

A GRADIENT ESTIMATE FOR RIEMANNIAN MANIFOLDS

RENÉ ERLÍN CASTILLO AND HÉCTOR CAMILO CHAPARRO

Received 2 March, 2024; accepted 9 October, 2024; published 8 November, 2024.

DEPARTMENT OF MATHEMATICS, UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ, COLOMBIA. [recastillo@unal.edu.co](mailto: <recastillo@unal.edu.co>)

PROGRAM OF MATHEMATICS, UNIVERSIDAD DE CARTAGENA, CARTAGENA DE INDIAS, COLOMBIA. [hchaparrog@unicartagena.edu.co](mailto: <hchaparrog@unicartagena.edu.co>)

ABSTRACT. In this paper we introduce the Kato class and the non-linear Kato class, on a Riemannian manifold of dimension n . We also obtain a gradient estimate for the non-linear Kato class.

Key words and phrases: Fefferman's inequality, Morrey Space, Kato class.

2010 *[Mathematics Subject Classification.](https://www.ams.org/msc/)* Primary 26D10, 31C12, 46E35, 57N35. Secondary 35B60.

ISSN (electronic): 1449-5910

c 2024 Austral Internet Publishing. All rights reserved.

1. **INTRODUCTION**

In his celebrated paper C. Fefferman [\[5\]](#page-5-0), proved the inequality

(1.1)
$$
\int_{\mathbb{R}^n} |f(x)| |u(x)|^2 dx \leq C \int_{\mathbb{R}^n} |\nabla u(x)|^2 dx,
$$

for any $u \in C_0^{\infty}(\mathbb{R}^n)$, assuming that the function f belongs to the Morrey space $L^{r,n-2r}(\mathbb{R}^n)$, with $1 < r \leq \frac{n}{2}$ $\frac{n}{2}$ (see [\[2\]](#page-5-1) for the definition to the Morrey Space $L^{r,n-2r}(\mathbb{R}^n)$).

Later, Chiarenza and Frasca [\[2\]](#page-5-1) extended Fefferman's result, with a different proof, assuming $f \in L^{r,n-2r}(\mathbb{R}^n), 1 < r \leq \frac{n}{n}$ $\frac{n}{p}, 1 < p < n.$

A different approach to the inequality [\(1.1\)](#page-1-0) was started with Schechter in [\[6\]](#page-5-2), where he proved the inequality with f belonging to the Kato class (see definition [2.1](#page-1-1) below). In [\[7\]](#page-5-3), it was proved with $1 < p < n$ and f belonging to a more general class of potentials.

In this paper, we replace the Euclidean space \mathbb{R}^n by Riemannian manifolds, then we investigate the relations between various functional inequalities and the geometry of the manifold.

Using the idea from [\[7\]](#page-5-3), we provide a generalization of Schechter's result assuming $f \in$ $\mathcal{P}_p(M)$ (see definition [2.2](#page-1-2) and Theorem [4.1\)](#page-3-0).

2. **DEFINITIONS AND NOTATION**

Let M be a Riemannian manifold of dimension n . There is a canonical distance function associated to the Riemannian structure of M. We will denote it by $(x, y) \rightarrow d(x, y)$. It can be defined as the shortest length of all piecewise C^1 curves from x to y. The topology of (M, d) as a metric space is the same as that of M as a manifold (see [\[3\]](#page-5-4) §1.5): There is also a canonical measure on M which we denote by μ (see [\[3\]](#page-5-4) §3,3).

Definition 2.1 (Kato Class). Let $f \in L^1_{loc}(\mathbb{R}^n)$. For any $r > 0$, we set

$$
\phi(f)(r) = \sup_{x \in \mathbb{R}^n} \int_{N(x,r)} \frac{|f(y)|}{|x - y|^{n - 2}} \, dy,
$$

where $N(x,r) = \{y \in \mathbb{R}^n : |x - y| < r\}$ is an open ball in \mathbb{R}^n with radius r and center x. We say that f belongs to the Kato class $K_n(\mathbb{R}^n)$ if $\phi(f)(r) \to 0$ as $r \to 0^+$.

