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ABSTRACT. In this paper, we study viscosity approximation methods and present a new algo-
rithm to find a common element of the fixed point of a finite family¢edemimetric mappings

and the set of solutions of split monotone variational inclusion problem in Hilbert spaces. Un-
der some conditions, we prove a strong convergence theorem which converges to this common
solution.
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2 P. FRTEL AND R. SHUKLA

1. INTRODUCTION

In nonlinear analysis, and especially in fixed point theory, the existence and convergence of
fixed points of nonexpansive mappings are fascinating and significant topics. Generally, a non-
expansive mapping’s iteration sequence does not have to converge to a fixed point in a Banach
space. Moreover, only weak convergence is obtained by certain well-known classical iteration
techniques. Viscosity approximation methods are novel techniques proposed by Moudafi [6]
to provide strong convergence for a sequence of iterates with nonexpansive mapping. These
techniques are useful and efficient tools for solving many other nonlinear analysis problems,
such as convex optimization, split and common split feasibility, and variational inequality.

The variational inequality problem is to find a poifite £ such that

(F(ch,cF=¢y >0, forall ¢ €€&.

The problem of finding common elements of the set of fixed points for mappings and the set
of solutions for variational inequalities is a closely related subject of current interest. Over the
years, due to its practical uses in various fields such as science, engineering, management, and
social sciences, the variational inequality problem has been extended and generalized in many
ways, as seen in references([1, 3,14, 9, 10].

Censor et. al.[]3] presented a new variational problem and they named it split variational
inequality problem. It entails finding a solution of one Variational Inequality Problem (VIP),
the image of which under a given bounded linear transformation is a solution of another VIP.
SupposeX;, Y, be two real Hilbert spaces and : ¥; — ¥; andA : ¥, — 3, are two
mappings and' : ¥; — 3, a bounded linear mapping; C >; and&; C 3, are closed and
convex subsets. Then the Split Variational Inequality Problem is formulated as

find a point¢’ € & such that £ (¢'),¢ — ¢ > 0,V¢ € &,
and such that
the pointy™ € U(¢Y) € &, solves(A(n'),n — ') > 0,Vn € &.

In 2011, Moudafi extended their split variational inequality problem and introduced split
monotone variational inclusion (SMVI) problem for finding a pajfite ¥, in such a way that

(1.1) find¢" € 2y such thab e £(¢) + T1(¢h
and such that
(1.2) put = x(¢h) € T solvesd € A(uf) + To(ul),

whereY; : ¥; — 2%, T, : ¥, — 2% are multivalued maximal monotone mappings and
F X — X;andA : ¥, — X, are nonlinear mappings and: ¥; — ¥, a bounded and
linear mapping. Further] (1.1) and (IL.2) are monotone variational inclusion problems in two
different Hilbert spaces. Their solutions are denoted by Sol(MVIP(1.1)) and Sol(MV]P(1.2)),
respectively. The solution set of SMVI is denoted by Sol(SMVI(1}1)}(1.2)).

Recently, in2023, Mehraet.al [5] introduced a mapping and they named ittademimetric
mapping, the mapping is defined as follows:

Definition 1.1. A mappingV¥ : ¥; — Y is said to b&-demimetric with respect td/-norm,
where¢ € (—oo, 1) if F(¥) # 0 such that

(= 1 (1 = W) > 50— O~ Wplldy, Vi € 1t € F(W).

In this paper, we present an algorithm and prove that the sequence generated by that algorithm
converges strongly to a common solution of the split monotone variational inclusion problem
and the set of fixed points of a finite family §fdemimetric mappings.
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2. PRELIMINARIES

Suppos€& be a nonempty closed convex subset of a real Hilbert spagg, .)) andV : £ —
£ amapping. A point’ € £ is said to be a fixed point aF if U(¢") = ¢'. The set of all fixed
points of ¥ will be denoted byF' ().

