ON THE ULAM STABILITY FOR EULER-LAGRANGE TYPE QUADRATIC FUNCTIONAL EQUATIONS

MATINA JOHN RASSIAS AND JOHN MICHAEL RASSIAS

Received 16 November, 2004; accepted 2 February, 2004; published 30 May, 2005.

STATISTICS AND MODELLING SCIENCE, UNIVERSITY OF STRATHCLYDE, LIVINGSTONE TOWER, 26 RICHMOND STR, GLASGOW, UK, G1 1XH

PEDAGOGICAL DEPARTMENT, E. E., NATIONAL AND CAPODISTRIAN UNIVERSITY OF ATHENS, SECTION OF MATHEMATICS AND INFORMATICS, 4, AGAMEMNONOS STR, AGHIA PARASKEVI, ATHENS 15342, GREECE

ABSTRACT. In 1940 (and 1968) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D.H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1951 D. G. Bourgin has been the second author treating the Ulam problem for additive mappings. In 1978 according to P.M. Gruber this kind of stability problems is of particular interest in probability theory and in the case of functional equations of different types. In 1982-2004 we established the Hyers-Ulam stability for the Ulam problem for different mappings. In 1992-2000 J.M. Rassias investigated the Ulam stability for Euler-Lagrange mappings. In this article we solve the Ulam problem for Euler-Lagrange type quadratic functional equations. These stability results can be applied in mathematical statistics, stochastic analysis, algebra, geometry, as well as in psychology and sociology.

Key words and phrases: Ulam stability, Euler-Lagrange type mapping, Quadratic equation.

2000 Mathematics Subject Classification: Primary 39B. Secondary 26D.
1. Introduction

In 1940 (and 1968) S. M. Ulam [28] proposed the Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?”

In particular he stated the stability question:

“Let \(G_1 \) be a group and \(G_2 \) a metric group with the metric \(\rho (\cdot, \cdot) \). Given a constant \(\delta > 0 \), does there exist a constant \(c > 0 \) such that if a mapping \(f : G_1 \to G_2 \) satisfies

\[
\rho (f(xy), f(x)f(y)) < c \quad \text{for all } x, y \in G_1,
\]

then a unique homomorphism \(h : G_1 \to G_2 \) exists with

\[
\rho (f(x), h(x)) < \delta \quad \text{for all } x \in G_1?
\]

In 1992-2000 the second author investigated the Ulam problem for Euler-Lagrange mappings.

In this article we solve the Ulam stability problem for Euler-Lagrange type quadratic functional equations.

Throughout this paper, let \(X \) be a real normed space and \(Y \) be a real Banach space in the case of functional inequalities, as well as let \(X \) and \(Y \) be real linear spaces for functional equations.

Let us introduce the Euler-Lagrange type quadratic functional equation

\[
Q (m_1a_1x_1 + m_2a_2x_2) + m_1m_2Q (a_2x_1 - a_1x_2)
= (m_1a_1^2 + m_2a_2^2) [m_1Q(x_1) + m_2Q(x_2)]
\]

with mappings \(Q : X \to Y \), for all \(x_1, x_2 \in X \), and any fixed pair \((a_1, a_2)\) of reals \(a_i \neq 0 \) and any fixed pair \((m_1, m_2)\) of positive reals \(m_i (i = 1, 2) : 0 < m = \frac{m_1 + m_2}{m_1m_2+1} (m_1a_1^2 + m_2a_2^2) \neq 1 \).

Definition 1.1. A mapping \(Q : X \to Y \) is called Euler-Lagrange type quadratic, if the above-mentioned functional equation (1.1) holds for every \((x_1, x_2, \ldots, x_p) \in X^p\) with an arbitrary but fixed \(p = 2, 3, 4, \ldots \)

In this paper, we establish an approximation of approximately Euler-Lagrange type quadratic mappings \(f : X \to Y \) by Euler-Lagrange type quadratic mappings \(Q : X \to Y \), such that the corresponding functional inequality

\[
\| f (m_1a_1x_1 + m_2a_2x_2) + m_1m_2f (a_2x_1 - a_1x_2)
= (m_1a_1^2 + m_2a_2^2) [m_1f(x_1) + m_2f(x_2)] - c \leq c
\]

holds with a constant \(c \geq 0 \) (independent of \(x_1, x_2 \in X \)).
It is useful for the following, to observe that, from (1.1) with \(x_1 = x_2 = 0 \), and \(0 < m \neq 1 \), we get \((m_1 m_2 + 1) |1 - m| Q(0) = 0\), or

\[
Q(0) = 0.
\]

