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1. INTRODUCTION

Equilibrium problems theory is an interesting and fascinating branch of mathematical sci-
ences with a wide range of applications in industry, physical, regional, social, pure and applied
sciences. This field is dynamic and is experiencing an explosive growth in both theory and ap-
plications; as a consequence, research techniques and problems are drawn from various fields,
see[1], [5], [6], [13], [14], [15], [16], [17],18],19],[[20]. In recent years, equilibrium prob-
lems have been generalized and extended in different directions using the novel and innovative
techniques. Inspired and motivated by the recent research going on in this area, we introduce
and consider a new class of equilibrium problems, which is catlettivalued hemiequilib-
rium problem It is shown that multivalued hemiequilibrium problems include hemiequilib-
rium, hemivariational inequalities, variational inequalities, and complementarity problems as
special cases. There are several numerical methods including projection methods, Wiener-Hopf
equations, descent and decomposition for solving variational inequalities, seel [5], 18], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. Due to the nature of the hemiequilib-
rium problems, these methods can not be extended for solving these problems. To overcome
these drawbacks, one usually uses the auxiliary principle technique to suggest some iterative
methods for solving hemiequilibrium problems. Glowinski, Lions and Tremolieres [8] used
this approach to study the existence of a solution of the mixed variational inequalities. In recent
years, Noor[12],[13],[14],115],116] has used this technique to study some predictor-corrector
methods for various classes of equilibrium and variational inequality problems. In this paper,
we again use the auxiliary principle technique to suggest a class of three-step predictor-corrector
iterative methods for multivalued hemiequilibrium problems. In particular, we show that one
can obtain various forward-backward splitting, modified projection, and other methods as spe-
cial cases from these methods. We also prove that the convergence of the suggested methods
requires only the partially relaxed strongly monotonicity. Using the auxiliary principle tech-
nique, we also suggest and analyze an inertial proximal method for solving multivalued equi-
librium problems. We show that the convergence of the inertial proximal method converges for
pseudomonotone functions, which is a weaker condition than monotonicity. It is worth men-
tioning that inertial proximal method includes the classical proximal method as a special case.
Consequently, our results represent an improvement and refinement of the previously known re-
sults. Our results can be considered as an important and significant extension of the previously
known results for solving hemiequilibrium, hemivariational inequalities, variational inequalities
and complementarity problems.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denotéd-band||.||,
respectively. LeC'(H) be the family of all non-empty compact subsetsbfLetT : H —
C(H) be a multivalued operator. Ldt" be a nonempty, closed and convex setdin Let
A(.;.): Hx H — H be a nonlinear continuous operator.

For a given single-valued trifunctiof'(.,.,.) : H x H x H — C(H), we consider the
problem of findingu € K, v € T'(u), such that

(2.1) F(u,v,v) + A(u;v —u) >0, YveK,

which is called thenultivalued hemiequilibrium problemFor example, it/°(u; v —u) denotes

the Clarke generalized directional derivative of a locally Lipschitz continuous fungtiomt

u in the directionv — u, then clearlyJ®(u; v — u) = A(u;v — u). It can be shown that a wide

class of problems arising in various branches of pure and applied sciences can be studied in the
general framework of multivalued equilibrium problems.
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If T: H— H isasingle-valued operator, then problem (2.1) is equivalent to findiag<
such that

(2.2) F(u,Tu,v) + A(u;v —u) >0, Yo €K,

which is called the hemiequilibrium problem with trifunction and appears to be a new one.
If F(u,v,v) = F(v,v), then problem[(2]1) is equivalent to findimge K, v € T'(u) such
that

(2.3) Fv,v)+ A(u;v—u) >0, YveK,

which is known as the multivalued hemiequilibrium problem.
If F(u,v,v) = (v,v —u), then problem[(2]1) is equivalent to findimge K, v € T'(u) such
that

(2.4) (v,o—u)+ Alu;v—u) > 0, Vv e K.

