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A GRADIENT ESTIMATE FOR RIEMANNIAN MANIFOLDS
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1. I NTRODUCTION

In his celebrated paper C. Fefferman [5], proved the inequality

(1.1)
∫
Rn

|f(x)||u(x)|2 dx ≤ C

∫
Rn

|∇u(x)|2 dx,

for anyu ∈ C∞0 (Rn), assuming that the functionf belongs to the Morrey spaceLr,n−2r(Rn),
with 1 < r ≤ n

2
(see [2] for the definition to the Morrey SpaceLr,n−2r(Rn)).

Later, Chiarenza and Frasca [2] extended Fefferman’s result, with a different proof, assuming
f ∈ Lr,n−2r(Rn), 1 < r ≤ n

p
, 1 < p < n.

A different approach to the inequality (1.1) was started with Schechter in [6], where he proved
the inequality withf belonging to the Kato class (see definition 2.1 below). In [7], it was proved
with 1 < p < n andf belonging to a more general class of potentials.

In this paper, we replace the Euclidean spaceRn by Riemannian manifolds, then we investi-
gate the relations between various functional inequalities and the geometry of the manifold.

Using the idea from [7], we provide a generalization of Schechter’s result assumingf ∈
P̃p(M) (see definition 2.2 and Theorem 4.1).

2. DEFINITIONS AND NOTATION

Let M be a Riemannian manifold of dimensionn. There is a canonical distance function
associated to the Riemannian structure ofM . We will denote it by(x, y) −→ d(x, y). It can be
defined as the shortest length of all piecewiseC1 curves fromx to y. The topology of(M, d) as
a metric space is the same as that ofM as a manifold (see [3] §1.5): There is also a canonical
measure onM which we denote byµ (see [3] §3,3).

Definition 2.1 (Kato Class). Let f ∈ L1
loc(Rn). For anyr > 0, we set

φ(f)(r) = sup
x∈Rn

∫
N(x,r)

|f(y)|
|x− y|n−2

dy,

whereN(x, r) = {y ∈ Rn : |x− y| < r} is an open ball inRn with radiusr and centerx. We
say thatf belongs to the Kato classKn(Rn) if φ(f)(r) → 0 asr → 0+.

Definition 2.2 (Nonlinear Kato Class). Let M be a Riemannian manifold of dimensionn. We
set

φ(f)(r) = sup
x∈M

 ∫
B(x,r)

1

|d(x, y)|n−1

 ∫
B(x,r)

|f(z)|
[d(y, z)]n−1

dz


1

p−1

dy


p−1

,

whereB(x, r) = {y ∈ M : d(x, y) < r} is an open ball inM with radiusr and centerx.
We say thatf : M −→ Rn belongs to the spacẽPp(M) if and only if φ(f)(r) is finite for any
r > 0. If, in addition, lim

r→0+
φ(f)(r) = 0, then we say thatf belongs to the spacePp(M).

Remark 2.1. Definition 2.2 gives back the classical Kato class (definition 2.1) if we takep = 2,
M = Rn andd(x, y) = |x− y| (see [1] and [4]).
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3. RICCI CURVATURE

Let (M, g) be a complete Riemannian manifold, whereg is the metric tensor. The Ricci
curvature tensorR is a symmetric two-tensor obtained by contraction of the full curvature
tensor (see [3]). Thus it can be compared with the metric tensorg.

The following lemma will play a crucial role in the proof of our main result, and it may be
well-known to some readers or appear elsewhere in the literature. We have included its proof
for the sake of completeness and the convenience of the reader.

Lemma 3.1. Let (M, g) be a complete Riemannian manifold of dimensionn having non-
negative Ricci curvature. Then there exists a constantC dependig onn such that

|u(x)| ≤ C(n)

∫
B(x0,r)

|∇u(y)|
[d(x, y)]n−1

dy,

whereu ∈ C∞0 (M) is supported onB(x0, r).

Proof. Let u ∈ C∞0 (M) supported onB(x0, r). Now, consider the integral∫
B(x,R)

|u(x)− u(y)| dy (R > 0).

To estimate this integral, we use polar (exponential) coordinates aroundx (see [2, Proposition
3.1]). This gives (in somewhat abusive notation)∫

B(x,R)

|u(x)− u(y)| dy =

∫ R

0

|u(x)− u(ρ, θ)|√g(ρ, θ) dρdθ

≤
∫ R

0

∫ ρ

0

|∂1u(t, θ)| dt
√

g(ρ, θ) dρdθ

≤
∫ R

0

∫ ρ

0

|∇u(t, θ)| dt
√

g(ρ, θ) dρdθ.

Here, we have simply used the usual trick to controlu(x) − u(y) by integrating along the
geodesic segment fromx to y and used polar exponential coordinatey = (ρ, θ) aroundx.
In particular,

√
g(ρ, θ) dρdθ = dy is by definition the Riemannian volume element in polar

coordinates.