Similarly, from (1.2), one finds \((m_1 m_2 + 1) |1 - m| \|f(0)\| \leq c\), or

\[
\|f(0)\| \leq \frac{c}{(m_1 m_2 + 1) |1 - m|} = \frac{c}{m_1 m_2 + 1}
\]

\[
\begin{cases}
\frac{1}{m-1}, & \text{if } m > 1 \\
\frac{1}{1-m}, & \text{if } 0 < m < 1.
\end{cases}
\]

Let us denote

\[
\overline{Q}(x) = m_0 \begin{cases}
m \left[\frac{m_1 Q \left(\frac{a_i x}{m_0} \right) + m_2 Q \left(\frac{a_x}{m_0} \right)}{m} \right], & \text{if } m > 1 \\
\frac{Q(m_1 a_i x) + m_1 m_2 Q(a_x)}{m}, & \text{if } 0 < m < 1,
\end{cases}
\]

and \(b_i = \frac{a_i}{m} (i = 1, 2) \) and \(m_0 = \frac{(m_1 + m_2)}{(m_1 m_2 + 1)} \), as well as

\[
\overline{Q}(x) = \frac{1}{m_0 m_1} \begin{cases}
\frac{Q(m_1 a_i x) + m_1 m_2 Q(a_x)}{m}, & \text{if } m > 1 \\
m \left[Q(m_1 b_i x) + m_1 m_2 Q(b_x) \right], & \text{if } 0 < m < 1
\end{cases}
\]

for all \(x \in X \).

Definition 1.2. Let \(X \) and \(Y \) be real linear spaces and \(m > 1 \). Then the following equation

\[
F^a(Q) = Q(m_1 a_1 x) + m_1 m_2 Q(a_2 x) - m_1^2 m_1 \left[m_1 Q \left(\frac{a_1}{m_0} x \right) + m_2 Q \left(\frac{a_2}{m_0} x \right) \right] = 0,
\]

is called fundamental functional equation of first type. This (1.7) is equivalent to

\[
(M^a(Q)) = \frac{F^a(Q)}{m_0 m_1 m} = \overline{Q}(x) - \overline{Q}(x) = 0, m > 1.
\]

Note that if \(X \) and \(Y \) are real normed linear spaces and \(m > 1 \), then

\[
\|F^a(f)\| \leq \varepsilon_1,
\]

with a constant \(\varepsilon_1 \geq 0 \) (independent of \(x_1, x_2 \in X \)). This inequality (1.9) is equivalent to

\[
\left(\|M_a(f)\| = \right) \frac{1}{m_0 m_1 m} \|F_a(f)\| = \left\| \overline{f}(x) - \overline{f}(x) \right\| \leq \frac{\varepsilon_1}{m_0 m_1 m}, m > 1.
\]

Definition 1.3. Let \(X \) and \(Y \) be real linear spaces, \(b_i = \frac{a_i}{m} (i = 1, 2) \) and \(0 < m < 1 \). Then

\[
F^b(Q) = Q(m_1 b_1 x) + m_1 m_2 Q(b_2 x) - m_1^2 m_1 \left[m_1 Q \left(\frac{b_1}{m_0} x \right) + m_2 Q \left(\frac{b_2}{m_0} x \right) \right] = 0.
\]

is called fundamental functional equation of second type. This (1.11) is equivalent to

\[
(M^b(Q)) = \frac{m}{m_0 m_1} F^b(Q) = \overline{Q}(x) - \overline{Q}(x) = 0, 0 < m < 1.
\]
Note that if \(X \) and \(Y \) are real normed linear spaces and \(0 < m < 1 \), then

\[
\| F^b (f) \| \leq \varepsilon_2,
\]

with a constant \(\varepsilon_2 \geq 0 \) (independent of \(x_1, x_2 \in X \)). This inequality (1.13) is equivalent to

\[
(\| M^b (f) \| = \frac{m}{m_0 m_1} \| F^b (f) \| = \| \tilde{f}(x) - \bar{f}(x) \|) \leq \frac{m}{m_0 m_1} \varepsilon_2, \quad 0 < m < 1.
\]

Now, claim that for \(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, ...\} \)

\[
Q(x) = \begin{cases}
 m^{-2n}Q(m^nx), & \text{if } m > 1 \\
 m^{2n}Q(m^{-n}x), & \text{if } 0 < m < 1
\end{cases}
\]

holds for all \(x \in X \).

