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ABSTRACT. The Henon and Lozi maps are among the most widely used in physics applications
due to their ability to generate two chaotic attractors for specific values of their bifurcation pa-
rameters. In this study, I propose a new 2D smooth piecewise quadratic map created by merging
the two maps. We demonstrate that this map exhibits both strong and fragile chaotic behavior
for varying values of the bifurcation parametersa andb. The new map reveals distinct chaotic
attractors, displaying both strong and fragile chaos for certain values of these parameters. Con-
sequently, this map produces two chaotic attractors one fragile and the other strong highlighting
the rich diversity of dynamic behavior.
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1. I NTRODUCTION

Quadratic smooth maps and piecewise smooth maps are fundamental tools in mathemati-
cal modeling, offering powerful frameworks for analyzing complex dynamical systems across
physics, engineering, economics, and computational sciences. Due to their ability to capture
nonlinear phenomena, such as chaos, bifurcations, and fractal structures, these maps have at-
tracted significant research interest.

For instance, Zeraoulia & Sprott [1] introduced a novel piecewise smooth planar map that
generalizes the Hénon and Lozi systems, unifying them as extreme cases within a broader class
of chaotic transitions. Similarly, Menasri [2] investigated Lozi maps incorporating the max
function, demonstrating robust chaotic behavior under specific parameter regimes. In econom-
ics, discontinuous 2D maps have been employed to model growth dynamics with optimal sav-
ings and behavioral shifts [10], where stability conditions for fixed points (Solow and Pasinetti
equilibria) were derived, alongside analyses of bifurcation structures and chaotic attractors.

These studies underscore the versatility of smooth and piecewise smooth maps in characteriz-
ing diverse dynamical behaviors, motivating further exploration of their theoretical and applied
implications.

2. BORDER COLLISION BIFURCATIONS

Border collision bifurcations (BCBs) [9] occur in piecewise smooth dynamical systems,
where the state space is partitioned into distinct regions governed by different smooth func-
tions. When a system trajectory crosses the boundary between these regions, the dynamics
may undergo a sudden qualitative change, leading to a bifurcation. Unlike classical bifurcations
in smooth systems, BCBs arise specifically due to discontinuities in the system’s Jacobian at
the boundary, making them unique to piecewise smooth models. The triggering parameter for
BCBs is often linked to the system’s initial conditions or the parameters defining the boundary
itself.

BCBs are broadly classified into two types:

Period-Adding Bifurcations: As a parameter varies, periodic orbits emerge at the bound-
ary, with their period incrementally increasing (e.g., period-doubling or tripling cascades). This
results in a structured sequence of stable periodic solutions.

Period-Increasing Bifurcations: The system transitions from chaotic to periodic behavior,
with the orbit period growing monotonically as the parameter changes.

These bifurcations are pivotal in chaos theory and nonlinear dynamics, enabling phenomena
such as the abrupt onset of chaos, stabilization of periodic orbits, and complex attractor meta-
morphoses. Their practical relevance spans engineering applications, including power elec-
tronics, digital control systems, and communication networks, where piecewise smooth models
describe switching behaviors. By elucidating the mechanisms of BCBs, researchers gain critical
insights into system stability and controllability, advancing both theoretical understanding and
real-world problem-solving in complex dynamical systems.
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3. ROBUST AND FRAGILE CHAOS IN DYNAMICAL SYSTEMS

Robust chaosdescribes a form of chaotic dynamics that remains stable under variations in
system parameters, initial conditions, or structural perturbations. This resilience arises from
the presence of structurally stable attractors, which maintain chaotic behavior despite external
disturbances. Key features of robust chaos include:

1. Persistence of chaos across a broad parameter range,
2. Insensitivity to perturbations,
3. Frequent occurrence in systems with piecewise-smooth dynamics or strong nonlineari-

ties, such as the Lozi and Belykh maps.
In contrast,fragile chaos is highly sensitive to minor system modifications, with chaotic

behavior collapsing into periodic or fixed-point dynamics under slight parameter variations.
This form of chaos emerges in systems where attractors lack structural stability and depend
critically on precise configurations. Characteristics include:

1. Rapid disappearance of chaos under perturbations,
2. Extreme dependence on specific parameter values,
3. Prevalence in finely tuned systems, such as weakly dissipative or high-dimensional os-

cillators. The distinction between these regimes highlights the interplay between non-
linearity, stability, and parametric sensitivity in chaotic systems.

4. A NEW TWO -DIMENSIONAL QUADRATIC PIECEWISE -SMOOTH MAP

The Henon map is a prototypical two-dimensional, invertible iterated map that exhibits a
chaotic attractor [5], [7]. It serves as a simplified model of the Poincaré map for the Lorenz
system, which was proposed by M. Henon in 1976 and is given by:

H(x; y) =

(
1− ax2 + by

x

)
A modification of the first equation in the Henon map was made by Lozi in 1980, who

replaced thex2 term with|x|. This modification resulted in a new piecewise smooth map, given
by:

L(x; y) =

(
1− a |x|+ by

x

)
It has been proven that both maps exhibit chaotic behavior [1], [8]. Their chaotic attractors

are illustrated in Figures (1) and (2).