Lemma 2.1. Suppose tha? be a nonexpansive mapping on a convex, closed subset of a Hilbert
spaceX;. If the mapping? has a fixed point, then the mappifng- V¥ is demiclosed.

Lemma 2.2. [5] Let ¥ : 3; — X, is £&-demimetric mapping with respect fd-norm, where
€€ (—oo,1)andF (V) #£ (. LetP = (1—~v) +~¥, wherey € (—oo, 00) withy € (0,1 —¢],
thenP : 3; — ¥ is a quasi nonexpansive mapping.

N
Lemma 2.3.[5] The mappingp,, defined byb,, = + >~ (1—g¢,)I +¢,¥; is quasi nonexpansive

N
mapping.

=1
Definition 2.1. [7]. A Hilbert spaceX. satisfies Opial property if, for every weakly convergent
sequencé(,,) with weak limit¢ € ¥ it holds:

liminf [|¢,, — ¢|| < liminf ||¢, — ]
for all © € X with { # p.

Lemma 2.4.[2]. Suppose: be a real Hilbert space then for any,u € ¥ anda € [0, 1]
following holds

la + (1 = a)ull* = all¢|l* + (1 = a) ||l — (1 = a)[IC — .

Definition 2.2. A multivalued mappingd(; : ¥; — 2*! is said to be a monotone mapping if for
any(,p € Xy andn € T1(¢),9 € T1(p) such that

(C—p,n—1)>0.

Definition 2.3. A monotone mappind’; : ¥; — 2*! is said to be maximal if the Graph() is
not properly contained in the graph of any other monotone mapping.

We also know that a monotone mappitfig is said to be maximal if and only if fof¢, 1) €
Yy x X, ((—npn—1) >0V (n,09) € Graph(T,) impliesu € T1(().

Definition 2.4. Supposérl’; : ¥; — 2>t be a multivalued maximal monotone mapping then the
resolvent mapping;fl : 21 — >; associated with:, for somep > 0 is given as

TN = (I + pT1) HC). Y € 2.

We also note that for any > 0 the resolvent mapping;f1 is a single valued, firmly nonexpan-
sive and nonexpansive mapping.

Lemma 2.5. [11]. Let{a, } be a sequence of nonnegative real numbers such that
An41 S (1 - 5n>an + bn
where{o,,} C (0, 1), {b,} is sequence ifR such that
(a) Z 571 = 005
n=1
b [e)
(b) limsupd—n <o0or > |b,| < 0.
n=1

n—oo n

Thena,, — 0.
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3. MAIN RESULT

Theorem 3.1. Let 3, ¥, be Hilbert spaces ang : ¥; — X; a bounded linear mapping.
Supposer; : ¥; — 2*tand T, : ¥, — 2*2 are two multivalued monotone mappings,:
¥ — Yy andA : Xy — X, are 04, 05-inverse strongly monotone mappings and >, — >
a contraction mapping with constant € (0,1). Supposel; : ¥; — ¥ be a finite family
of £-demimetric mappings with € (—o0, 1) such that/ — ¥, is demiclosed at origin for all

i=1,2,...Nando = ﬂ F(¥;,)NSol(SMVI@T.I)— (1.2) # 0. For any given(, € 3; we
define sequence as foIIows

O = TG = Pk (C0)),
M, = I 2 (1 = p, A)x(0n),
@y = Pey [Un + 0X* (0, — x(Vn))],

Cn—‘rl = O‘nE(Cn) + (1 - an)q]n(wn>‘

(3.1)

where,¥,, = + Z( —¢u) ]+ ¢, ¥V, 0 € (0, ||xH2) {p,} and{«, } are the sequences {0, 1)
and satisfying the following conditions:

@) lim «, =0, Z o, = oo, and E la, — ag_q] < 00;
(iii) lim p, =0, > p, =00, and>_ |p, — p,_4| < 00
n—oo n=0 n=1
then the sequenceds;,} and {¢,} converges strongly to an elemegit € ©, where¢’ =
PoZ(¢h).