Let us consider first the case \(m > 1 \). For \(n = 0 \), it is trivial. From (1.3), (1.5) and (1.1), with \(x_i = \frac{a_i}{m_0} x \) \((i = 1, 2)\), we obtain

\[
Q(mx) = mm_0 \left[m_1 Q\left(\frac{a_1}{m_0} x \right) + m_2 Q\left(\frac{a_2}{m_0} x \right) \right],
\]

or

\[
Q(x) = m^{-2}Q(mx).
\]

Besides from (1.3), (1.6) and (1.1), with \(x_1 = x, x_2 = 0 \), one gets

\[
Q(m_1 a_1 x) + m_1 m_2 Q(a_2 x) = mm_0 m_1 Q(x),
\]

or

\[
Q(x) = Q(x).
\]

Therefore from (1.8), (1.16) and (1.17) we have

\[
Q(x) = m^{-2}Q(mx),
\]

which is (1.15) for \(n = 1 \), and \(m > 1 \). Assume (1.15), \(m > 1 \), is true and from (1.18), with \(m^n x \) on place of \(x \), we get :

\[
Q(m^{n+1}x) = m^2Q(m^nx) = m^2(m^n)^2 Q(x) = (m^n)^2 Q(x).
\]

This formula (1.19), by induction, proves formula (1.15) for \(m > 1 \).

Let us consider now the case \(0 < m < 1 \). Similarly from (1.3), (1.5) and (1.1), with \(x_i = \frac{a_i}{m_0} x \) \((i = 1, 2)\), we obtain

\[
Q(x) = mm_0 \left[m_1 Q\left(\frac{a_1}{m_0} x \right) + m_2 Q\left(\frac{a_2}{m_0} x \right) \right],
\]

or

\[
Q(x) = Q(x).
\]

Besides from (1.3), (1.6) and (1.1), with \(x_1 = \frac{x}{m}, x_2 = 0 \), one gets

\[
Q\left(\frac{m_1 a_1}{m} x \right) + m_1 m_2 Q\left(\frac{a_2}{m} x \right) = mm_0 m_1 Q\left(\frac{x}{m} \right),
\]

or

\[
Q(x) = m^2 Q(m^{-1}x).
\]
Therefore from (1.12), (1.20) and (1.21) we have

\[(1.22)\quad Q(x) = m^2 Q(m^{-1}x),\]

which is (1.15) for \(n = 1\), and \(0 < m < 1\).

Assume (1.15), \(0 < m < 1\), is true and from (1.22), with \(m^{-n}x\) on place of \(x\), we get:

\[(1.23)\quad Q(m^{-(n+1)}x) = m^{-2}Q(m^{-n}x) = m^{-2}(m^{-n})^2 Q(x) = (m^{-(n+1)})^2 Q(x).\]

This formula (1.23), by induction, proves formula (1.15) for \(0 < m < 1\).

2. ULAM STABILITY FOR EULER-LAGRANGE TYPE QUADRATIC FUNCTIONAL EQUATIONS

Theorem 2.1. Let \(X\) and \(Y\) be real normed linear spaces. Assume that \(Y\) is complete. Take \(0 < m = \frac{m_1+m_2}{m_1m_2+1} (m_1a_1^2 + m_2a_2^2) \neq 1\) for any fixed non-zero reals \(a_i\) and positive reals \(m_i\) \((i = 1, 2)\). Assume in addition that mappings \(Q : X \rightarrow Y\) and \(f : X \rightarrow Y\) satisfy the Euler-Lagrange type functional equation (1.1) and inequality (1.2), respectively, and conditions

\[(2.1)\quad \overline{Q}(x) = Q(x),\]

and

\[(2.2)\quad \|\overline{f}(x) - f(x)\| \leq \frac{1}{m_0m_1} \left\{ \begin{array}{ll} \frac{\varepsilon_1}{m}, & \text{if } m > 1 \\ m\varepsilon_2, & \text{if } 0 < m < 1, \end{array} \right.\]

with constants \(\varepsilon_1, \varepsilon_2 \geq 0\) (independent of \(x_1, x_2 \in X\)), and a positive constant \(m_0 = \frac{m_1m_2+1}{m_1m_2+1}\).

