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ABSTRACT. In this paper we introduce the Kato class and the non-linear Kato class, on a Rie-
mannian manifold of dimension. We also obtain a gradient estimate for the non-linear Kato
class.
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1. INTRODUCTION

In his celebrated paper C. Fefferman [5], proved the inequality

(L.1) [lr@lu@dr < ¢ [ [Va@) da,

R R

for anyu € C5°(R™), assuming that the functiofi belongs to the Morrey spadg"2"(R"),
with 1 < r < 2 (see[2] for the definition to the Morrey Spate™~?"(R™)).

Later, Chiarenza and Frasca [2] extended Fefferman’s result, with a different proof, assuming
fe L (RY),1<r< Hl<p<n.

A different approach to the inequalify (1.1) was started with Schechter in [6], where he proved
the inequality withf belonging to the Kato class (see definition 2.1 below)[In [7], it was proved
with 1 < p < n and f belonging to a more general class of potentials.

In this paper, we replace the Euclidean spa€dy Riemannian manifolds, then we investi-
gate the relations between various functional inequalities and the geometry of the manifold.

__Using the idea from(]7], we provide a generalization of Schechter’s result assyméng
P,(M) (see deflnltlor.Z and Theor 4.1).

2. DEFINITIONS AND NOTATION

Let M be a Riemannian manifold of dimensian There is a canonical distance function
associated to the Riemannian structurébfWe will denote it by(x, y) — d(x,y). It can be
defined as the shortest length of all piecewiSecurves fromr to y. The topology of M, d) as
a metric space is the same as thaf\pfas a manifold (see [3] 81.5): There is also a canonical
measure o/ which we denote by: (seel[3] §3,3).

Definition 2.1 (Kato Class) Let f € L}, .(R"). For anyr > 0, we set

/()]

r) = su ————dy,

R e =1
N(z,r)

whereN (z,r) = {y € R" : |z — y| < r} is an open ball iR with radiusr and center:. We

say thatf belongs to the Kato clags,,(R") if ¢(f)(r) — 0 asr — 0.

Definition 2.2 (Nonlinear Kato Class)Let M be a Riemannian manifold of dimensien We
set
1 p—1

) | el
o(f)r) = sup B(/ i B(/ e G L

whereB(z,r) = {y € M : d(z,y) < r} is an open ball in\/ with radiusr and center.
We say thatf : M — R" belongs to the spad@, (M) if and only if ¢(f)(r) is finite for any
r > 0. If, in addition, 1iI(T)l+ o(f)(r) = 0, then we say thaf belongs to the spad@,(M ).

Remark 2.1. Definition[2.2 gives back the classical Kato class (definition 2.1) if we fiake2,
M =R" andd(z,y) = |z — y| (see[1] and[4]).
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3. Riccl CURVATURE

Let (M, g) be a complete Riemannian manifold, wherés the metric tensor. The Ricci
curvature tensofR is a symmetric two-tensor obtained by contraction of the full curvature
tensor (se€ [3]). Thus it can be compared with the metric tepsor

The following lemma will play a crucial role in the proof of our main result, and it may be
well-known to some readers or appear elsewhere in the literature. We have included its proof
for the sake of completeness and the convenience of the reader.

Lemma 3.1. Let (M, g) be a complete Riemannian manifold of dimensiohaving non-
negative Ricci curvature. Then there exists a constadependig om such that

ol < [ H .
B(zo,r)

whereu € C§°(M) is supported orB(x, ).
Proof. Letu € C§°(M ) supported orB(xq, 7). Now, consider the integral

/ ju(z) — u(y)|dy (R > 0).
B(z,R)

To estimate this integral, we use polar (exponential) coordinates aro(sek [2, Proposition
3.1]). This gives (in somewhat abusive notation)

[ @) = uwldy = [ fute) = .01Vt 0) dpas

B(z,R)

< / / " 0rult,0)] dt/5(p,0) dpdo
< /0 /0 "Vt 0)] dtr/3(p, 0) dpdo.