We now use the hypothesis(M, g) has non-negative Ricci curvature. By Bishop’s Theorem
[2, theorem 3.8], the functions → √

g(s, θ)|sn−1 is non-increasing. It follows that∫
B(x,R)

|u(x)− u(y)| dy ≤
∫ R

0

|∇u(t, θ)|t1−n√g(ρ, θ) dtρn−1 dρdθ

≤Rn

n

∫ R

0

|∇u(t, θ)|t1−n√g(ρ, θ) dtdθ

=
Rn

n

∫
B(x,R)

|∇u(y)|
[d(x, y)]n−1

dy,

thus
1

Rn

∫
B(x,R)

|u(x)− u(y)| dy ≤ 1

n

∫
B(x,R)

|∇u(y)|
[d(x, y)]n−1

dy,
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and

(3.1)
1

µ(B(x, R))

∫
B(x,R)

|u(x)− u(y)| dy ≤ 1

µ(B(0, 1))n

∫
B(x,R)

|∇u(y)|
[d(x, y)]n−1

dy.

Now, fix x ∈ M . We apply inequality (3.1) as follows

|u(x)| ≤ 1

µ(B(x, R))

∫
B(x,R)

|u(x)− u(y)| dy +
1

µ(B(x, R))

∫
B(x,R)

|u(y)| dy

≤C

∫
B(x,R)

|∇u(y)|
[d(x, y)]n−1

dy +
1

µ(B(x, R))

∫
B(x,R)

|u(y)| dy

≤C

∫
B(x0,R)

|∇u(y)|
[d(x, y)]n−1

dy +
1

µ(B(x, R))

∫
B(x,R)

|u(y)| dy,

finally,

|u(x)| ≤ C

∫
B(x0,R)

|∇u(y)|
[d(x, y)]n−1

dy

asR →∞. The proof is complete.

4. M AIN RESULT

With the previous results at hand, we are ready to state and prove our main result.

Theorem 4.1.Assumef ∈ P̃p(M), whereM is a complete Riemannian manifold of dimension
n having non-negative Ricci curvature. Then, for anyr > 0, there exists a positive constant
C(n, p) such that ∫

M

|f(x)||u(x)|p dx ≤ C(n, p)φ(2r)

∫
M

|∇u(x)|p dx,

for anyu ∈ C∞0 (M) supported inB(x0, r).

Proof. By lemma 3.1 and Fubini’s theorem we have

I =

∫
M

|f(x)||u(x)|p dx =

∫
B(x,r)

|f(x)||u(x)|p dx

≤C

∫
B(x,r)

|f(x)||u(x)|p−1

 ∫
B(x0,r)

|∇u(y)|
[d(x, y)]n−1

dy

 dx

≤C

∫
B(x,r)

|∇u(y)|

 ∫
B(x0,r)

|f(x)||u(x)|p−1 dx

[d(x, y)]n−1

 dy.
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Now, by Hölder’s inequality, we obtain
(4.1)

I ≤ C

 ∫
B(x,r)

|∇u(y)|p dy


1
p


∫

B(x0,r)

 ∫
B(x0,r)

|f(x)||u(x)|p−1 dx

[d(x, y)n−1]


p

p−1

dy

︸ ︷︷ ︸
A



p−1
p

.

For the above integralA, we have

A =

∫
B(x0,r)

 ∫
B(x0,r)

|f(x)||u(x)|p−1 dx

[d(x, y)]n−1


p

p−1

dy

≤
∫

B(x0,r)

 ∫
B(x0,r)

|f(x)||u(x)|p−1 |f(z)|
[d(x, z)]n−1

dz


p

p−1 ∫
B(x0,r)

|f(x)||u(x)|p

[d(x, y)]n−1
dxdy

=

∫
B(x0,r)

|f(x)||u(x)|p
∫

B(x0,r)

1

[d(y, z)]n−1

 ∫
B(x0,r)

|f(z)|
[d(y, z)]n−1

dz


1

p−1

dydx

≤{φ(2r)}
1

p−1

∫
B(x0,r)

|f(x)||u(x)|p dx.

Going back to (4.1), we obtain

∫
M

|f(x)||u(x)|p dx ≤ C

 ∫
B(x,r)

|∇u(y)|p dy


1
p
{φ(2r)}

1
p−1

∫
B(x0,r)

|f(x)||u(x)|p dx.


p−1

p

,

from which the desired result easily follows.

5. CONCLUSION

The inequality given in Theorem 4.1, in the literature is known as the Fefferman inequality,
is a useful inequality, which is more scarce than, for instance, Poincaré inequality.

Among some applications, Fefferman inequality helps to prove unique continuation of the
solution of an equation of this type:

divA(x, u,∇u) = B(x, u,∇u)

where

A(x, u, ξ) : Ω× R× Rn → Rn

and

B(x, u, ξ) : Ω× R× Rn → R
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are continuous functions satisfying:

|A(x, u, ξ)| ≤ a|ξ|p−1 + b(x)|u|p−1,

|B(x, u, ξ)| ≤ C(x)|ξ|p−1 + d(x)|u|p−1,

A(x, u, ξ) · ξ ≥ |ξ|p − d(x)|u|p

for almost allx ∈ Ω, u ∈ R, andξ ∈ Rn, where1 < p < ∞, a is a positive constant andb, c, d
are measurable functions inΩ whose extension with zero value outsideΩ are such that

b
1
p , cp, d ∈ P̃p(M).
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