Define

\[(2.3)\quad f_n(x) = \left\{ \begin{array}{ll} m^{-2n}f(m^nx), & \text{if } m > 1 \\ m^{2n}f(m^{-n}x), & \text{if } 0 < m < 1, \end{array} \right.\]

for all \(x \in X\) and \(n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}\). Then the limit

\[(2.4)\quad Q(x) = \lim_{n \rightarrow \infty} f_n(x)\]

exists for all \(x \in X\) and \(Q : X \rightarrow Y\) is the unique Euler-Lagrange type quadratic mapping, such that

\[(2.5)\quad \|f(x) - Q(x)\|

\leq \frac{1}{m_0m_1 (m_1m_2 + 1)} \left(m - 1 \right) \left(m_1m_2 + 1 \right) \left(m - 1 \right) \varepsilon

= \delta\]

holds for all \(x \in X\), with non-negative constants \(c\) and

\[(2.6)\quad \varepsilon = \left\{ \begin{array}{ll} \varepsilon_1, & \text{if } m > 1 \\ \varepsilon_2, & \text{if } 0 < m < 1 \end{array} \right. \quad \text{independent of } x \in X.\]

Proof. Now claim for \(n \in \mathbb{N}_0\) that inequality

\[(2.7)\quad \|f(x) - f_n(x)\| \leq \left\{ \begin{array}{ll} \delta_1 (1 - m^{-2n}), & \text{if } m > 1 \\ \delta_2 (1 - m^{2n}), & \text{if } 0 < m < 1, \end{array} \right.\]
holds for all \(x \in X \), where \(\delta_1 = \delta \) for \(m > 1 \) and \(\delta_2 = \delta \) for \(0 < m < 1 \):

\[
\delta_1 = \left\{ \left(m + m_0 m_1 \right) \left(m_1 m_2 + 1 \right) \left(m - 1 \right) + m_0 m_2 \left[m^2 - m_1^2 \right] \right\} c + m \left(m_1 m_2 + 1 \right) \left(m - 1 \right) \varepsilon_1
\]

\[
\delta_2 = \left\{ \left(m + m_0 m_1 \right) \left(m_1 m_2 + 1 \right) \left(1 - m \right) + m_0 m_2 \left[m_1^2 - m^2 \right] \right\} c + m \left(m_1 m_2 + 1 \right) \left(1 - m \right) \varepsilon_2
\]

(2.8)

are two non-negative constants independent of \(x \in X \). For \(n = 0 \), it is trivial.

Assume \(m > 1 \). From (1.2), with \(x_i = a_k b_i x \), \((i = 1, 2) \), we obtain

\[
\left\| f(m x) + m_1 m_2 f(0) - c m x \right\| \leq c,
\]

or

\[
\left\| f(x) - m^{-2} f(m x) - \frac{m_1 m_2}{m^2} f(0) \right\| \leq \frac{c}{m},
\]

(2.9)

where \(\overline{f}(x) = \frac{m_0 m}{m} \left[m_1 f(a_1 x) + m_2 f(a_2 x) \right] \). Besides, from (1.2), with \(x_1 = x, x_2 = 0 \), we get \(\left\| f(m_1 a_1 x) + m_1 m_2 f(a_2 x) - c m x \right\| \leq c \), or

\[
\left\| f(x) - \overline{f}(x) + \frac{m_2}{m_1} f(0) \right\| \leq \frac{c}{m_0 m_1 m},
\]

(2.10)

where \(\overline{f}(x) = \frac{1}{m_0 m_1 m} \left[f(m_1 a_1 x) + m_1 m_2 f(a_2 x) \right] \). Therefore from (1.4), (2.2), (2.9), (2.10) and triangle inequality we have

\[
\left\| f(x) - m^{-2} f(m x) \right\| \leq \delta_1 \left(1 - m^{-2} \right).
\]

(2.11)

