

A GRADIENT ESTIMATE FOR RIEMANNIAN MANIFOLDS

RENÉ ERLÍN CASTILLO AND HÉCTOR CAMILO CHAPARRO

Received 2 March, 2024; accepted 9 October, 2024; published 8 November, 2024.

DEPARTMENT OF MATHEMATICS, UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ, COLOMBIA. recastillo@unal.edu.co

PROGRAM OF MATHEMATICS, UNIVERSIDAD DE CARTAGENA, CARTAGENA DE INDIAS, COLOMBIA. hchaparrog@unicartagena.edu.co

ABSTRACT. In this paper we introduce the Kato class and the non-linear Kato class, on a Riemannian manifold of dimension n. We also obtain a gradient estimate for the non-linear Kato class.

Key words and phrases: Fefferman's inequality, Morrey Space, Kato class.

2010 Mathematics Subject Classification. Primary 26D10, 31C12, 46E35, 57N35. Secondary 35B60.

ISSN (electronic): 1449-5910

^{© 2024} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

In his celebrated paper C. Fefferman [5], proved the inequality

(1.1)
$$\int_{\mathbb{R}^n} |f(x)| |u(x)|^2 \, dx \le C \int_{\mathbb{R}^n} |\nabla u(x)|^2 \, dx,$$

for any $u \in C_0^{\infty}(\mathbb{R}^n)$, assuming that the function f belongs to the Morrey space $L^{r,n-2r}(\mathbb{R}^n)$, with $1 < r \leq \frac{n}{2}$ (see [2] for the definition to the Morrey Space $L^{r,n-2r}(\mathbb{R}^n)$).

Later, Chiarenza and Frasca [2] extended Fefferman's result, with a different proof, assuming $f \in L^{r,n-2r}(\mathbb{R}^n)$, $1 < r \leq \frac{n}{n}$, 1 .

A different approach to the inequality (1.1) was started with Schechter in [6], where he proved the inequality with f belonging to the Kato class (see definition 2.1 below). In [7], it was proved with 1 and <math>f belonging to a more general class of potentials.

In this paper, we replace the Euclidean space \mathbb{R}^n by Riemannian manifolds, then we investigate the relations between various functional inequalities and the geometry of the manifold.

Using the idea from [7], we provide a generalization of Schechter's result assuming $f \in \widetilde{\mathcal{P}}_p(M)$ (see definition 2.2 and Theorem 4.1).

2. **DEFINITIONS AND NOTATION**

Let M be a Riemannian manifold of dimension n. There is a canonical distance function associated to the Riemannian structure of M. We will denote it by $(x, y) \longrightarrow d(x, y)$. It can be defined as the shortest length of all piecewise C^1 curves from x to y. The topology of (M, d) as a metric space is the same as that of M as a manifold (see [3] §1.5): There is also a canonical measure on M which we denote by μ (see [3] §3,3).

Definition 2.1 (Kato Class). Let $f \in L^1_{loc}(\mathbb{R}^n)$. For any r > 0, we set

$$\phi(f)(r) = \sup_{x \in \mathbb{R}^n} \int_{N(x,r)} \frac{|f(y)|}{|x - y|^{n-2}} \, dy,$$

where $N(x,r) = \{y \in \mathbb{R}^n : |x-y| < r\}$ is an open ball in \mathbb{R}^n with radius r and center x. We say that f belongs to the Kato class $K_n(\mathbb{R}^n)$ if $\phi(f)(r) \to 0$ as $r \to 0^+$.

Definition 2.2 (Nonlinear Kato Class). Let M be a Riemannian manifold of dimension n. We set

$$\phi(f)(r) = \sup_{x \in M} \left(\int_{B(x,r)} \frac{1}{|d(x,y)|^{n-1}} \left(\int_{B(x,r)} \frac{|f(z)|}{[d(y,z)]^{n-1}} dz \right)^{\frac{1}{p-1}} dy \right)^{p-1},$$

where $B(x,r) = \{y \in M : d(x,y) < r\}$ is an open ball in M with radius r and center x. We say that $f : M \longrightarrow \mathbb{R}^n$ belongs to the space $\widetilde{\mathcal{P}}_p(M)$ if and only if $\phi(f)(r)$ is finite for any r > 0. If, in addition, $\lim_{r \to 0^+} \phi(f)(r) = 0$, then we say that f belongs to the space $\mathcal{P}_p(M)$.

Remark 2.1. Definition 2.2 gives back the classical Kato class (definition 2.1) if we take p = 2, $M = \mathbb{R}^n$ and d(x, y) = |x - y| (see [1] and [4]).