The inequality of typ€g (2]4) is called tmeultivalued hemivariational inequalityt is known that
a wide class of problems arising in pure and applied sciences can be studied via the multivalued
hemivariational inequalitie$ (3.4), see [4].

We note that, ifl’ : H — H is a single-valued operator, then problém|(2.4) is equivalent to
findingu € K such that

(2.5) (Tu,v —u) + A(lu;v—u) > 0, YvéeEK,

which is known as the hemivariational inequality. Special cases of these hemivariational in-
equalities[(2.p) were introduced and studied by Panagiotopoulbs[[21], [22] in order to formulate
variational principles associated with energy functions which are neither convex nor smooth. It
is has been shown that the technique of hemivariational inequalities is very efficient to describe
the behaviour of complex structure arising in enginnering and industrial sciences, see! [4], [17],
[21], [22] and the references therein.

If A(.;.) =0, then problem[(2]1) is equivalent to findimge K, v € T'(u) such that

(2.6) F(u,v,v) >0, YveK,

which is called thenultivalued equilibrium problenstudied by Noor and Oettli [20] and Noor
[12], [15] using quite different techniques.

If F(u,v,v) = (v,v —u)andA(.;.) = 0, then problem[(2]1) is equivalent to findinge
K,v € T(u) such that

(2.7) (v,o—u)y > 0, Vv e K.

The inequality of type[(2]7) is called threultivalued variational inequality. It is known that
a wide class of free, obstacle, moving, equilibrium and optimization problems arising in pure
and applied sciences can be studied via the multivalued variational inequalities, see Noor [10].
If T is a single-valued operator, then we obtain the original variational inequality considered by
Stampacchig [25] in 1964.

It is clear that problem$ (2.2)-(2.7) are special cases of the multivalued variational inequality
(2.3). In brief, for a suitable and appropriate choice of the operdtérs,.), 7', A(.;.) and
the space, one can obtain a wide class of equilibrium, variational inequalities and comple-
mentarity problems. This clearly shows that problém](2.1) is quite general and unifying one.
Furthermore, problem (2.1) has many important applications in various branches of pure and
applied sciences, see [11) [41) [S1) [61L/[71/[8]./[9], [10L, [41], [12], 113], 1141, [15], [16], [17],
[18], [19], [20], [21], |[22], [23].

We also need the following well known results and concepts.
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Lemma 2.1.Vu,v € H, we have
(2.8) 2(u, v) = [lu+of* — fJull* = [|v]|*.
Definition 2.1. The trifunctionF'(., ., .) and the operatdf is said to be:

(1) (i) partially relaxed strongly jointly monotondf, there exists a constamat > 0, such
that

F(uy,wy,ug) + Fug,we, 2) < allz —w|?, Vui,ug,z € Hywy € T(uy), wy € T(uy).
(2) (i) jointly monotone,iff,
F(uy,wy,u) + Fug, wa,uy) <0, Yuy,us € Hywy € T(ug), we € T(ug).
(3) (iii) jointly pseudomonotondf,
F(uy,wy,us) >0, implies  F(ug,we,u1) <0, Yup,us € Hywy € T(uy),ws € T(us).

Definition 2.2. The multivalued operatdf : H — C'(H) is said to be\/-Lipschitz continu-
ous, iff, there exists a constant> 0, such that

M(T(uy), T(ug2)) < 0l|ur —usl||, Yui,us € Hywy € T'(uy), ws € T(ug),
whereM (., .) is the Hausdorff metric o0'(H).

We remark that, it = u;, then partially relaxed strongly monotonicity is exactly the jointly
monotonicity ofF'(., .,.) andT.

Definition 2.3. The operatorA(.;.) is said to partially relaxed strongly monotone, iff, there
exists a constant > 0 such that

Alu;v —u) + A(vyz —v) < alju — 2||*, Vu,v,z € H.
Note that forz = u, partially relaxed strongly monotonicity reduces to
Au:v—u)+ A(v;u —v) <0,
that is, the operataA(.; .) is monotone.

