ 122° + b + 1) >0,V >0,
8x3(x + 1)3
wheref} (z) and fX (z) are as given by[ (2.15) anfl (2]13) respectively.

Example 4.6. We can write

Drs(PIIQ) = T(PIIQ) ~ 3J(PIIQ) = Zqum (p)

where )
fri(x) = fr(z) — ng (x), x> 0.

Moreover, we have

(4.21) o) = fi ) - o f @)
2+l a+l (w—1)°
de?2(x+1) 822 8x2(x + 1)
wheref/ (z) and f] () are as given by (2.21) anfl (2]17) respectively.

Example 4.7. We can write

Dr(PlIQ) = T(PI|Q) — h(PIIQ) = Zqum(p@)

>0, Vo >0,

where

fru(@) = fr(x) — fu(x), 2 > 0.

AJMAA Vol. 2, No. 1, Art. 8, pp. 1-23, 2005 AIJMAA
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Moreover, we have

(4.22) f@) = £ @) = fi (@) = § (xiﬁll) - ij>
WA @+ Va4
= 1) >0, Vo >0,

wheref/ (z) and f; () are as given by (2.21) anfl (2]11) respectively.
Example 4.8. We can write

Dri(PYIQ) = T(PI|Q) — I(P||Q) = Zq,fﬂ(“)

where
fri(z) = fr(z) = fr(z), > 0.
Moreover, we have
(4.23) 71(x) = fr(x) = fi (z)
2?4l 1 (1)
T 422z + 1) 2z(z+1)  42(x+1)
wheref/ (z) and f/ (z) are as given by (2.21) anfl (2]19) respectively.

Example 4.9. We can write

DralPIIQ) = T(P)Q) ~ TA(PIIQ) = Zqum(pl)

where .
fra(z) = fr(x) - ZfA (), x> 0.

Moreover, we have

1 z? +1 8
4.24 " _ g _toen _ _
( ) ra(z) = fr (2) R (z) d2(z+1) (z+1)3
(x —1)*(z* +4z + 1)
= >
2 1) >0, Vx>0,

wheref/ (z) and fX (z) are as given by (2.21) anfl (2]13) respectively.
Example 4.10.We can write

Du(PlQ) = SI(PIIQ) — h(PIQ) = zqzm(p’),

where '
fon(z) = gfj () = fn(z), > 0.

Moreover, we have

1
(4.25) fula) = <15 () = i 2)
z+1 1 (Vz — 1)
= - = 2 ) )
8x2  du/x 82 0, ¥z >0

wheref (z) and f; (x) are as given by (2.17) anfl (2]11) respectively.

AJMAA Vol. 2, No. 1, Art. 8, pp. 1-23, 2005
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Example 4.11.We can write

Du(PlQ) = LI(PIIQ) ~ 1(P]lQ) = Zquﬂ(“)

where '
frr(z) = ng (x) = fr(z), 2> 0.
Moreover, we have
1 ]‘ 1 1
(4.26) 7r(w) = ]/ (z) — f1 ()
x+1 1 (x —1)?

_ _ _ >0, Vx>0,
82  2x(x+1) 8x%(zx+1) v

wheref/ (z) and f} (z) are as given by[ (2.17) anfl (2]19) respectively.
Example 4.12.We can write

Dya(PIQ) = SI(PIIQ) ~ {A(PIIQ) = Zqum(pl),

where ' ,
fialz) = ng (x) — ZlfA (z), x> 0.