Proof. Supposg’ € ©, then¢' € Sol(SMV I(L.1)—(L.2)), and hence’ = J 1 (¢T—p,F (¢))
andx(¢") = 1> (I — p,A)x(¢T). Now

(G =l (C)) = TD (¢ = por (||
16— ¢t~ (C) — FHEDI?
=HQ—@W+%W¥J—F@MF+%AH ¢ F(C) — FCh)
< 1¢o = TP = o201 — p)[F(C) — F(CHI?

(3.2) < [I¢, — <)%

Now

19, = ¢TII* =

0 = X(COIP = | 72T = p Mx(8) =TT = p, (|

< (x(Wn) = x(¢N) = pu(Ax(9n) = Ax (¢TI

= [Ix(@) = x(CI* + P2l AX () — Ax (DI

+ 20, (x (V) — x(¢"), Ax(¥n) — Ax(¢P))

< |Ix(@) = x(CDIl = (202 — po) | Ax(95) — Ax(¢H)|1?
) )

(3.3) < Ix(@5) = x(CHI”
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Now, we have
l@n — T2 = | Pey [9n + 0X* (10, — xIn)] — CT|?
< |90+ 6x* (1, — x(0)) = CT1P
= [0 = M1 + 116" (0 — X)) 1* + 2600 — CT, X" (0, — X (V)
<[00 = P+ S 1P, — x (W00 |I?
+26(x(V — 1) + (, = X(00)) = (0, — X(U)), (m,, — X (D))
1 1
= 90 = TP+ S 1P — x(O) P + 26 §||77n —x(HIIP + §||77n — x(9,)]|1?
— I, = X (I = llm = x ()17
= [0, = CTI> = 51 = I 1P, — x(Fn)]”
(3.4) < |19, = ¢1* < 1¢, — ¢TI
And
601 = €'l = l0nZ(Ca) + (1~ ) Bu(n) — ¢
< anl[2(¢) ~ -+ (1= an) [ Ta(,) ~ '
< @B ~ ¢+ (1 — )l — ')
< @uI2(¢,) — Z(CHI +IEC — ¢+ (1 o) | — ¢l
< anall¢, = (Tl + anlZ(¢H = Tl + (1 = an)lic, = ¢
< [1 = an(t = ), — ¢l + =) )

=T _ ot
< max { g, - ¢, EHZE

=(T _
@5 < max { g, - o1, IEE 2,

Hence the sequenge,,} is bounded so the sequendes }, {n,.}, {w.}, {Z2(¢,,)} and{¥(w,)}
are also bounded. Now we prove that the sequéngce is asymptotically regular, that is

Now we have,

e B (P o (09 Rt (S MYl () |
+ J[’)rnl ((n—l - pnF(Cn—l) - ‘]prnlfl(Cn—l - pn—lF(Cn—l)) ‘
(3.7) < N6 = Camall + 1o = puallF (G-
Similarly, we can also easily get
(3.8) 17 = 1 [l < NIAX(n) = AX(n-1)ll + 20 = Pt I AX (1)1
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Now we compute,

@ — @t ]® < 00+ 0X* (1, — X(90)) = Pt — X (71 — X(Fn1)) |

(3.9)

< [0 = I+ 16X (7, — X(0)) = (701 — X(Pn1)) |
+26(0y — V1, X (0, — x(Un)) — (M1 — X(Tn-1)))

<0 = Onall? + I+ 111 — X(0n)) = (1 — X (0n1))|I?
+26(x(Vn) = x(Vn-1) + 1, — X(Un) = Moy — X(Pn1)),

M = X(0n) = (M1 — X(Fn-1)))

= [0 = Ona |l + 6N + N = X(W0n) = (101 — X(In1)) I

1 1 1
+20 | 5l = maa I + 1m0 = X (W) = (e = x(@n )P = SHX(00) = x(@n0) I

— 26|17, — x(Un) = (11 — X(On-1)|I?