Definition 2.2 (Nonlinear Kato Class). Let M be a Riemannian manifold of dimension n. We set

$$
\phi(f)(r) = \sup_{x \in M} \left(\int_{B(x,r)} \frac{1}{|d(x,y)|^{n-1}} \left(\int_{B(x,r)} \frac{|f(z)|}{[d(y,z)]^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right)^{p-1},
$$

where $B(x, r) = \{y \in M : d(x, y) < r\}$ is an open ball in M with radius r and center x. We say that $f : M \longrightarrow \mathbb{R}^n$ belongs to the space $\widetilde{\mathcal{P}}_p(M)$ if and only if $\phi(f)(r)$ is finite for any $r > 0$. If, in addition, $\lim_{r \to 0^+} \phi(f)(r) = 0$, then we say that f belongs to the space $\mathcal{P}_p(M)$.

Remark 2.1. Definition [2.2](#page-1-2) gives back the classical Kato class (definition [2.1\)](#page-1-1) if we take $p = 2$, $M = \mathbb{R}^n$ and $d(x, y) = |x - y|$ (see [\[1\]](#page-5-5) and [\[4\]](#page-5-6)).

3. **RICCI CURVATURE**

Let (M, g) be a complete Riemannian manifold, where g is the metric tensor. The Ricci curvature tensor R is a symmetric two-tensor obtained by contraction of the full curvature tensor (see [\[3\]](#page-5-4)). Thus it can be compared with the metric tensor q.

The following lemma will play a crucial role in the proof of our main result, and it may be well-known to some readers or appear elsewhere in the literature. We have included its proof for the sake of completeness and the convenience of the reader.

Lemma 3.1. *Let* (M, g) *be a complete Riemannian manifold of dimension* n *having nonnegative Ricci curvature. Then there exists a constant* C *dependig on* n *such that*

$$
|u(x)| \le C(n) \int\limits_{B(x_0,r)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy,
$$

where $u \in C_0^{\infty}(M)$ *is supported on* $B(x_0, r)$ *.*

Proof. Let $u \in C_0^{\infty}(M)$ supported on $B(x_0, r)$. Now, consider the integral

$$
\int\limits_{B(x,R)} |u(x) - u(y)| dy \quad (R > 0).
$$

To estimate this integral, we use polar (exponential) coordinates around x (see [\[2,](#page-5-1) Proposition 3.1]). This gives (in somewhat abusive notation)

$$
\int_{B(x,R)} |u(x) - u(y)| dy = \int_0^R |u(x) - u(\rho, \theta)| \sqrt{g}(\rho, \theta) d\rho d\theta
$$

\n
$$
\leq \int_0^R \int_0^{\rho} |\partial_1 u(t, \theta)| dt \sqrt{g}(\rho, \theta) d\rho d\theta
$$

\n
$$
\leq \int_0^R \int_0^{\rho} |\nabla u(t, \theta)| dt \sqrt{g}(\rho, \theta) d\rho d\theta.
$$

Here, we have simply used the usual trick to control $u(x) - u(y)$ by integrating along the geodesic segment from x to y and used polar exponential coordinate $y = (\rho, \theta)$ around x. In particular, $\sqrt{g}(\rho, \theta) d\rho d\theta = dy$ is by definition the Riemannian volume element in polar coordinates.