Moreover, we have

1 1 z41 2
(4.27) Ialz) = 3 y (@) — 1 Al(z) = 822 (z+1)3
(x — 1)*(2* + 62 + 1)
= >0,V >0,
82z + 1) o

wheref’ (z) and fX () are as given by (2.17) anfl (2]13) respectively.
Example 4.13.We can write

Du(PI|Q) = h(PIIQ) — I(P]|Q) = Zqum (p)

where
Jur(@) = fr(z) = fr(x), 2> 0.
Moreover, we have

(4.28) (@) = fi () — f1 ()

1 B 1 B (Vxr — 1)

Cdayx 20(z 1) 4a32(z 1)
wheref// (z) and f} (x) are as given by[ (2.11) anfl (2]19) respectively.
Example 4.14.We can write

>0, Vx > 0,

Dya(PlIQ) = h(PIQ) — +A(PQ) = Zqum (p)

where

frale) = i (@) = 31a (@), 2 >0,
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Moreover, we have

I O =

(VE =1 [(VE+ 1) (o + 1) + 4]
pr— >
423/2(z + 1)3 >0, v =0,
wheref/ (z) and fX (x) are as given by (2.11) anfl (2]13) respectively.

Example 4.15.We can write

Dia(PQ) = I(P[lQ) ~ TA(PI|Q) = Zqum (p)

where .
fia(x) = f1(x) — ZfA (), x> 0.

Moreover, we have
1
1 (.’];)

(4.30) Ia(e) = f (@) - 74
1 2 (z—1)

2e(z+1) (x+1)3 2zx(z+1)

wheref/ (z) and fX (x) are as given by (2.19) anfl (2]13) respectively.

Thus in view of Theorer 2|1 and Examp|es|@.1-4.15, we can say thaiteeence mea-
suresgiven in (4.1){(4.1p) are attonnegativeandconvexn the pair of probability distributions
(P,Q) e, xT,.

- =0, Vo >0,

5. REFINEMENT INEQUALITIES

In view of (3.1), the following inequalities are obvious:

(5.1)  Dur(P||Q) < Dus(Pl|Q) < Dun(P||Q) < Dur(P|Q) < Dua(P|Q),
(5.2)  Dry(Pl|Q) < Drn(P||Q) < Dri(Pl|Q) < Dra(P[|Q),
(5.3)  Dn(PlQ) < Dy(Pl|Q) < Dya(P||Q)

and

(54)  Du(PlIQ) < Dna(P[|Q).

In view of the relation[(1.10), we have the following equality:

(5.5) Dii(PQ) = 5Dri(PIIQ) = Dr(PQ).

In this section our aim is to establish refinement inequalities improving the one giyen|in (3.1).
This refinement is given in the following theorem.

Theorem 5.1. The following inequalities hold:

(56)  Dia(PlQ) < - DialPIIQ) < 2Du(PIQ) < Drs(PIIQ)

2 Dia(PlIQ) < 5Dia(PIQ) < 5

\GRGV)

(5.7  Da(PllQ) < Dra(P||Q) < Dry(Pl|Q),

w |
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and
68)  Dr(PlIQ) < 5Dn(PlQ) < 2D (PlQ) < 5 Dus(PIQ)
< £Dui(PlQ) < 2Dan(PlIQ) < {Dus(PIIQ) < 3 Dur(PIQ),

The proofs of the inequalities (5.6)-(5.8) are based on the following propositions.

Proposition 5.2. We have

2
(5.9) Dia(PI|Q) < Dua(PI[Q).
Proof. Let us consider

@) -1
gra_na(T) @) @l s # 1
_ 2/a(E+1)
(VZ+1)(z+1)+4z

for all x € (0,00), wheref/,(z) andf; , (z) are as given by (4.30) and (4|29) respectively.
Calculating the first order derivative of the functigm A (z) with respect tar, one gets

(Vr +1) (22 — 2232 4 322 + 20 — 3\/z — 1)
VT[22 + 62 + 27 (z + 1) + 1)

G- DeE+)E+4vz+1) [>0, <1

__\/E[x2+6x+2\/§(x+1)+1]2{<0, x>1"

In view of (5.10) we conclude that the functigma ,(z) is increasing iz € (0,1) and
decreasing i € (1, 00), and hence

(5.10) g/IA_hA (z) = —

2
(5.11) M = sup gra_na(®) = giana(l) = 3

2€(0,00)
By the application of(2]3) witH (5.11) we gét (b.9).
Proposition 5.3. We have
(5.12) Dpa(Pl|Q) < 3Dn1(P|Q).