3. MAIN RESULTS

In this section, we suggest and analyze a class of iterative methods for solving the problem
(2.7) by using the auxiliary principle technique.

For a givenu € K, v € T(u), consider the problem of finding a solutiane K, satisfying
the auxiliary equilibrium problem

(3.2) pF(u,v,v) + (w —u,v —w) + pAlu;v —w) >0, YveK,

wherep > 0 is a constant. We note that.if = «, then clearlyw is a solution of the multivalued
equilibrium problem[(2]1). This observation enables us to suggest the following predictor-
corrector method for solving the multivalued equilibrium problém|(2.1).

Algorithm 3.1. For a givenu, € H, compute the approximate solutiap . by the iterative
schemes

(32) pF<wna Mhs U) + <un+1 — Wp, VU — un+1> + pA(wnv v = un+1) 2 Oav eK
(3.3) M € T(wn) = 041 = 1all < M(T (wnya), T (wn))

(34) 5F(ym§n7 U) + <wn —Yn, U — wn> + 5A<yn7 v — wn) >0, Vo e K
(35) gn € T(yn) : ||€n+1 - Sn” S M(T(yn-i-l)v T(yn))
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and
(36) :U’F<un7 Vn7g(v)) + <yn — Up,V — yn> + VA(un; v = yn) Z 07 Vo € K.
(3.7) Un € T(up) @ ||Vne1 — val] < M(T(ups1), T(uy,)), mn=0,1,2,...

wherep > 0, 4 > 0 and > 0 are constants.

Note that, ifA(.;.) = 0, then Algorithm[3.1 reduces to the following predictor-corrector
method for solving the multivalued equilibrium problem (2.6), see Noar [15].

Algorithm 3.2. For a givenu, € H, computeu, ., by the iterative schemes
pF (wp, 1, v) + (Upt1 — Wpy v —Upy1) >0, YoeEK
My € T(wn) < [|m 1 = 0]l < M(T(wnpa), T(wn))
BE(Yn, &, v) + (W — Ynyv —wyp) > 0, YveK
&n € T'(yn) 16011 — &all < M(T(Ynt1), T (yn))
MF<umeU)+ <yn_umv_yn> Z 07 Vo e K
Up € T(uy) @ ||Vns1 — Val| < M(T (1), T (uy)), n=0,1,2...

If F(u,v,v) = F(v,v), then Algorithm 3.1 reduces to the following algorithm for solving
multivalued hemiequilibrium problem (2.3).

Algorithm 3.3. For a givenu, € H, compute the approximate solutian,; by the iterative
schemes

pE(n,,0) + (Uns1 — Wy, ¥ — Upi1) + pA(Wn; 0 — Upi1) >0, Yve K
Mn € T(wn> : ||77n+1 - T]n|| < M(T<wn+1)7 T(U)n))
BF(E,,v) + (Wy — Yn, v — wy) + BA(Yyn;v —wy,) >0, YveK
€n € T(n)  l€ns1 = &all < M(T(Yns1), T(yn))
MF(VmU)_'—<yn_unav_yn>+VA<un;U_yn)207 Vv € K.
Vp € T'(un) @ ||[Vnt1 — Vnl| < M(T(tnt1), T (wn)), n=0,1,2,....

If A(.;.) =0andF(v,v) = (v,v — u), then Algorithn{ 3.8 reduces to

Algorithm 3.4. For a givenu, € H, compute the approximate solutiaf),; by the iterative
schemes

(PN, + Upt1 — Wy, ¥ —upry) >0, Yo €K,

M, € T<wn) : Hnn—l—l - nnH S M(T wnJrl)?T(wn))

</6€n+wn_ynav_wn> Z 07 VUGK

€ € T(yn) €041 — &all < M(T(Yntr), T(yn))