Assume \(0 < m < 1 \). Similarly, from (1.2), with \(x_i = a_k b_i x \), \((i = 1, 2) \), we obtain

\[
\left\| f(x) + m_1 m_2 f(0) - c m x \right\| \leq c,
\]

or

\[
\left\| f(x) - \overline{f}(x) + m_1 m_2 f(0) \right\| \leq c,
\]

(2.12)

where \(\overline{f}(x) = m_0 m \left[m_1 f(b x) + m_2 f(b x) \right] \). Besides, from (1.2), with \(x_1 = x, x_2 = 0 \), we get \(\left\| f(m_1 b_1 x) + m_1 m_2 f(b_2 x) - c m x \right\| \leq c \), or

\[
\left\| \overline{f}(x) - m^{-2} f(x^{-1}) - \frac{m_2}{m_1} m^2 f(0) \right\| \leq \frac{c}{m_0 m_1},
\]

(2.13)
From (2.11), with \(\frac{m}{m_0m_1} \leq m \leq m_0m_1\), and triangle inequality we have
\[
\| f(x) - m^2 f(m^{-1}x) + \frac{m_2(m_1^2 - m^2)}{m_1} f(0) \|
\leq \| f(x) - f_n(x) \| + \| f_n(x) - f(x) \| + \| f(x) - m^2 f(m^{-1}x) - \frac{m_2}{m_1} m^2 f(0) \|
\leq \frac{(m + m_0m_1)c + m\varepsilon_2}{m_0m_1},
\]
or
(2.14) \[\| f(x) - m^2 f(m^{-1}x) \| \leq \delta_2 (1 - m^2).\]

Assume \(m > 1\). From (2.11), with \(m^i x \ (i = 1, 2, \ldots, n)\), on place of \(x\), and the triangle inequality, we have, without induction
\[
\| f(x) - m^2 f(m^{-1}x) \| = \| m^{2n} f(m^n x) \|
\leq \| f(x) - m^{-2n} f(m^n x) \|
\|
\| f(x) - m^{-2} f(mx) \| + m^{2-2} \| f(mx) - m^{-2} f(m^2 x) \|
\|
\| f(m^{-1}x) - m^{-2} f(m^n x) \|
\leq \delta_1 (1 + m^{-2} + \ldots + m^{-2(n-1)}) (1 - m^{-2}) = \delta_1 (1 - m^{-2n}).
\]

Similarly if we assume \(0 < m < 1\), we have from (2.14) that
\[
\| f(x) - f_n(x) \| = \| f(x) - m^{2n} f(m^{-n} x) \|
\leq \delta_2 (1 + m^{2} + \ldots + m^{2(n-1)}) (1 - m^{2}) = \delta_2 (1 - m^{2n})
\]
Therefore we prove inequality (2.7).

Claim now that the sequence \(\{f_n(x)\}\) converges. To do this it suffices to prove that it is a Cauchy sequence. Inequality (2.7) is involved.
In fact, if \(m > 1\) and \(i > j > 0\), and \(h_1 = m^j x\), we have
\[
\| f_i(x) - f_j(x) \|
= \| m^{-2j} \| m^{-2(i-j)} f(m^{-j} h_1) - f(h_1) \|
\leq \delta_1 m^{-2j} (1 - m^{-2(i-j)})
= \delta_1 (m^{-2j} - m^{-2i})
\leq \delta_1 m^{-2j} \quad \text{as} \quad j \rightarrow \infty.
\]
Similarly, if \(0 < m < 1\), and \(h_2 = m^{-j} x\), we have:
\[
\| f_i(x) - f_j(x) \|
= \| m^{-2j} \| m^{-2(i-j)} f(m^{-i} h_2) - f(h_2) \|
< \delta_2 m^{2j} \quad \text{as} \quad j \rightarrow \infty.
\]
Thus we can define a mapping \(Q : X \rightarrow Y\), by (2.4).
Claim that from (1.2) and (2.4) we can get (1.1), or equivalently that the afore-mentioned well-defined mapping \(Q : X \rightarrow Y\) is Euler-Lagrange type quadratic. In fact, it is clear from the functional inequality (1.2) and the limit (2.4) with \(m > 1\) that
\[
m^{-2n} \| f(m_1 a_1 m^n x_1 + m_2 a_2 m^n x_2) + m_1 m_2 f(a_2 m^n x_1 - a_1 m^n x_2) \|
= (m_1 a_1^2 + m_2 a_2^2) \| m_1 f(m^n x_1) + m_2 f(m^n x_2) \| \leq m^{-2n} c,
\]