3. RICCI CURVATURE

Let (M, g) be a complete Riemannian manifold, where g is the metric tensor. The Ricci curvature tensor \mathcal{R} is a symmetric two-tensor obtained by contraction of the full curvature tensor (see [3]). Thus it can be compared with the metric tensor g.

The following lemma will play a crucial role in the proof of our main result, and it may be well-known to some readers or appear elsewhere in the literature. We have included its proof for the sake of completeness and the convenience of the reader.

Lemma 3.1. Let (M,g) be a complete Riemannian manifold of dimension n having nonnegative Ricci curvature. Then there exists a constant C dependig on n such that

$$|u(x)| \le C(n) \int_{B(x_0,r)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy,$$

where $u \in C_0^{\infty}(M)$ is supported on $B(x_0, r)$.

Proof. Let $u \in C_0^{\infty}(M)$ supported on $B(x_0, r)$. Now, consider the integral

$$\int_{B(x,R)} |u(x) - u(y)| \, dy \quad (R > 0).$$

To estimate this integral, we use polar (exponential) coordinates around x (see [2, Proposition 3.1]). This gives (in somewhat abusive notation)

$$\int_{B(x,R)} |u(x) - u(y)| \, dy = \int_0^R |u(x) - u(\rho,\theta)| \sqrt{g}(\rho,\theta) \, d\rho d\theta$$
$$\leq \int_0^R \int_0^\rho |\partial_1 u(t,\theta)| \, dt \sqrt{g}(\rho,\theta) \, d\rho d\theta$$
$$\leq \int_0^R \int_0^\rho |\nabla u(t,\theta)| \, dt \sqrt{g}(\rho,\theta) \, d\rho d\theta.$$

Here, we have simply used the usual trick to control u(x) - u(y) by integrating along the geodesic segment from x to y and used polar exponential coordinate $y = (\rho, \theta)$ around x. In particular, $\sqrt{g}(\rho, \theta) d\rho d\theta = dy$ is by definition the Riemannian volume element in polar coordinates.

We now use the hypothesis (M, g) has non-negative Ricci curvature. By Bishop's Theorem [2, theorem 3.8], the function $s \to \sqrt{g}(s, \theta) | s^{n-1}$ is non-increasing. It follows that

$$\begin{split} \int_{B(x,R)} |u(x) - u(y)| \, dy &\leq \int_0^R |\nabla u(t,\theta)| t^{1-n} \sqrt{g}(\rho,\theta) \, dt \rho^{n-1} \, d\rho d\theta \\ &\leq \frac{R^n}{n} \int_0^R |\nabla u(t,\theta)| t^{1-n} \sqrt{g}(\rho,\theta) \, dt d\theta \\ &= \frac{R^n}{n} \int_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy, \end{split}$$

thus

$$\frac{1}{R^n} \int\limits_{B(x,R)} |u(x) - u(y)| \, dy \le \frac{1}{n} \int\limits_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy,$$

4

and

(3.1)
$$\frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(x) - u(y)| \, dy \le \frac{1}{\mu(B(0,1))^n} \int_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy.$$

Now, fix $x \in M$. We apply inequality (3.1) as follows

$$\begin{aligned} |u(x)| &\leq \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(x) - u(y)| \, dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| \, dy \\ &\leq C \int_{B(x,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| \, dy \\ &\leq C \int_{B(x_0,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy + \frac{1}{\mu(B(x,R))} \int_{B(x,R)} |u(y)| \, dy, \end{aligned}$$

finally,

$$|u(x)| \le C \int_{B(x_0,R)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} dy$$

as $R \to \infty$. The proof is complete.

4. MAIN RESULT

With the previous results at hand, we are ready to state and prove our main result.

Theorem 4.1. Assume $f \in \widetilde{\mathcal{P}}_p(M)$, where M is a complete Riemannian manifold of dimension n having non-negative Ricci curvature. Then, for any r > 0, there exists a positive constant C(n, p) such that

$$\int_{M} |f(x)| |u(x)|^p \, dx \le C(n, p)\phi(2r) \int_{M} |\nabla u(x)|^p \, dx,$$

for any $u \in C_0^{\infty}(M)$ supported in $B(x_0, r)$.

