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ABSTRACT. In 2002, new classes of weighted metricsRihwere introduced by Peter Hasto.
In this article we compute the metric functionals for such classes of metrics.
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1. INTRODUCTION

Given a noncompact topological space there are several ways to compactify it. Among them,
the one-point compactification is arguably the simplest. Another compactification technique,
when the space is metrizable, is the metric compactification (see the definition below). A simple
example of a metric compactification of the real line is given in example 15 of [3]. In this case,
metric compactification amounts to the one-point compactificatidR. dVe observe that even
this simple example has deep implications (see the unpublished preprint by Anders Karlsson
and Nicolas Monod, available on Karlsson’s web page). Thus, we believe that it is important to
have concrete examples at hand where the metric compacification is known. Our result, despite
being elementary, is a rather more elaborate case where the metric compactific&tigricyf
classes of weighted metrics studied by Hasto (which we call Hastd metrics) is also the one-point
compactification.

Let (X, d) be a metric space with an arbitrary base peine X. Define a ma@ : X — RX
as follows

(1.1) r v he(r) =d(-,x) — d(x,, ).

The map® is injective and, if one considers the pointwise convergenc®-dnit is also con-
tinuous. IdentifyX with the image?(.X') and set

X =9(X)={h,:x € X},

the pointwise closure. Following|[3) is called the metric compactification @K, d) and the
elementsh of X are called metric functionals. Elements of the fo(1.1) are called internal.
The non internal metric functionals, that is, elements fr&X form the boundary of the
metric compactification.

Metric compactification can be traced back to Gromov who used instead uniform conver-
gence on bounded sets. In this context, the common terminology for metric functionals is
horofunctions. When the space is proper both notions coincide, see [3] page 5. There
are several papers regarding metric and horofunctions compactification of metric spaces and
groups endowed with a metric. We will name just a few and suggest the interested reader to
look into their bibliography for more references. For instance, lin [6], the author computed the
horoboundary of finite dimensional normed spaces. In a different setting, Ledrappier and Lim
studied the horofunctions compactification of the Heisenberg group with the Koranyi metric,
see the unpublished preprint [5] (see also [4]). More recently, Gutiérrez [1] characterizes the
metric compactification of,, spaces by random measures. The recent work of Karlsson [3] is
an excellent reference about the new ideas of an entire programme that seeks to apply techniques
of functional analysis in metric spaces which fail to be linear. In particular, metric functionals
as defined above are the analogue of linear functionals.

In this paper we completely characterize the metric compactification of the metric spaces
(R",d,) and (R",d,,), whered, andd,, are the one parameter and two parameters Hasto
metrics, two classes of weighted metrics introducedlin [2]. We remark that none of these metrics
comes from a norm, so the results of Walsh [6] do not apply. Specifically, we show that when
q €]0,1], the boundary of the metric compactification (", d,) is {0}, see Theorern 2.1.
Depending on parametepsandg, the boundary of the metric compactification(&”, d,, ,) is
always a singleton not necessarily zero, see Thepregm 2.2.

2. METRIC FUNCTIONALS FOR HASTO METRICS

We begin with the first class of Hastd metric owrst.
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2.1. One parameter Hastd metrics. We use the terminology "one parameter" Hastd metric to
refer to the class of metrics

|z -y
(max{|zl, y|})?

wherez, y € R™ andq €10, 1], given in [2]. The valuel,(0, 0) is defined to b&. We can state
our first result:

dQ(x=y> =

Theorem 2.1. Consider the metric spad®”, d,). Wheng €0, 1] the boundary of the metric
compactification i0}.

Proof. Let (x,),en be a sequence of pointsRi'. We start by noting that if.,, ## 0 we have

|20
(max{|z,|, 0})?

dy(2,,0) =

= |xn|1_q'

If ¢ = 1this quotient is just, butif ¢ € |0, 1] we have that,(x,,, 0) diverge to+oc if, and only
if |,,| diverge to+oo. We have

‘xn - y’
(max{[z], [y[})7

Since we are interested in sequenges),, such thati(z,, 0) diverge to+oo we have that, for
some ordermax{|x,|, |y|} = |z,|. Accordingly,

— |xn|1—q_

e, (y) = do(7n,y) — dy(20,0) =

1
:\xn\kq In Y —11.

From the inequalitya + b| < |a| + |b|, definingc asa + b we have|c| < |a| + |¢ — al, or,
le| = |a|] < |c — al. Hence

- L)< - <1 | L
T, lzn] |2 Ty
and
|t = Y| A
Tn| = ||zn]  |2nl e

We are now able to compute the metric functional. From

|[zp]? T o = ||

and agz,,| diverge to infinity,
lim hg, (y) =0

XTp——+00

We now consider another class of Hastd metric.
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2.2. Two parameter Hastd metrics. We use the terminology "two parameter" Hastd metrics
to refer to the class of metrics

|z —y|

q
/el + 1T

wherezr,y € R, ¢ €]0,1] andp > max{1 — ¢, (2 — ¢)/3}, given in [2]. The valuei(0, 0) is
defined to bé). In this setting our result is the following:

dp,q(xay) = (

Theorem 2.2. Consider the metric spad®™, d, ,). We have
(1) wheng €10,1/2] andp = 1 — ¢ the boundary of the metric compactification is

4 1—q

(2) wheng €]0,1/2] andp > 1 — ¢, or wheng €11/2,1[, p > (2 — ¢)/3 the boundary of
the metric compactification i§)}.