(U + Yp — U, v —yp) >0, YveK

Un € T(up) : ||Vns1 — val] < M(T(ups1), T(uy)), n=0,1,2...
or equivalently

Upt1 = Pk [wn - Pﬁn]
My € T(wn) ¢ Mgy — Mall £ M(T(wps1), T(wy))
Wy = PK[yn - 65]
En €T(n) + N6sa = Sall € M(T(Yns1), T (yn))
Yn = Prlun, — p]
v € T(un) + |[vns1 — vall < M(T (un1), T'(un)),
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where Py is the projection off onto the closed convex skt

Algorithm[3.4 is known as the predictor-corrector method for solving the multivalued varia-
tional inequalities[(217), see [11].
If T"is a single-valued operator, then Algorithins| 3.3 3.4 reduce to:

Algorithm 3.5. For a givenu, € H, computeu,, ., by the iterative schemes

<pTwn T Upy1 — Wy, U — un+1> > 0, YWwek
<ﬁTyTL + (wn — Yn, U — wn> Z 0, VU c K
(UTUn + Yn — Un,v —yn) > 0, YweK,

which is called the predictor-corrector method for solving variational inequalities (2.5), see
Noor[12], [15].

We remark that Algorithri 3|5 can be written in the following equivalent form as
Algorithm 3.6. For a givenu, € H, computeu,, ., by the iterative schemes

yn = Prlun — pTu]

Upny1 = Prglw, —pT(w,)], n=0,1,2...

which can be written in the following form,
Uns1 = P [l — pT|Pk[I — BT Pg[I — pT)g(u,), n=0,1,2...

Algorithm (3.6 is known as three-step forward-backward splitting algorithms. Algofithm 3.6
is similar to the so-called-scheme of Glowinski and Le Tallec![7], which they suggested by
using the Lagrangian multiplier method. It has been showhilin [7] that three-step schemes are
numerically efficient and are reasonably easy to use for computations as compared with one-
step and two-step iterative methods for solving nonlinear problems arising in elasticity and
mechanics. The convergence analysis of Algorithm 3.6 has been considered by Noor [11], [12],
[14].

We now rewrite Algorithni 34 in the following form:

Algorithm 3.7. For a givenu, € H, compute the approximate solutian),; by the iterative
schemes

M € T(wn) o Mg — 0l < M(T (wn+1) T'(wn))

w, = (1= 8,)un+ B, Pxlyn — 5,8,]

§n €T(yn) = N — Eull £ M(T(Yny1), T(yn))
Yo = (1= pp)un + 11, Pxc[yn — p, 0]

vy € T(up) 0 |vn —vall < M(T(upia), T(un)),

where the sequencég,, }, {5, }, {1, } satisfy some certian conditions.

Algorithm [3.7 is also known as three-step (Noor) iteration process. Clearly Ishikawa and
Mann iterations are special cases of Noor (three-step) iterations. Clearly tor H and a
single-valued operatdF, Algorithm[3.7 collapses to the following three-step iterative method
for solving nonlinear equatiohu = 0 which has been studied in the Banach spaces setting.

AIMAA Vol. 2, No. 1, Art. 16, pp. 1-12, 2005 AIJMAA
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Algorithm 3.8. For a givenu, € H, compute the approximate solutiaf),, by the iterative
schemes

Unt1 = (1 —ap)up, + a,Tw,
Yo = (1 —p)un+ p,Tu,, n=0,12 ...

Algorithm [3.8 is well known three-step (Noor iteration) iterative method which has been
studied extensively in recent years. It is obvious that the three-step iterative method includes
Ishikawa-Mann iterations as special cases. For the equivalence between the Mann-Ishikawa and
multistep iterations in an arbitrary Banach Space, see Rhoades and Saltuz [24].

For a suitable choice of the operators and the sphoane can obtainvarious new and known
methods for solving equilibrium, variational inequality and complementarity problems.

For the convergence analysis of Algorithm|3.1, we need the following result.