Here, we have simply used the usual trick to contrpl) — u(y) by integrating along the
geodesic segment from to y and used polar exponential coordinate= (p, ) aroundz.

In particular, /g(p,0) dpdf = dy is by definition the Riemannian volume element in polar
coordinates.

We now use the hypothesid/, g) has non-negative Ricci curvature. By Bishop’s Theorem
[2, theorem 3.8], the function— ,/g(s, 0)|s"~* is non-increasing. It follows that

R
[ )~ aldy < [ Va0l Va0 dep ! dpas
0
B(z,R)

n R
<2 Vutt, 01 o, 0) dtas
n Jo

R" / [Vu(y)|
= [ PRI,
n [d(z, y)]" "

B(z,R)

@ [ -l < [ o,

n
B(z,R) B(z,R)

thus
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and
3.1) m( / | Ju(a) — u(y)| dy < mm /R | s dy
Now, fix z € M. We appvly inequality[(3]1) as follows |
u(a) Smm /R | ul) — uly)] dy + m( / | u(y)] dy
SCB(L) %dﬁmg(la lu(y)| dy
SCBm/,m e dy + m( /R | u(y)] dy,

finally,

e [Vu(y)|
lu(z)| < CB(x/R) [d(z, y)]*! dy

asR — oo. The proof is completex

4. MAIN RESULT

With the previous results at hand, we are ready to state and prove our main result.

Theorem 4.1. Assumef € ﬁp(M), where)M is a complete Riemannian manifold of dimension
n having non-negative Ricci curvature. Then, for any- 0, there exists a positive constant
C(n,p) such that

/ (@) ||u(z) dx < C(n, p)é(2r) / Vu()P dz,

for anyu € C§°(M) supported inB(xg, r).

Proof. By lemmg 3.1 and Fubini’s theorem we have

IZAZIf(w)IIU(ﬂf)I”dﬂf :B(/) | () [[u(2)|P dz

< [ @l | | %d@/ da
B(z,r) B

(zo,T)
< / Vu(y) / If(w>|IU(w)lp‘1W dy.
B(z,r) B(

Zo,T)
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Now, by Holder’s inequality, we obtain

4.1)
¢ y 5
r<c| [ wuwrda] & [ [ r@iuer o]
[d(z, y)"1]
B(z,r) B(zo,r) \B(zo,r)
\ A J
For the above integrad, we have
dx
A= / / o) ||u(z) P ————— d
F@lu@P g |
B(zo,r) \B(zo,r)
p
- TR G / @l
< [ [ remer 2 5s Aoy ey
B(wo,r) \B(=o,r) B(zo,r)
1 /(=) 7
= xI)lulx p / —_— / —dZ d dI
[ vemer [ g [ e v
B(zo,r) B(zo,r) B(zo,r)
e [ @l ds
B(zo,r)
Going back to[(4]1), we obtain

/mmmmﬁmsc /\WMW@ w@mﬁl/rNMmem

B(z,r) B(zo,r)

from which the desired result easily follows.

5. CONCLUSION

The inequality given in Theoren 4.1, in the literature is known as the Fefferman inequality,
is a useful inequality, which is more scarce than, for instance, Poincaré inequality.

Among some applications, Fefferman inequality helps to prove unique continuation of the
solution of an equation of this type:

divA(z,u, Vu) = B(x,u, Vu)

where

A(z,u, &) : A x RxR" - R"
and

B(z,u,&) : QxR xR"—-R
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are continuous functions satisfying:
Az, u, )] < aléP™ + b() ul,
|B(z,u,&)| < Ca)|l"™" + d(z)[ul",
Az u,§) - € > [§]F — d(z)|ul”

for almost allz € 2, u € R, and¢ € R”, wherel < p < oo, a is a positive constant arid ¢, d
are measurable functions ihwhose extension with zero value outsidare such that

bv, P, d € Py(M).
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