= [0 = Ol + 61 = Sl I = X (W) = (101 — X(In2))II?

+0 [In, = 1l = Ix(00) = x(0n-1) 7]

= [0 = Ina [P+ 60 = SIX1P) 17 = x(P) = (10— = X (1))

+ 6105 = Pt I = i P = X (0n) = X)) IAX (O )|

<11¢ = Coall? + 1on = Lot L IIF (G ) NIC = Gl + 100 = £ lIF (G
— 0l IP = Dlln, = x(0n) = (11 = x@n)1?

+01pn = pual (1 = e 12 = IX(00) = X (00D IIP) [ AX (D)

<1¢ = Coall? + |pn = pus 1L

S |||Cn - Cn—l”2 + ‘pn - pn—llL‘ :

WhereL is a constant in such a way that

U6 = Cacall 1o = puaHIF (o) + 0l = Pl [l — 1201

(3.10) —[Ix(¥2) = x (@) IP] IAX(Dn-1) | < L.
From (3.9) we can get

(3.11) lwn = @nall < 1C, = Comall + /100 = Pl L.

Next, we have

€1 = Call = llanZ(C) + (1 = an) (@) = [an1Z(Comy) + (1 = an1) ¥na (@n )]

< anO‘HCn - Cn—l” + (1 - O‘n)H\Ijn(wn) - \Ijn(wn—l)” + 2|, — CYn—1|Ll

(3.12) < anallC, = Gl + (1 = an)[@wn — @l + 2|an — ana|Ly.
WhereL; = sup{||Z({,) || + [|Vn(wy,)| : n € N}. Using (3.11) in[(3.IR), we get,

€1 = Cull < (1 = an(l = DG = Cua I + 2l — cna| Lo+ /1oy = poa| L
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By takingd,, = o, (1 — «) andb,, = 2|a,, — an—1|L1 + /|p,, — Pn_1|L in the above equation
and applying Lemmpa 2.5, we get

We have

(3.13) = an(2(¢,) =€) + (1 = an)(Vn(@n) — ().

We also have

(1 = an)[[Wn(wn) = Cull < 11Cosa = Call + anl[2(C) = Gl
Since,a,, — 0 and||¢,,,; — ¢,,|| — 0 asn — oo applying limit in the above equation we get

Tim (¥ (w,) — G| = 0.

Now we show thatlim ||, — ¥,/ = 0.

1€t = ¢TIP = NlamE(C,) + (1 — an) Wa(won) — ()17
< nl|2(C,) = CTIP + (1 = an) 1 W () — (T
< @lI2(¢,) = ¢TI+ (1 = ) |9, — CTIIP
< anlZ2(¢,) = NP+ (1= o) (1€, = CTIP + pulpn — 200)1F (C,) — F (S
< anlZ2(¢) = NP+ 11¢n = CTIIP + pulpn — 200)11F (C) — F (DI,

it gives
Pu(pn = 20017 (C) = F (KD < anllZ(¢0) = TP+ 1160 = CHIP = l1ns = ¢TI

< anl|=Z(¢) = ¢TI+ (16 = ST+ 1Gasr = CTIDIC = G-
Since lim 1€ns1 — Cull = 0 and lim o, = 0, we get

Tim [|F(C,) — F (SNl =0.

We also have

19 = ¢ = |72 (€ = puk (€)= TG = pur ()]
< W= ¢ (G b (G)) = (¢ = puF (C1)
< L= €I+ 10— puF (C)) — (€1 = puF DI
W =€) + ol (Ga) = F ()P}
%{W 4 0G0 €T = = o (€) — FCIP)-
Hence,

[0 — ¢TI < NG = CHIP = 110 = Cull? = PEIF (C) = F(CDIP + 20, (00 — o F(C) = F(CT))
< 1€ = ¢ = 1190 = Gl + 20,0190 — CAllllF (C) = F(CHII-
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It gives
1€ = CT% < @nll=(C) = CTIP + (1 = an) [ @ (@) — CII?
< anl|E(C,) = ¢TIIP + (1 = an) [0, = 117
< ap|E(¢) = CTIP A+ (= an)llIC, = CTIP = 1100 = Gall?