Theorem 3.9.Letu € H be a solution of[(2]1) and,,, be the approximate solution obtained
from Algorithm[3.1. IfF(.,.,.) and A(;.) are partially relaxed strongly monotone operators
with constantx > 0 and~ > 0, then

(3.8) s =l < Jlwn = ull® = (1= 2p(e + 7)) [t — wall*
(3.9) lwa —ull® <y = ull* = (1= 2(c+9)8) |y — wall*
(3.10) g = ull® <l = ull* = (1= 2(a + 7)) lyn — ual®
Proof. Letu € K, v € T(u) be a solution of[(2]1). Then

(3.11) pF(v,Tu,v) + pA(us;v —u) > 0, YvekK
(3.12) BF(v,Tu,v) + fA(u;v —u) > 0, YveK
(3.13) pF (v, Tu,v) + vA(u;v —u) > 0, YveK,

wherep > 0, § > 0 andu > 0 are constants.

Now takingv = u,; in (3.11) andv = « in (3.9), we have
(314) pF(u, v, un—H) + pA(u; Un41 — u) = 0

and

pF(wna Mo U,) + <un+1 — Wp, U — un+1>
(315) —|—,0A(U)n,u - un+l) > 0.

Adding (3.14) and[(3.15), we have
<un+1 — Wp, U — un+1> Z _p{F(wn7 Mns U) + F(U, v, un-i-l)}
—p{A(u; upsy1 — u) + A(wp; u — Upi1) }
> —aplunry — wal® = pr{llunss — wall},
(3.16) = —pla+Huper — wall?,

where we have used the fact that., .,.) and A(.; .) are partially relaxed strongly monotone
operators with constants > 0. and~y > 0 respectively.
Settingu = u — u,+1 @andv = u,41 — w,, in (2.8), we obtain

1
(nr = wn,u = tnyr) = S{llw = wall® = o = unia |

(3.17) — ||tns _wn||2}'
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Combining [(3.1B) and (3.17), we have

ltnss = ull® < flwn = ll” = (1 = 2p(a +7)lltnsr — wal®

the required[(3]8).
Takingv = w in (3.4) andv = w,, in (3.12), we have
(3.18) BF(u,v,w,) + fA(u;w, —u) > 0
and
(3.19) BF (Yn, &,y 1) + (W — Ypy o — wy) + LAY u —wy,) > 0.

Adding (3.18) and[(3.19) and rearranging the terms, we have
<wn_yn ) u_wn> Z _6{F<yn7 n7u>+F(u7 V7wn)}
—B{A(yn; u —wy) + A(u; w, — u)}
(3.20) > —Ba+7)lyn — wall?,

sincef'(.,.,.) andA(.;.) are partially relaxed strongly monotone operators with constants)
and~ > 0 respectively.
Now takingv = w,, — y,, andu = u — w, in (2.8), [3.20) can be written as
lu—wal* < flu—yall* = (1= 28(a+ 7)) lyn — wall?,

the required[(3]9).

Similarly, by takingv = v in (3.6) andv = w, in (3.13) and using the partially relaxed
strongly monotonicity of the operatofs(., .,.) andA(.;.), we have
(3.21) (Y — tny u = y) > —p(a +7) [y — unl[*.

Lettingv = y,, — u,,, andu = u — y,, in (2.§), and combining the resultant with (3.21), we have
g = ull® < flu = wal* = (1= 2p(a + )y — wall,
the required[(3.10)s
- . . . 1
Theorem 3.10. LetH be a finite dimensional space. Let p < TeTEnE 0<p< 2(a+v)

and 0<pu< (aﬂ) LetT : H — C(H) be M-Lipschitz continuous operator. Then the
sequencdu,}; given by Algorithnj 3]1 converges to a solutionf (2.1).