Proof. By lemma 3.1 and Fubini's theorem we have

$$\begin{split} I &= \int_{M} |f(x)| |u(x)|^{p} \, dx = \int_{B(x,r)} |f(x)| |u(x)|^{p} \, dx \\ &\leq C \int_{B(x,r)} |f(x)| |u(x)|^{p-1} \left(\int_{B(x_{0},r)} \frac{|\nabla u(y)|}{[d(x,y)]^{n-1}} \, dy \right) \, dx \\ &\leq C \int_{B(x,r)} |\nabla u(y)| \left(\int_{B(x_{0},r)} |f(x)| |u(x)|^{p-1} \frac{dx}{[d(x,y)]^{n-1}} \right) \, dy \end{split}$$

Now, by Hölder's inequality, we obtain (4.1)

$$I \le C \left(\int_{B(x,r)} |\nabla u(y)|^p \, dy \right)^{\frac{1}{p}} \left\{ \int_{B(x_0,r)} \left(\int_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{dx}{[d(x,y)^{n-1}]} \right)^{\frac{p}{p-1}} \, dy \right\}^{\frac{p-1}{p}}.$$

For the above integral A, we have

$$\begin{split} &A = \int\limits_{B(x_0,r)} \left(\int\limits_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{dx}{[d(x,y)]^{n-1}} \right)^{\frac{p}{p-1}} dy \\ &\leq \int\limits_{B(x_0,r)} \left(\int\limits_{B(x_0,r)} |f(x)| |u(x)|^{p-1} \frac{|f(z)|}{[d(x,z)]^{n-1}} dz \right)^{\frac{p}{p-1}} \int\limits_{B(x_0,r)} \frac{|f(x)| |u(x)|^p}{[d(x,y)]^{n-1}} dx dy \\ &= \int\limits_{B(x_0,r)} |f(x)| |u(x)|^p \int\limits_{B(x_0,r)} \frac{1}{[d(y,z)]^{n-1}} \left(\int\limits_{B(x_0,r)} \frac{|f(z)|}{[d(y,z)]^{n-1}} dz \right)^{\frac{1}{p-1}} dy dx \\ &\leq \{\phi(2r)\}^{\frac{1}{p-1}} \int\limits_{B(x_0,r)} |f(x)| |u(x)|^p dx. \end{split}$$

Going back to (4.1), we obtain

$$\int_{M} |f(x)| |u(x)|^{p} dx \leq C \left(\int_{B(x,r)} |\nabla u(y)|^{p} dy \right)^{\frac{1}{p}} \left\{ \{\phi(2r)\}^{\frac{1}{p-1}} \int_{B(x_{0},r)} |f(x)| |u(x)|^{p} dx. \right\}^{\frac{p-1}{p}},$$

from which the desired result easily follows.

5. CONCLUSION

The inequality given in Theorem 4.1, in the literature is known as the Fefferman inequality, is a useful inequality, which is more scarce than, for instance, Poincaré inequality.

Among some applications, Fefferman inequality helps to prove unique continuation of the solution of an equation of this type:

$$\operatorname{div} A(x, u, \nabla u) = B(x, u, \nabla u)$$

where

$$A(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

and

$$B(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$$

are continuous functions satisfying:

$$|A(x, u, \xi)| \le a|\xi|^{p-1} + b(x)|u|^{p-1},$$

$$|B(x, u, \xi)| \le C(x)|\xi|^{p-1} + d(x)|u|^{p-1},$$

$$A(x, u, \xi) \cdot \xi \ge |\xi|^p - d(x)|u|^p$$

for almost all $x \in \Omega$, $u \in \mathbb{R}$, and $\xi \in \mathbb{R}^n$, where $1 , a is a positive constant and b, c, d are measurable functions in <math>\Omega$ whose extension with zero value outside Ω are such that

$$b^{\frac{1}{p}}, c^{p}, d \in \widetilde{\mathcal{P}}_{p}(M).$$

REFERENCES

- M. AIZENMAN and B. SIMON, Brownian motion and Harnack's inequality for Schrödinger operators, *Comum. Pure Appl. Math.* 35 (1982), No. 2, pp. 209–271. [Online: http://dx. doi.org/10.1002/cpa.3160350206].
- [2] F. CHIARENZA and M. FRASCA, A remark on paper by Fefferman, *Proc. Amer. Math. Soc.* 108 (1990), No. 2, pp. 407–409. [Online: http://dx.doi.org/10.2307/2048289].
- [3] I. CHAVEL, *Riemannian Geometry*. A modern introduction, Cambridge university Press, Cambridge, 2006. [Online: http://dx.doi.org/10.1017/cbo9780511616822].
- [4] E. B. DAVIES and A. HINZ, Kato class potentials for higher order elliptic operators, J. London Math. Soc. 58 (1998), No. 3, pp. 669–678. [Online: http://dx.doi.org/10.1112/ s0024610798006565].
- [5] C. FEFFERMAN, The uncertain principle, Bull. Amer. Math. Soc. 9 (1983), No. 2, pp. 129–206.
 [Online: http://dx.doi.org/10.1090/s0273-0979-1983-15154-6].
- [6] M. SCHECHTER, Spectra of partial differential operators, North Holland, Amsterdam, 1971.
- P. ZAMBONI, Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Soc. 64 (2001), No. 1, pp. 149–156. [Online: http://dx.doi.org/10. 1017/s0004972700019766].