Proof. Let us consider

gha_ni(T) = @) (@) (Ve+1) +4e
_ " (l‘) (l‘+ 1)2

hil
wheref/ () and f;/;(x) are as given by (4.29) and (4|28) respectively.
Calculating the first order derivative of the functigin 1,7 (z) with respect tar, one gets

4232 4 2% — 4/ — 1

, x € (0,00),

(5.13) ghA_hI(x) = - N 1)3
=D E+4/z+1) [>0, <1
a V7 (z +1)° <0, z>1
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In view of (5.13) we conclude that the functigna ,;(z) is increasing inc € (0,1) and
decreasing in: € (1, 00), and hence

(5.14) M = sup gna_pnr(7) = gha_nr(1) = 3.

z€(0,00)

By the application of{(2]3) witH{ (5.14) we gét (5]13).
Remark 5.1. In view of Proposition§ 5]2 arjd 5.3, and the inequality|(3.1) we conclude that

(5.15) I(PIIQ) < Sh(PIIQ) + 15 A(PIIQ) < h(PIIQ).

Proposition 5.4. We have

(5.16) Du(PIIQ) < 3Drs(PIIQ).

Proof. Let us consider

" (x 2/
gur ooy = P VT (0,00)

() (Vz+1)*
wheref;;(z) and f},(z) are as given by (4.28) and (4]|21) respectively.
Calculating the first order derivative of the functign -, (z) with respect tac, one gets
Vo —1 >0, z<1
VZ(Vz+1)?° <0, z>1

In view of (5.17), we conclude that the functigp; r,(z) is increasing inv € (0,1) and
decreasing i € (1, 00), and hence

(5.17) g;LI_TJ(z) = -

1
(5.18) M= sup gnrrs(x) = gnrrs(1) = 5.
2€(0,00) 2

By the application of[(2]3) witH (5.18) we gét (5/14).

Remark 5.2. In view of Propositior] 5}4 and the inequalify (3.1) we conclude the following
inequality

(5.19) MPIQ) < 1T (PIQ) + S T(PIIQ) < (I(PIQ).

Combining the inequalitie$ (5.9), (5]12) and (5.16) we (5.6).

Proposition 5.5. We have

3

(5.20) Dpa(Pl|Q) < ZLDJA(PHQ)'

Proof. Let us consider

 fialz) 2\/x [(x +1)3 — 8x3/2}
graaa(7) = "A(x) T 1216 +1) " 71

JA
N [(\/E +1)2 (x4 1)+ 41,}
 (Vz+ 1) (224 6z +1)
for all z € (0, 00), wheref//, (z) and f7,(x) are as given by (4.29) and (4|27) respectively.
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Calculating the first order derivative of the functigin ;A (z) with respect tac, one gets

, o 1
(5.21) gha_salz) = VAN 1)3 (2% + 62 + 1)2

+V7 (z* 4+ 122° + 182” + 4z — 3)]
 (Vr=1) (1) (22 + 42T + 1z + 4T + 1) {>0, z<1

[3z* — 42® — 182 — 122 — 1

VI (VT +1)° (22 + 62 + 1)° <0, z>1

In view of (5.2]) we conclude that the functigna sa(z) is increasing inc € (0,1) and
decreasing inc € (1,00), and hence

3
(5.22) M = sup gna ga(®) = gha sa(l) = —.
z€(0,00) 4

By the application of(2]3) witH (5.22) we gét (5]2@).