Proof. Let (z,).cn be a sequence of pointsiRi'. As in§2.1 we note that, ifz,, # 0, we have

dp,q(xna 0) =

= ’xn’k%

If ¢ = 1 this quotient is one, but i €]0, 1] thend, ,(z,,0) diverge to+oco if, and only if |z,
diverge to+oo. We have:

|xn - y|
q
(4/Tealr +ToP)

In order to compute the limit of this last expression, we define

he, (y) = dp,q(wnay) - dp,q(xna 0) =

_ |xn|1*q.

A=z, —yl, B=|z.["+ [yl and C = |z, ["".

Although A, B andC' depend om, for simplicity the dependence will not be made explicit.
Clearly,

A A? 9
i ()_ A oA A _C Bq/p+C_B2q/p_C
”””y_Bq/p ~ \ B4/p A—I—C_ A+O'

Balp Ba/p

Let us evaluate the asymptotic behaviour of both numerator and denominator. Starting by the
denominator:

Ty, y
A 20 — 9 - - ENREN
B T C = 7ol = a0 sl
p p
(¢/Teal +TuP?) Ll
‘xn‘p
Recall that
1Y Ino_ Y 4|2
Ty |zo| | T,
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p
Now, we need the dependency enDefiningD,, = <§/ 1+ ||y||p
xn

q
) we can write
1

LR e P e e
D, Dy|x,| ~ Dy |lxal |xal| = Dn  Dn |z,
and
_ 1 1 |y A _ 1 1 |y
W =— 1 —=— L) < C<le 0 =—+14+—|L]).
2l (Dn+ D, xn)_BQ/P+ < [l (Dn+ D, |
This leads to

(1 Lyl A o1 1 |yl
N =—41) - — <——4+C< |z — 41 )+ —F—.
[zl (Dn + > Dy janlt = Bl TS el B ) T hn ENE
As n goes to infinityD,, — 1 and|z,|? — 400 and we see that
A
Ba/p
has the asymptotic behavior 9ffr,,|' 9, i.e.,
A
Ba/p

+C

+C ~ 2|z, '

Regarding the numerator:

2 2—2 24
2 42— coprate o=yl = a0 (el + 9P

C* = =
2q/ 2q/ 2q
B2a/p B2a/p ( |xn|p—|—|y|p>

2q
2 P

NN T R Y |

|2_2q |0 |Zn| |Zn [P

For the root in the numerator of this expression we will use the first-order Taylor expansion
(14+t)*=1+at+o(t),(t — 0).

Now, similarly to the last case, we can write
2 2 2
(- 12]) = <(+f2)

2q
p

Therefore, subtractin< 14 |y_|p> gives, on the LHS of the inequality,
2q

2 P
o) |

|xn|p

2
Y

= +2
Tn,

= |z,

Y

Tn

Tn Y

Y

T

2 p

Tn Y

Y

Tn

Tn p

and, on the RHS of the inequality,
2q
2 P
T | <
|xn|p
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1
wheree,, = |y|P x 0(—).
|xn|p
Hence, we obtain on the LHS,

wl> 2l 2¢ |yl €n A
. |24 . |2a—1 1. |pt2g-2 x. |2a—2 — B2q/p ’
|| |Zn| p |z, ||

and, on the RHS,
A e WP 2 29 P €n

B2a/p - |5L~n|2q |xn|2q—1 P |xn|p+2q—2 |:L-n|2q—2'

Finally, using the fact that the denominator is asymptoti2|ig | ¢, we get

ly[? vl q JyP €n
_ _4 <n
2z, [t |x,l pla,|pret + 2w, la-1 = . (Y)
and 2
p
() < W oW ‘

T 2z x|t pla, Pttt 2x,[et
Sinceq is greater than zero the terms with denominators with exponeatsl 1 + ¢ go to
zero agz,| — +oo. If we choosep, ¢ such thap + ¢ = 1, then

(=)

0 —

€n ly[? B
lanfi—t 2 1

|2 |17

It follows that 7

lim hy (y) = ———|y|* 2

pm e (y) = =Ml

Recall thatd, ,(z, y) is a metric forg €0, 1] and

p > max{l — ¢, (2~ q)/3}
By inspection we can see thatjifc |0, 1/2] the condition orpisp > 1 — ¢. This is compatible
with p 4+ ¢ = 1. If ¢ €]1/2, 1] the condition orp is p > (2 — ¢)/3, but now this condition is
incompatible withp 4+ ¢ = 1. Summarizing, for the metric spa¢®”, d,_,,) with ¢ €]0,1/2]

we have the metric functional .
hy) = ———|y|' 9.
Y) =-1— . ]
If ¢ €]0,1/2] andp > 1 —qorq €]1/2,1[andp > (2 — ¢q)/3, the metric functional is the null
function. g
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