Proof. LetueKbeasqutlonol) SInCGO<p<2(a+ O<ﬁ< 7), 0<p<

Sty from -) .), it follows that the sequenc{e}m—unn} {l|u— ynH} {|lu —w,]|}

are nonincreasing and consequertly, }, {v,,} and{w, } are bounded. Furthermore, we have

[ee]

> =20+ p)lwn — unl* < [u—wp|?
n=0
> (=20 +7)8)lyn —wal® < u— w0l
n=0

e’}

S =20a+)llyn — unl® <l — uolf?
n=0

AIJMAA Vol. 2, No. 1, Art. 16, pp. 1-12, 2005 AIJMAA


http://ajmaa.org

MULTIVALUED HEMIEQUILIBRIUM PROBLEMS 9

which implies that

Tim flw, —u,[ =0
Jim |y, —w, || =0
Jim |y, —u, || = 0.
Thus
T fun gy —up|| < M fungy = w,|| + T [y, —w,|
(3.22) + I {lyn — unll = 0.

Let & be the limlit point of{u,}~; a subsequencéu,,} "~ of {u,}  converges tai ¢ H.
Replacingw, andy, by u,, in (3.3), [3.4) and[(3]6), taking the limit; — oo and using
(3.22), we have
F(p,Tt,v)+ Ao —a) > 0, Yvek,
which implies that: solves the multivalued equilibrium problens (2.1) and
tnsr = al|* < flun — al*.
Thus, it follows from the above inequality thét,}, has exactly one limit point and

lim (u,) = 4.

n—oo

It remains to show that € T'(u). From [3.7) and using th&/-Lipschitz continuity ofl’, we
have
o —v|| < M(T'(un), T (u)) < 0l — ul],
which implies that,, — v asn — oo. Now consider
d(v,T(uw) < |lv—wvnl +dv,T(u))
< v = vall + M(T(un), T(u))
< v —vn| +6||luy, —ul] — 0asn — oo

whered(v, T(u)) = inf{||lv—=z| : z € T'(u)} andd > 0 is the M -Lipschitz continuity constant
of the operatofl’. From the above inequality, it follows thd{r, 7'(v)) = 0. This implies that
v € T'(u), sinceT (u) € C(H). This completes the prooi

We now use the auxiliary principle technique to suggest an inertial proximal method for
solving multi-valued equilibrium problems, which was studied and considered by Ndor [12],
[15] for solving multivalued equilibrium problemp (2.6). We remark that the inertial proximal
method includes the proximal method as a special case.

For a givenu €€ K, consider the auxiliary problem of finding € K, 7 € T'(w) such that

(3.23) pF(n, Tu,v) + (w —u—alu—u),v —w) + pAw;v —w) >0, YveK,

wherep > 0 anda > 0 are constants. Note thatif = u, thenw is a solution of[(2.]1). We use
this fact to suggest the following iterative method for solving|(2.1).

Algorithm 3.11. For a givenuy € H, compute the approximate solution by the iterative
schemes:

PF (i1 Tpg1,v)  + (Ungr — Un — (U — Up—1), U — Upi1)
+pA<un+1; v = un+1) Z 07 Vo € K7

Mo € T(wn) o gy = 1]l < M(T(wnsa), T(wn)),
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wherep > 0 anda, > 0 are constants. Algorithrin 3.1L1 is known as the inertial proximal
method.

Note that fora,, = 0, Algorithm[3.1] reduces to:

Algorithm 3.12. For a givenuy € H, compute the approximate solutian ., by the iterative
scheme

PF(TInH; Tun+17 U) + <Un+1 — Up,V — un) + pA(un+1; v = unJrl) Z 07 Vo e K
My € T(wn) = [0pyr = 0l < M(T(wnsa), T (wn)),
which is called the proximal method for solving multivalued hemiequilibrium probler (2.1).

If F(u,v,v) = (v,v—u), then Algorithn{ 3.1]L reduces to:

Algorithm 3.13. For a givenu, € H, compute the approximate solutian ., by the iterative
schemes

(D1t Ungr — Up — AUy — Up1), 0 — Upy1)
FpA(Ung1;0 — Upgr) >0, Vv €K,
My € T(wn) = [0y = 0ll < M(T(wpaa), T(wn))-
which can be written as fad(.;.) =0
g(un-H) = PK[Q(UH) — PMpt1 + O‘n(un - Un—l)]a
M € T(wn) = Mgy = 1l < M(T(wnga), T'(wn)),

which is known as an inertial proximal method for solving the multivalued hemivariational
inequalities[(2.#) and appears to be a new one.