Remark 5.3. In view of Propositior] 5J5 and the inequalify (3.1) we conclude the following
inequality

(5.23) MPIQ) < 2 I(PIIQ) + T-A(PIIQ) < LI(PIIQ)
Proposition 5.6. We have
(5.24) Dia(PllQ) < > Dra(PIIQ)
Proof. Let us consider
Ialz) 2?4 6x+1 v € (0.00),

grara() = 2a(x) 22+ 4r + 1)

wheref’ () and f} . (z) are as given by (4.27) and (4|24) respectively.
Calculating the first order derivative of the functigm ra (z) with respect tar, one gets

(x —1)(z+1)

(5.25) gf]A_TA(x) = _(:C2 + 4z +1)2 {

>0, r<l1
<0, z>1

In view of (5.25) we conclude that the functigna ra(z) is increasing inc € (0,1) and
decreasing inc € (1,00), and hence

(5.26) M = xes(%go) giara(r) = gsa ra(l) = ;
By the application of[ (2]3) witH (5.26) we gét (5]24).
Proposition 5.7. We have
(5.27) Dra(P||Q) < 3Dry(P||Q).
Proof. Let us consider
o) = IA(x) _ 2(x? + 4x + 1)7 2 € (0,00),

i) = T @y
wheref/ . (z) and f/.,(x) are as given by (4.24) and (4|21) respectively.
Calculating the first order derivative of the functign. 7,(z) with respect tar, one gets
dz—1) |>0, z<1
(x+1)3 | <0, z>1"

(5.28) QITA_TJ<$> ==
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In view of (5.28) we conclude that the functigf_r,(z) is increasing inc € (0,1) and
decreasing i € (1, 00), and hence

(5.29) M = S(up )QTA_TJ(@ = gra_rs(1) = 3.
z€(0,00

By the application of[(2]3) witH (5.29) we gét (5]271).

Remark 5.4. In view of Proposition$ 5|6 and 5.7, and the inequality](3.1) we conclude the
following inequality

(5.30) (PIQ) < ST(PIIQ) + S APQ) < T(PIQ).
Combining the inequalitie$ (5.9), (5]20), (5.24) and (b.27), we[get (5.7).

Proposition 5.8. We have

2

(5.31) Dr;(Pl|Q) < gDTh(PHQ)-
Proof. Let us consider
_ Jry@) (z —1)°
oo mnl®) = S 31 A
(Ve+ 1)’
2@+ + 1)

for all 2 € (0, ), wheref7;(z) and f7, (x) are as given by (4.21) and (4]22) respectively.
Calculating the first order derivative of the functign; 1, (z) with respect tar, one gets

(Vz—1)(Vz+1) {>0, z<1

(5.32) QITJ_Th(fB) = Wr(z+Vr+1) | <0, z>1"

In view of (5.32) we conclude that the functien,; 7, (z) is increasing inz € (0,1) and
decreasing i € (1, 00), and hence

(5.33) M = xES(léEO) gry_ra(T) = gry (1) = g
By the application of[ (2]3) witH (5.33) we gét (5]3%).

Proposition 5.9. We have

(5.34) Drn(Pl|Q) < 3Dn(P[|Q).

Proof. Let us consider

grn (1) = %’/h(x) _ 2[22 +1—x (z +21)]’ r 41
(@) (z+1)(Vz—1)
2+ +1)
N z+1
for all z € (0, 00), wheref7, (x) and f7, (x) are as given by (4.22) and (4]25) respectively.
Calculating the first order derivative of the functign, ;,(z) with respect tar, one gets

Y

z—1 <0, z<1
(5.35) g/Th_Jh<I) = - {

Vi(z+1)? <0, z>1"
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In view of (5.3%) we conclude that the functiagy, r»(z) is increasing inz € (0,1) and
decreasing i € (1, 00), and hence

(5.36) M = sup gru_m(z) = gra_m(1l) = 3.

z€(0,00)

By the application of[ (2]3) witH (5.36) we gét (5]34).
Remark 5.5. In view of Proposition$ 5|8 and 5.9, and the inequality](3.1) we conclude the
following inequality

T(PllQ) + 2n(P]|Q)
3

(5:37) MPIQ) < < JIPlIQ)

Proposition 5.10. We have
1
(5.38) Din(PlIQ) < 75 Dua(PIIQ).
Proof. Let us consider
" (x 2 (VT — 17 (z+1)°
G wa(z) = /{h(): : (Vo —1)" (z+1) 1
wal®)  (z—1)° (2% + 523 + 1222 + 5x + 1)
r(z +1)3
(VZ +1)° (2% + 5ad + 1222 + 5z + 1)
for all x € (0,00), wheref”, (z) and fj 5 (z) are as given by (4.25) and (4]|20) respectively.
Calculating the first order derivative of the functign, v (x) with respect tac, one gets
(V-1 (+1)° y
(VZ +1)° (24 + 523 + 1222 + 5z + 1)
x [2° + 52 + 62 (Vo — 1)* + 5z + 1
+Vx ($4 +32% + 422 + 3z + 1)] .