We now use the hypothesis (M, g) has non-negative Ricci curvature. By Bishop's Theorem We now use the hypothesis (M, g) has non-inegative Kieer eth value. By Bishot [\[2,](#page-5-1) theorem 3.8], the function $s \to \sqrt{g}(s, \theta)|s^{n-1}$ is non-increasing. It follows that

$$
\int_{B(x,R)} |u(x) - u(y)| dy \le \int_0^R |\nabla u(t,\theta)| t^{1-n} \sqrt{g}(\rho,\theta) dt \rho^{n-1} d\rho d\theta
$$

$$
\le \frac{R^n}{n} \int_0^R |\nabla u(t,\theta)| t^{1-n} \sqrt{g}(\rho,\theta) dt d\theta
$$

$$
= \frac{R^n}{n} \int_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy,
$$

thus

$$
\frac{1}{R^n} \int\limits_{B(x,R)} |u(x) - u(y)| \, dy \leq \frac{1}{n} \int\limits_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy,
$$

and

$$
(3.1) \qquad \frac{1}{\mu(B(x,R))} \int\limits_{B(x,R)} |u(x) - u(y)| \, dy \le \frac{1}{\mu(B(0,1))^n} \int\limits_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy.
$$

Now, fix $x \in M$. We apply inequality [\(3.1\)](#page-3-1) as follows

$$
|u(x)| \leq \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(x) - u(y)| dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| dy
$$

$$
\leq C \int_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| dy
$$

$$
\leq C \int_{B(x_0,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| dy,
$$

finally,

$$
|u(x)| \le C \int_{B(x_0,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy
$$

as $R \to \infty$. The proof is complete. ■

4. **MAIN RESULT**

With the previous results at hand, we are ready to state and prove our main result.

Theorem 4.1. *Assume* $f \in \mathcal{P}_p(M)$ *, where M is a complete Riemannian manifold of dimension* n *having non-negative Ricci curvature. Then, for any* r > 0*, there exists a positive constant* C(n, p) *such that*

$$
\int\limits_M |f(x)||u(x)|^p dx \le C(n,p)\phi(2r)\int\limits_M |\nabla u(x)|^p dx,
$$

for any $u \in C_0^{\infty}(M)$ *supported in* $B(x_0, r)$ *.*

Proof. By lemma [3.1](#page-2-0) and Fubini's theorem we have

$$
I = \int_{M} |f(x)||u(x)|^{p} dx = \int_{B(x,r)} |f(x)||u(x)|^{p} dx
$$

\n
$$
\leq C \int_{B(x,r)} |f(x)||u(x)|^{p-1} \left(\int_{B(x_{0},r)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy\right) dx
$$

\n
$$
\leq C \int_{B(x,r)} |\nabla u(y)| \left(\int_{B(x_{0},r)} |f(x)||u(x)|^{p-1} \frac{dx}{[d(x,y)]^{n-1}}\right) dy.
$$

Now, by Hölder's inequality, we obtain (4.1)

$$
I \leq C \left(\int\limits_{B(x,r)} |\nabla u(y)|^p dy \right)^{\frac{1}{p}} \left\{ \int\limits_{B(x_0,r)} \left(\int\limits_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{dx}{[d(x,y)^{n-1}]} \right)^{\frac{p}{p-1}} dy \right\}^{\frac{p-1}{p}}.
$$

For the above integral A , we have

$$
A = \int_{B(x_0,r)} \left(\int_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{dx}{[d(x,y)]^{n-1}} \right)^{\frac{p}{p-1}} dy
$$

\n
$$
\leq \int_{B(x_0,r)} \left(\int_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{|f(z)|}{[d(x,z)]^{n-1}} dz \right)^{\frac{p}{p-1}} \int_{B(x_0,r)} \frac{|f(x)| |u(x)|^p}{[d(x,y)]^{n-1}} dx dy
$$

\n
$$
= \int_{B(x_0,r)} |f(x)| |u(x)|^p \int_{B(x_0,r)} \frac{1}{[d(y,z)]^{n-1}} \left(\int_{B(x_0,r)} \frac{|f(z)|}{[d(y,z)]^{n-1}} dz \right)^{\frac{1}{p-1}} dy dx
$$