Note fora,, = 0, Algorithm[3.13 reduces to the well known proximal method for solving
multivalued hemivariational inequalities. In a similar way, for suitable and appropriate choices
of the trifunctionF'(., ., .), T"and the spacé, one can obtain a number of new and known itera-
tive methods for solving equilibrium and variational inequality problems. Using the techniques
and ideas of Noor [14], one can study the convergence analysis of Alggrithin 3.12.

4. REGULARIZED HEIMEQUILIBRIUM PROBLEMS

In this section we show that the ideas and techniques developed in the previous sections
can be extended for nonconvex (regularized) hemiequilibrium problems which are defined over
the uniformly prox-regular set& in H. It is known [3] that the uniformly prox-regular sets
are nonconvex and include the convex sets as a special case. For this purpose, we need the
following concepts from nonsmooth analysis, see [2], [3].

Definition 4.1. The proximal normal cone ok atw is given by
NP(K;u) :={¢ € H:u € Pyglu+ a&l},
wherea > 0 is a constant and
Prlu] ={u" € K : dg(u) = ||u— u*[|}.
Heredy (.) is the usual distance function to the subBethat is

die(u) = inf [Jo — ]|

The proximal normal con&*’(K’; u) has the following characterization.
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Lemma 4.1. Let K be a closed subset ifi. Then¢ € N¥(K;u) if and only if there exists a
constanty > 0 such that

(C,v—u) <allv—ul?, YveK.
Definition 4.2. The Clarke normal cone, denoted by (K; u), is defined as
N(K;u) = co[NT(K;u)],
whereco means the closure of the convex hull.

Clarke et al. [[3] have introduced and studied a new class of nonconvex sets, which are
also called uniformly prox-regular sets. This class of uniformly prox-regular sets has played
an important part in many nonconvex applications such as optimization, dynamic systems and
differential inclusions. In particular, we have

Definition 4.3. For a givenr € (0, co], a subsef is said to be normalized uniformly-prox-
regular if and only if every nonzero proximal normal&kbcan be realized by anball, that is,
Vu € K and0 # £ € NP(K;u) with ||€]| = 1, one has

(v —u) < (1/2r)|lv—ul’, YveK.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to
include the class of convex sefsconvex setsC''submanifolds (possibly with boundary) of
H, the images under@"! diffeomorphism of convex sets and many other nonconvex sets; see
[3]. Itis clear that ifr = oo, then uniformr-prox-regularity ofK is equivalent to the convexity
of K. It is known that if K is a uniformlyr-prox-regular set, then the proximal normal cone
NF(K;u) is closed as a set-valued mapping. Thus, we hé¥éK; u) = N (K;u). For sake
of simplicity, we denote N (K;u) = N(K;u) = N”(K;u) and takey = 5. Clearlyy = 0
if and only if r = co.

From now onward, the se&t is ~-prox-regular set, unless otherwise specified.

For a given single-valued trifunctiof'(.,.,.) : H x H x H — C(H), we consider the
problem of findingu € K, v € T'(u), such that

4.1) F(u,v,v) + A(u;v —u) +v|lv —ul[* >0, YoveK,
( gl

which is called themultivalued regularized hemiequilibrium problenNote that fory = 0,

problem [(4.1) is equivalent to problefn (P.1) considered and studied in Sgdtion$ P and 3. Using
essentially the techniques of the previous sections, we can analyze and suggest the three-step
predictor-corrector and inertial type methods for solving the multivalued regularized hemiequi-
librium problems|[(4.11).

Remark 4.1. We would like to mention that the techniques and ideas of this paper can be ex-
tended and generalized for solving mixed quasi general multivalued hemiequilibrium problems
involving nonlinear bifunction. It is an open problem to consider the numerical applications of

these methods.
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