(5.39) Ion_walr) = —

From [5.39), one gets

>0, z<1
<0, z>1

(5.40) gfm_\IJA (z) {

In view of (5.40) we conclude that the functign,, s (z) is increasing inc € (0,1) and
decreasing i € (1, 00), and hence

1
(5.41) M = sup gy wa(®) =g oa(l)=—.
2€(0,00) 12

By the application of[ (2]3) witH (5.41) we gét (5]34).
Remark 5.6. In view of Propositior} 5.70, and the inequalify (3.1) we conclude the following
inequality
3
2
Proposition 5.11. We have

(5.42) J(PQ) + {APIIQ) < s ¥(PIQ) + 12h(PI|Q)

16

6

(543 Dua(PlQ) < 2 Dur(PIIQ)
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Proof. Let us consider

walz) 2t + 523 +22% +5r + 1
p— = O
gua vi(z) o) (x+1)2(2x2+32+1) z € (0,00),
wherefj A (x) and f7,(x) are as given by (4.20) and (4|19) respectively.
Calculating the first order derivative of the functigna v (z) with respect tar, one gets

(5.44) Q(IIA_\M (z) =

Az -2z +1)(z+2) >0, <1
(x4+1)3@2+3x+1)2 |<0, 2>1

In view of (5.44) we conclude that the functigna v;(z) is increasing inc € (0,1) and
decreasing i € (1, 00), and hence

6
(5.45) M= sup gua wi(®) = gea wi(l) = 5

z€(0,00)

By the application of[(2]3) witH (5.45) we gét (5]4%).

Remark 5.7. In view of Propositio 5.11, and the inequalily (3.1) we conclude the following
inequality

111 5) 1
(5.46) I(PIIQ) < ¢ |35 ¥ (PIIQ) + JAPIQ) | < - U(PIQ).
Proposition 5.12. We have
(5.47) Dur(PIIQ) < 5 Dun(PIIQ).

Proof. Let us consider

PR 71C0 B C e O R Gk ) I

gw_\ph( )— \,I,’h(:w (x—l—l) (x x_l)Q ,x#£1
(Va +1)" (22 + 3 + 1)
(z+1)(z+yz+1)7°

for all z € (0, ), wherefy,(x) and £, (x) are as given by (4.19) and (4]18) respectively.
Calculating the first order derivative of the functigf; ¢, (z) with respect tar, one gets

r—1)Bz+x+3
(5.48) 9&11_\1/11(33) = ( 1 3\/_ )
(x++z+1) (z+1)2
In view of (5.48) we conclude that the functigq; v,(z) is increasing inz € (0,1) and
decreasing i € (1, 00), and hence

>0, z<1
>0, z>1

10
(5.49) M = sup gur wn(r) = gor_wn(l) = 9"

z€(0,00)

By the application of[ (2]3) witH (5.49) we gét (5]47%).

Remark 5.8. In view of Proposition 5.12, and the inequalify (3.1) we conclude the following
inequality
1

1 1
(550 MPIIQ) < 15 | 16 ¥PIQ) +91(PIIQ)| < ¥ (PIIQ).
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Proposition 5.13. We have

Nej

(5.51) Dyin(P[|Q) < 5 Dws(P||Q).

8
Proof. Let us consider
Gun wy(T) = gh(x) = S \/E—i_ 1)2
B wi(r)  (Vr+1)2(z+1)
wherefy, (x) andfy ;(x) are as given by (4.18) and (4|17) respectively.
Calculating the first order derivative of the functigg, v, (z) with respect tar, one gets

(5.52) G 9 (2) = — (Vz—1)(z+ vz +1) {

z € (0, 00),

>0, z<1
<0, z>1

(Vr +1)3(x + 1)?