+ 20,100 = CullllF () = F (¢
< @lIZ(Ca) = T2+ 11¢ = ¢TI = 119n = Call® + 2001190 = CullllF (C) = F (I

Therefore, we get

19 = Call® < @allZ(¢0) = ¢TI + 1160 = ST = NI = ST + 20,19 = CullllF () = F(CDI
< anl|=(C) = NP+ (6 = ¢+ 1Gasa = CTDIC = Gl
+ 20,100 = ClIIF(C,) = F (S

Since lim ||¢,.1 — ¢, ]l = 0, lim o, = 0, and lim ||F (¢,,) — F (¢")|| = 0, we get
(3.14) lim |9, — ¢, || = 0.

Similarly, we can also get

1€ns1 = CTIP < @nll=(C0) = ¢TI + (1 = ) [ Wa(wn) = ¢TI
< anl|=(C) = 1P+ (1 = an) e — CTII?
< aul|2(¢a) = P+ (1= @) (19 = CTIP = 61 = 8l 1)l — x(9)I17]
< aul|2(¢a) = P+ 11 = ¢TIP = 01 = S I1%) 1 — x(9a) 2.

And we get

3(1 = I 1) = X@a)I* < nll=(¢0) = CHIZ + 1€ = ¢TI = 1 = CTIIP
< anl|Z(C) = ¢TI+ (16 = ST 1Gasr = CTIDIC = G-

Sinced(1 — &|x*|I*) > 0, |€oy1 — ¢, ]l — 0 anda,, — 0 asn — oo, we get
(3.15) Tim [, = x(0)]| = 0.
It follows from (3.3) and[(3.15) that

P (202 — p,) | AX(0,) — Ax(¢D)II?

< (@) = x(COHI* = I, — x(¢HI?

= (IIx (@) = X+ Im, = x (DU Wn) = x (DI = 17, = x(CHI])
< (Ix(@) = x (€O + N1 = x(CHID I, — x (@)l

Sincep,, (202 — p,,) > 0, ||n, — x(¥,,)]| — 0 asn — oo, we get

(3.16) Tim [[Ax(9) — Ax(¢h]| = 0.
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Next, we have
Iz — CTI* = || Pe, [9n + 0x* (0, — x(0))] = ¢
< (On + 0 (0, = X (0)) — T — CT)
= 10 = ¢ 3, — XD + [ — P
— [0+ X" (0, = x(0n)) = ¢" =@ + (117
= %[Ilﬁn = PP+ Nl = <HIP + 10X (0, = x () 1P
+26(x(0n) = Xx(¢N), 1, — X (Wn)) = 100 = @)l + 0x" (1, — X(9))]
< %[Ilﬂn — CHIP + Nl = CHIP 4 100 (0 = X (@)1 + 261X (9) — x (S M1, — x ()
— (190 = @l = 16X (0 = X@ )P + [leon = ¢TI + 200 — @, X" (0, = X ()],
it gives
[ = ¢TI < 100 = CHI2 = 1[0 — @all + 20]1x(9) = x (D19, = x (0]
+ 20|10 = @alllIX" 7, — x ()]l
<o = ¢FI1P = (190 — o |?
(3.17) + 2617, — x (@) [ (I (@n) = X + X190 = @nll)-
So, we will have
€01 = NP < anllE(C0) = CIP + (1 = ) [ W () — ¢TI
< a2, = P+ (1= an)llwn — ¢FI1?
< an|2(C,) = P+ (1= )10 = ¢TI = ([0 — ol
+ 2617, — x @) 11X (0n) = X + XN 19n — nl)]
< anl2(¢,) = NP+ 1S, = ¢HIP = 110 — wall?
+ 261, — x (@)1 (I (@) — x (I + X Nn — wall),
and it gives
190 — @nll® < @) = SIP 4+ 1<, = CTIIP = 1S 0rn — ¢TIIP
+26[[17,, = x (@)1 (Ix (@) = x (I + X0 — )]
< anlZ2(C) = P+ (1S = ST+ 116 = ST, = Gl
+ 2617, — x @) (I (Wn) = X+ X190 = @nll)-