\[\| f_n (m_1 a_1 x_1 + m_2 a_2 x_2) + m_1 m_2 f_n (a_2 x_1 - a_1 x_2) - (m_1 a_1^2 + m_2 a_2^2) [m_1 f_n (x_1) + m_2 f_n (x_2)] \| \leq m^{-2n} c \to 0, \]

or

\[\| Q(m_1 a_1 x_1 + m_2 a_2 x_2) + m_1 m_2 Q(a_2 x_1 - a_1 x_2) - (m_1 a_1^2 + m_2 a_2^2) [m_1 Q(x_1) + m_2 Q(x_2)] \| = 0 \]

or the mapping \(Q \) satisfies (1.1) if \(m > 1 \). Similarly, from (1.2) and (2.4) we get that \(Q \) satisfies (1.1) if \(0 < m < 1 \). Therefore \(Q \) satisfies (1.1) if \(0 < m \neq 1 \), completing the proof that \(Q \) is Euler-Lagrange type quadratic functional mapping in \(X \).

It is now clear from inequality (2.7) with \(n \to \infty \), as well as formula (2.4) that the required inequality (2.5) holds in \(X \). This completes the existence proof of the above-mentioned Theorem 2.1.

We claim that \(Q \) is unique. Let \(Q' : X \to Y \) be another Euler-Lagrange type quadratic mapping satisfying (2.5). Then \(Q' = Q \).

In fact, assume \(m > 1 \). Remember both \(Q \) and \(Q' \) satisfy (1.15). Then for every \(x \in X \) and \(n \in \mathbb{N}_0 \),

\[\| Q(x) - Q'(x) \| \leq m^{-2n} \{ \| Q(m^n x) - f(m^n x) \| + \| Q'(m^n x) - f(m^n x) \| \} \leq 2 \delta m^{-2n} \to 0, \]

or \(Q(x) = Q'(x) \). Similarly we establish uniqueness results if \(0 < m < 1 \). This completes the proof of the uniqueness and the Ulam stability for Euler-Lagrange type quadratic functional equations of the form (1.1). ☐

Corollary 2.2. Let \(X \) and \(Y \) be real normed linear spaces. Assume that \(Y \) is complete. Take \(m_1 = m_2 = 1 : 0 < m = a_1 + a_2 \neq 1 \) and \(m_0 = 1 \) for any fixed non-zero reals \(a_i \) (\(i = 1, 2 \)). Define functions \(f_n = f_n (x) \) as in (2.3). Then the limit in (2.4) exists for all \(x \in X \) and \(Q : X \to Y \) is the unique Euler-Lagrange type quadratic mapping such that

\[\| f (x) - Q(x) \| \leq \frac{3}{2} \frac{1}{|m - 1|} c (= \delta) \]

for all \(x \in X \) with constant \(c \geq 0 \) (independent of \(x \in X \)).

Note that in this case there is no constant \(c \) in the right-hand side of (2.15) because \(\bar{f}(x) = \bar{f}(x) \). Besides \(\delta \) given by (2.15) is sharper than the corresponding one in \([21, 22] \) which is of the form

\[\delta = \frac{1}{2} \frac{c}{(m - 1)^2 (m + 1)} \begin{cases} 3m^2 - 1, & \text{if } m > 1 \\ 3 - m^2, & \text{if } 0 < m < 1 \\ 3m^2 - 3, & \text{if } m > 1 \\ 3 - 3m^2, & \text{if } 0 < m < 1 \end{cases} \]

\[\geq \frac{1}{2} \frac{1}{(m - 1)^2 (m + 1)} \cdot \frac{1}{|m - 1|} c. \]
If $a_1 = a_2 = 1$, then $m = 2$ and from (2.15) we have $\delta = \frac{3c}{2}$. We note that in this case a sharper constant $\delta = \frac{c}{2}$ may be found, if new substitution $x_1 = x_2 = x$ is applied in (1.2), because\[f(x) = f(x) = f(x) \]

REFERENCES