In view of (5.52) we conclude that the functign,, v,(z) is monotonically increasing in
x € (0,1) and decreasing im € (1, c0), and hence

9
(5.53) M= sup gun ws(z) = gun ws(l) = g

z€(0,00)
By the application of[(2]3) witH (5.53) we gét (5]5%).

Remark 5.9. In view of Propositiori 5.13, and the inequalify (3.1) we conclude the following
inequality

1 11 1
(5.54) (PO < 5 | 5 U(PIQ) +8h(PIQ) | < ;¥ (PIQ).
Proposition 5.14. We have
(5.55) Dus(PlIQ) < 2 Dur(PIIQ).

3
Proof. Let us consider
" 2
~ fogx)  (z+1)
gus_wr () = ro(r) a4+l

wheref} ;(x) and fi(x) are as given by (4.17) and (4|16) respectively.
Calculating the first order derivative of the functigf, v () with respect tas, one gets

(x—=1)(x+1)

(5.56) G wr(T) = — 2 +z+1)? {

x € (0,00),

>0, z<1
<0, z>1

In view of (5.56) we conclude that the functign ; v (z) is increasing inc € (0,1) and
decreasing i € (1, 00), and hence

4
(5.57) M = sup guser(z)=guser(l) = 3

z€(0,00)
By the application of[(2]3) witH (5.57) we gét (5]5%).

Remark 5.10. In view of Propositior 5.74, and the inequalify (3.1) we conclude the following
inequality

1|1 1
(5.59) T(PIIQ) < 55 |3U(PIQ) +3J(PQ)| < =U(PIQ).

Combining [5.3]1),[(5.34)[ (5.88) (5}43), (5147), (5.51) dnd (5.55) we[geit (5.8). Thus the
combination of the Propositions §.2-5/14 completes the proof of the Thg¢orem 5.1.
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6. FINAL COMMENTS

() In view of inequalities [(5.15),[ (5.19)[ (5.R4), (5]31), (5.38) ahd (b.58), we have the

following improvement over the inequalitm 1):
1
(6.1) JAPQ) < I(PllQ) < (PHQ) (P||Q) h(PlQ)

<iJ<P||Q> ;<P||@> <P||@>+ Sh(PlQ)

(P||Q) —T(PHQ)+ A(PIIQ) T(PlQ)

1 1
< 55 |3YPlQ) +3J(PIIQ) | < ¥ (PIQ).

(i) For simplicity, if we write, the divergence measures giver|in|(4.1)-(4.15Pby- D;5
respectively, then the Theor¢m .1 resumes in the following inequalities:

(@) D15 < 3Dy < 2Dy3 < Dg;
(b) D15 < 2Dy < $D12 < 5Dy < Dg;
(€) Ds < 2D7 < 2Dy < D5 < D4 < 2Ds5 <

Dy < D5,

Wl

1
4

(ii) Following the similar lines of the propositions given in section 5, we can easily prove
the following inequality,

6.2) Dur(PI|Q) < = D(P||Q).

whereD*(P||Q) is as given by-4).
The inequality [(6.R) together with Theor¢gm|5.1 gives us the following improvement
over the inequalitie$_(3_22) ada_(3123)'

(6.3) Dia(PllQ) < Dw(PIIQ) D\IIT(PHQ) D*(P[|Q).

or equivalently,

1 2 1
Diy < =Dy < 2Dy < —D*.
12972 = 37 o

From the inequality[(6]3) and item (ii)(b)-(c), we observe that there are rdany
vergence measurés betweenD A (P||Q) and Dy, (P||Q). Thus the inequality| (6]3)
improves the results due to Dragomir et al. [6].