Figure 1: The chaotic attractor of Henon,a = 1.4, b = 0.3..
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Figure 2: The chaotic attractor of Lozi,a = 1.7, b = 0.5.

Consider the following two-dimensional quadratic Piecewise-Smooth map:

(4.1) M(x; y) =

(
1− a(|x|+ x2) + by

x

)
,

wherea and b are positive parameters,|x| represents the absolute value function, and the
map is piecewise smooth due to the non-differentiability of the absolute value term. The system
exhibits a border collision bifurcation when the trajectory of the system crosses the boundary
between different regions of behavior, causing a qualitative change in the system’s dynamics.

We can express the map (1) in the following form:

(4.2) M(x; y) =


(

1− ax + by − ax2

x

)
if (x; y) ∈ RA(

1 + ax + by − ax2

x

)
if (x; y) ∈ RB

,

whereRA = {(x; y) ∈ R2 : x ≥ 0} , RB = {(x; y) ∈ R2 : x ≤ 0} .
The map(1) has two fixed points, one onRB (left side) and the other onRA (right side),

following the sign of parametera. The fixed points are given by the following cases:

Case.1: if a < 0,

PA

(
−(1+a−b)+

√
(1+a−b)2+4a

2a
;
−(1+a−b)+

√
(1+a−b)2+4a

2a

)
,

PB

(
−(1−a−b)−

√
(1−a−b)2+4a

2a
;
−(1−a−b)−

√
(1−a−b)2+4a

2a

)
.

Case.2: if a > 0

PA

(
−(1+a−b)−

√
(1+a−b)2+4a

2a
;
−(1+a−b)−

√
(1+a−b)2+4a

2a

)
,

PB

(
−(1−a−b)+

√
(1−a−b)2+4a

2a
;
−(1−a−b)+

√
(1−a−b)2+4a

2a

)
.

We note that the nature of the border collision bifurcation depends on the local behavior of
the map in the neighborhood of the fixed point [9], [4]. Therefore, we focus on the piecewise
linear approximation on the sides of the border (RA andRB). It has been shown that a normal
form for the piecewise system in the neighborhood of a fixed point on the border (i.e.,PA on
RA andPB onRB) can be expressed as:
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(4.3)

(
xn+1

yn+1

)
=


(

τA 1
−δA 0

) (
xn

yn

)
+ µ

(
1
0

)
, xn ≤ 0(

τB 1
−δB 0

) (
xn

yn

)
+ µ

(
1
0

)
, xn ≥ 0

Whereµ is a bifurcation parameter andτA, τB, δA, δB are the traces and determinants for the
two matrix(3) and(4) evaluated toPA andPB respectively. Hence, we have

(4.4)

 τA = −a
τB = a
δA = δB = −b

5. CLASSIFICATION OF BORDER COLLISION BIFURCATIONS

The following two tables shows the classification of the border collision bifurcations[9] of
the map(1) according to the two bifurcation parametersa andb.

Case.1: if a < 0,

Fixed points Type Condition
PA a flip saddle. 1− b < a < 0, b > 1.
PB a flip saddle. a < min(0, b− 1).

PB a flip attractors. b− 1 < a < −2
√
−b, b ≤ 0, b 6= −1.

PA, PB a spiral attractor. −2
√
−b < a < 0, b < 0.

PA a regular attractor.b− 1 < a < −2
√
−b, b ≤ 0, b 6= −1.

PA a regular saddle. a < min(0, b− 1).
PB a regular saddle. 1− b < a < 0, b > 1.

Case.2: if a > 0,

Fixed points Type Condition
PA a flip saddle. a > max(1− b; 0).
PB a flip saddle. 0 < a < b− 1, b > 1.

PA a flip attractors. 2
√
−b < a < 1− b, b ≤ 0, b 6= −1.

PA, PB a spiral attractor. 0 < a < 2
√
−b, b < 0.

PB a regular attractor.2
√
−b < a < 1− b, b ≤ 0, b 6= −1.

PA a regular saddle. 0 < a < b− 1, b > 1.
PB a regular saddle. a > max(1− b, 0).

5.1. Numerical simulation . The numerical simulation using MATLAB reveals that the map
(1) exhibits chaotic behavior depending on the values of the two bifurcation parameters,a and
b. Whena = 0.8 and b = 0.3, with the initial condition(0.1; 0.1), a new chaotic attractor
is observed, as shown in figures (3) and (4). This attractor exhibits strong chaotic behavior,
indicating robust chaos. The Lyapunov exponents areλ1 = 0.495 andλ2 = −1.699. The
Lyapunov dimension of the map (1) is calculated as follows:DL = 1 + λ1

|λ2| ≈ 1.291.
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Figure 3: The chaotic attractor of the map(1) for a = 0.8, b = 0.3.

Figure 4: Time seriesxn corresponding to the initial condition(0, 0) for a = 0.8, b = 0.3.