\n
$$
\leq {\{\phi(2r)\}}^{\frac{1}{p-1}} \int_{B(x_0,r)} |f(x)| |u(x)|^p dx.
$$

Going back to [\(4.1\)](#page-4-0), we obtain

$$
\int\limits_M |f(x)||u(x)|^p dx \leq C \left(\int\limits_{B(x,r)} |\nabla u(y)|^p dy\right)^{\frac{1}{p}} \left\{ \{\phi(2r)\}^{\frac{1}{p-1}} \int\limits_{B(x_0,r)} |f(x)||u(x)|^p dx. \right\}^{\frac{p-1}{p}},
$$

from which the desired result easily follows.

5. **CONCLUSION**

The inequality given in Theorem [4.1,](#page-3-0) in the literature is known as the Fefferman inequality, is a useful inequality, which is more scarce than, for instance, Poincaré inequality.

Among some applications, Fefferman inequality helps to prove unique continuation of the solution of an equation of this type:

$$
div A(x, u, \nabla u) = B(x, u, \nabla u)
$$

where

$$
A(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n
$$

and

$$
B(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}
$$

are continuous functions satisfying:

$$
|A(x, u, \xi)| \le a|\xi|^{p-1} + b(x)|u|^{p-1},
$$

\n
$$
|B(x, u, \xi)| \le C(x)|\xi|^{p-1} + d(x)|u|^{p-1},
$$

\n
$$
A(x, u, \xi) \cdot \xi \ge |\xi|^p - d(x)|u|^p
$$

for almost all $x \in \Omega$, $u \in \mathbb{R}$, and $\xi \in \mathbb{R}^n$, where $1 < p < \infty$, a is a positive constant and b, c, d are measurable functions in Ω whose extension with zero value outside Ω are such that

$$
b^{\frac{1}{p}}, c^p, d \in \widetilde{\mathcal{P}}_p(M).
$$

REFERENCES

- [1] M. AIZENMAN and B. SIMON, Brownian motion and Harnack's inequality for Schrödinger operators, *Comum. Pure Appl. Math.* **35** (1982), No. 2, pp. 209–271. [Online: [http://dx.](http://dx.doi.org/10.1002/cpa.3160350206) [doi.org/10.1002/cpa.3160350206](http://dx.doi.org/10.1002/cpa.3160350206)].
- [2] F. CHIARENZA and M. FRASCA, A remark on paper by Fefferman, *Proc. Amer. Math. Soc.* **108** (1990), No. 2, pp. 407–409. [Online:<http://dx.doi.org/10.2307/2048289>].
- [3] I. CHAVEL, *Riemannian Geometry. A modern introduction*, Cambridge university Press, Cambridge, 2006. [Online:<http://dx.doi.org/10.1017/cbo9780511616822>].
- [4] E. B. DAVIES and A. HINZ, Kato class potentials for higher order elliptic operators, *J. London Math. Soc.* **58** (1998), No. 3, pp. 669–678. [Online: [http://dx.doi.org/10.1112/](http://dx.doi.org/10.1112/s0024610798006565) [s0024610798006565](http://dx.doi.org/10.1112/s0024610798006565)].
- [5] C. FEFFERMAN, The uncertain principle, *Bull. Amer. Math. Soc.* **9** (1983), No. 2, pp. 129–206. [Online:<http://dx.doi.org/10.1090/s0273-0979-1983-15154-6>].
- [6] M. SCHECHTER, *Spectra of partial differential operators*, North Holland, Amsterdam, 1971.
- [7] P. ZAMBONI, Unique continuation for non-negative solutions of quasilinear elliptic equations, *Bull. Austral. Soc.* **64** (2001), No. 1, pp. 149–156. [Online: [http://dx.doi.org/10.](http://dx.doi.org/10.1017/s0004972700019766) [1017/s0004972700019766](http://dx.doi.org/10.1017/s0004972700019766)].