(iv) The inequalities[(5.42) andl (5.,64) can be written as
(6.4) SIPIQ) < [116 (PI|Q) +12h(PI|Q) - —A(PH@)]

<5 [ UPIo +8Pla)] < urlo)

The middle inequalities of (6].4) follow in view df (3.7) arid (5.8).
(v) The inequalities (5.50) anfl (5]54) can be written as

65 MPIIQ) < 35 |15 uPl@) + 91(PIlQ)]

<5 [ urlo + sl < o)

AIJMAA Vol. 2, No. 1, Art. 8, pp. 1-23, 2005 AJMAA


http://ajmaa.org

REFINEMENT INEQUALITIES 23

REFERENCES

[1] A. BHATTACHARYYA, Some analogues to the amount of information and their uses in statistical
estimation Sankhya8(1946), 1-14.

[2] J. BURBEA, and C.R. RAQ, Entropy differential metric, distance and divergence measures in prob-
ability spaces: a unified approachMulti. Analysis12(1982), 575-596.

[3] J. BURBEA, and C.R. RAO, On the convexity of some divergence measures based on entropy
functions,IEEE Trans. Inform. TheoryT-28(1982), 489-495.

[4] 1. CSISZAR, Information type measures of differences of probability distribution and indirect ob-
servationsStudia Math. Hungarica2(1967), 299-318.

[5] I. CSISZAR, On topological properties gf—divergencesStudia Math. Hungarica2(1967), 329-
339.

[6] S. S. DRAGOMIR, JSUNDE and C. BUSE, New inequalities for Jeffreys divergence measure,
Tamsui Oxford Journal of Mathematical Scienck§2)(2000), 295-309.

[7] E. HELLINGER, Neue Begriindung der Theorie der quadratischen Formen von unendlichen vielen
Veréanderlichen). Reine Aug. Math136(1909), 210-271.

[8] H. JEFFREYS, An invariant form for the prior probability in estimation probleRmsc. Roy. Soc.
Lon., Ser. A186(1946), 453-461.

[9] S.KULLBACK and R.A. LEIBLER, On information and sufficiencinn. Math. Statisf22(1951),
79-86.

[10] K. PEARSON, On the criterion that a given system of deviations from the probable in the case
of correlated system of variables is such that it can be reasonable supposed to have arisen from
random sampling?hil. Mag, 50(1900), 157-172.

[11] R. SIBSON, Information radiug,. Wahrs. und verw Gekl{14)(1969), 149-160.

[12] 1.J. TANEJA, On generalized information measures and their applications, Chapteiviances in
Electronics and Electron PhysicEd. P.W. Hawkes, Academic Pre3$(1989), 327-413.

[13] 1.J. TANEJA, New developments in generalized information measures, Chaptadirances in
Imaging and Electron Physic&d. P.W. Hawkes91(1995), 37-135.

[14] 1.J. TANEJA, Generalized information measures and their applicatioren line book:
http://www.mtm.ufsc.br/taneja/book/book.htmR001.

[15] I.J. TANEJA, Relative divergence measures and information inequalitieeguality Theory and
Applications Volume 4, 2004, Y.J. Cho, J.K. Kim and S.S. Dragomir (Eds.), Nova Science Pub-
lishers, Inc. Huntington, New York.

[16] 1.J. TANEJA, On a difference of Jensen inequality and its applications to mean divergence measures
— RGMIA Research Report Collectidmttp://rgmia.vu.edu.aur(4)(2004), Art. 16.

[17] 1.J. TANEJA, Generalized symmetric divergence measures and inequaliRésMHIA Research
Report Collectionhttp://rgmia.vu.edu.aur(4)(2004), Art. 9.

[18] 1.J. TANEJA, On symmetric and non-symmetric divergence measures and their generalizations —
To appear chapter irAdvances in Imaging and Electron PhysiEsl. P.W. Hawkes, 2005.

AIJMAA Vol. 2, No. 1, Art. 8, pp. 1-23, 2005 AJMAA


http://ajmaa.org

	1. Introduction
	2. Csiszár's f-Divergence
	3. Inequalities Among the Measures
	4. Difference of Divergence Measures
	5. Refinement Inequalities
	6. Final Comments
	References