For the same initial condition and witha = 0.7 andb = 0.5, we observe another new chaotic
attractor, as shown in figures (5) and (6). This attractor also exhibits delicate chaotic behavior,
indicating fragile chaos. Additionally, we calculated two Lyapunov exponents with valuesλ1 =
0.12 andλ2 = −0.82. Therefore, the Lyapunov dimension is approximatelyDL ≈ 1.146.
These results confirm that the map (1) exhibits high sensitivity to the initial conditions, and
its attractor is strange [6]. Furthermore, the numerical simulations show that after a sufficient
number of iterations, the attractor remains bounded due tomax(xn) = max(yn) < 1.5 and
min(xn) = min(yn) > −2.
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Figure 5: The chaotic attractor of the map(1) for a = 0.7, b = 0.5.

Figure 6: Time seriesxn corresponding to the initial condition(0, 0) for a = 0.7, b = 0.5.

Furthermore, for two values of the parameterb, namelyb = 0.3 and b = 0.5, with 0 <
a < 1, numerical simulations yield the bifurcation diagrams shown in Figures (7) and (8).
These diagrams illustrate that the dynamics of map (1) vary significantly with changes in the
bifurcation parameter a, displaying different regimes of stability, bifurcation structures, and
chaotic behavior. In particular, Figure (7), corresponding tob = 0.3, demonstrates robust chaos,
characterized by a persistent chaotic regime with no periodic windows over the considered range
of a. In contrast, Figure (8), associated withb = 0.5, exhibits fragile chaos, where chaotic
regions are interspersed with periodic windows, indicating sensitive dependence on parameter
variations.
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Figure 7: The diagram bifurcation of the map(1) for 0 < a < 1, b = 0.3.

Figure 8: The diagram bifurcation of the map(1) for 0 < a < 1, b = 0.5.

On the other hand, the0 − 1 test for chaos confirms chaotic dynamics in both parameter
configurations:a = 0.8, b = 0.3 anda = 0.7, b = 0.5.

In the first case(a = 0.8, b = 0.3), the ln(Pn) curve displays a pronounced asymptotic
growth with a slope of approximately1.26, indicating strong quadratic diffusion. This rapid
divergence of nearby trajectories is a hallmark of deterministic chaos and reflects robust chaos,
as depicted in Figure (9).

In the second case(a = 0.7, b = 0.5), theln(Pn) curve also grows with a positive slope of
about0.71, confirming the presence of chaotic behavior. However, the reduced slope and less
pronounced diffusion suggest fragile chaos, where chaotic behavior coexists with intermittent
stability, as shown in Figure (10).

In both scenarios, the system exhibits long-term unpredictability due to its sensitivity to initial
conditions, despite being governed by deterministic rules. These observations underline the
contrasting natures of robust and fragile chaos under different parameter regimes.
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Figure 9: The 0-1 test for chaos of the Map (1):a = 0.8 andb = 0.3.

Figure 10: The 0-1 test for chaos of the Map (1):a = 0.7 andb = 0.5.

5.2. Some concrete applications where map (1) can be utilized and adapted to the real
world. The concealment of information is a major concern for countries worldwide.
Consequently, various encryption techniques have been developed to render information in-
comprehensible to unauthorized parties lacking access to a secret key. These techniques find
applications in both commercial and personal domains and have a long history dating back to
antiquity, with primitive methods such as the scytale or Caesar cipher.

Over time, these methods evolved into masking techniques, automated machines, and now,
modern computational encryption. The advent of computers has introduced remarkable com-
putational power, leading to the development of complex encryption techniques. Among these
advancements, the security of modern communications largely relies on the complex dynamic
behaviors exhibited by chaotic systems.

Chaos, as a deterministic phenomenon, allows for the decoding of data by leveraging its
intrinsic properties. However, to ensure robust security, the use of strong chaos is essential.
Unlike fragile chaos, which can disappear under small perturbations, strong chaos offers crit-
ical stability and resilience against parameter variations or external attacks. Communication
systems based on strong chaos efficiently exploit these characteristics, making encryption both
secure and reliable.
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The two-dimensional piecewise smooth quadratic map studied in this article exhibits dis-
tinctive properties, particularly robust chaotic behavior, suggesting its potential for numerous
real-world applications, especially in secure encryption. These properties ensure that, even in
the presence of disturbances, the data remains protected, underscoring the importance of strong
chaos in modern encryption systems.

Conclusion 1. In this paper, we introduced a new piecewise smooth quadratic two-dimensional
map. We have demonstrated that this map exhibits chaotic behavior and yields two new chaotic
attractors for specific values of the bifurcation parameters a and b. Furthermore, this map
uniquely combines strong chaos and fragile chaos, a critical property that enhances its versa-
tility and applicability. The coexistence of strong and fragile chaos ensures robustness under
parameter variations while maintaining high sensitivity, making it particularly suitable for ad-
vanced applications. This map holds significant potential for various applications, especially
in electronics and encryption within the fields of media and telecommunications. Its chaotic
properties provide a robust framework for secure communication and signal processing, under-
scoring its importance in real-world scenarios.
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