Since hm a, =0, hm I¢s1 — ¢l = 0 and hm In,, — x(¥)|| = 0 applying limitn — oo
in the above equatlon we get

(3.18) lim ||9, — w,|| = 0.

Now, we will also have

(3.19) [@n = Call < Mlwwn — Oull + |90 — ¢l — 0 asn — oo.
and

(8.20)  |[[Wn(wn) = wnll < [[Wn(wn) = Cull + €0 = Onll + 190 — wnl| — 0 @SR — 0.
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Since the sequendgr,,} is bounded, sa& a subsequencgw,, } of {w,} such thatw,, —
C(Iet) Therefore, from[(3.20) we can also say tHa subsequencg?,,, } of {,} such that

— (. First we prove thaf € F(,,). On contrary, let ¢ F(U,). Since¥,,(() # ¢, then
usmg Opial property and applying (3]20), we get

li;n inf ||ow,, — C|| < li}gn inf ||, — ¥, (C)||

< limint{[[wn, — Wo(@n )| + [|Wn(wn,) — Ua(O)]}

k—oo

< liminf ||, — |,
k—o0

which is a contradiction, and hences F(¥,,). On the other hand, we also have

and it can be written as
Py,

Applying limit £ — oo in the above equation and usirig (3.14), and the fact that the graph
of maximal monotone mapping is weakly-strongly closed, we (get Tl(ﬁ) + F(&) that

is ( € Sol(MVIP(@). Further, since sequencés,} and{v,} have the same asymp-
totical behaviour,{x(¢,,)} weakly converges t(x (). Using [315) and the nonexpansive-
ness of the mapping,*(1 — p,A) and Lemma 1 we gét € T5(x(()) + A(x(()) that is

x(¢) € SolMVIP(.2)). Further, we claim thatim sup(=(¢f) — ¢f, ¢, — ¢f) < 0, where
¢t e Po=(¢h). We have

lim sup(Z(¢T) — ¢1,¢, — ¢ = limsup(Z(¢T) — ¢F, U, (w,) — ¢F)

(3.21) €T (V).

< lim sup(F(CT) - CTa \Ijn(wn> - CT>
= (2N - ¢ ¢ = ¢
(3.22) < 0.

Last, we show that the sequenge— ¢'. We have

1C0r1 = CT% = llanZ(Ca) + (1 = ) Wa(wn) = ¢F17
() = N 4 (1 = ) (W () — P
F(C) =N+ (1= an) W (@) = ()

Ca) = Z(CN) + (1 = ) W (@n) = NP+ 200 (2(C) = P Gun = ¢F)
< awll[E(¢) = EEHIP + (1= an)llwn = P+ 200(2(C0) = ¢F G — €F)
< @,0®||¢, = ¢+ (1= an)lI¢, = 1P + 20 (2(C,) = ¢ G — )
< (1= (1 =aan)l¢, = P+ 20a(E(C) = ¢ i — ¢,

Applying Iemm' and (3.22) in the above equation wecget (" asn — oo. From

19, — €, || — 0,9, — ¢ € ©®and¢, — (" asn — co. We get¢T = ¢, it completes the proof.
|
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CONCLUSION

This paper presents a novel viscosity approximation algorithm designed to address the prob-
lem of finding a common element in the fixed point set of a finite family-oflemimetric map-
pings and the solution set of split monotone variational inclusion problems in Hilbert spaces. By
integrating the properties afdemimetric mappings with a contraction mapping, as established
in Theoren 3.]L, our algorithm achieves strong convergence under well-defined conditions.
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