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2 G. BETTENCOURT AND S. MENDES

1. I NTRODUCTION

Given a noncompact topological space there are several ways to compactify it. Among them,
the one-point compactification is arguably the simplest. Another compactification technique,
when the space is metrizable, is the metric compactification (see the definition below). A simple
example of a metric compactification of the real line is given in example 15 of [3]. In this case,
metric compactification amounts to the one-point compactification ofR. We observe that even
this simple example has deep implications (see the unpublished preprint by Anders Karlsson
and Nicolas Monod, available on Karlsson’s web page). Thus, we believe that it is important to
have concrete examples at hand where the metric compacification is known. Our result, despite
being elementary, is a rather more elaborate case where the metric compactification ofRn, for
classes of weighted metrics studied by Hästö (which we call Hästö metrics) is also the one-point
compactification.

Let (X, d) be a metric space with an arbitrary base pointxo ∈ X. Define a mapΦ : X → RX

as follows

(1.1) x 7→ hx(·) = d(·, x)− d(xo, x).

The mapΦ is injective and, if one considers the pointwise convergence onRX , it is also con-
tinuous. IdentifyX with the imageΦ(X) and set

X := Φ(X) = {hx : x ∈ X},

the pointwise closure. Following [3],X is called the metric compactification of(X, d) and the
elementsh of X are called metric functionals. Elements of the form (1.1) are called internal.
The non internal metric functionals, that is, elements fromX\X form the boundary of the
metric compactification.

Metric compactification can be traced back to Gromov who used instead uniform conver-
gence on bounded sets. In this context, the common terminology for metric functionals is
horofunctions. When the spaceX is proper both notions coincide, see [3] page 5. There
are several papers regarding metric and horofunctions compactification of metric spaces and
groups endowed with a metric. We will name just a few and suggest the interested reader to
look into their bibliography for more references. For instance, in [6], the author computed the
horoboundary of finite dimensional normed spaces. In a different setting, Ledrappier and Lim
studied the horofunctions compactification of the Heisenberg group with the Korányi metric,
see the unpublished preprint [5] (see also [4]). More recently, Gutiérrez [1] characterizes the
metric compactification ofLp spaces by random measures. The recent work of Karlsson [3] is
an excellent reference about the new ideas of an entire programme that seeks to apply techniques
of functional analysis in metric spaces which fail to be linear. In particular, metric functionals
as defined above are the analogue of linear functionals.

In this paper we completely characterize the metric compactification of the metric spaces
(Rn, dq) and (Rn, dp,q), wheredq and dp,q are the one parameter and two parameters Hästö
metrics, two classes of weighted metrics introduced in [2]. We remark that none of these metrics
comes from a norm, so the results of Walsh [6] do not apply. Specifically, we show that when
q ∈ ]0, 1[, the boundary of the metric compactification of(Rn, dq) is {0}, see Theorem 2.1.
Depending on parametersp andq, the boundary of the metric compactification of(Rn, dp,q) is
always a singleton not necessarily zero, see Theorem 2.2.

2. M ETRIC FUNCTIONALS FOR HÄSTÖ M ETRICS

We begin with the first class of Hästö metric overRn.
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METRIC FUNCTIONALS FOR THEHÄSTÖ METRIC 3

2.1. One parameter Hästö metrics.We use the terminology "one parameter" Hästö metric to
refer to the class of metrics

dq(x, y) =
|x− y|

(max{|x|, |y|})q

wherex, y ∈ Rn andq ∈ ]0, 1], given in [2]. The valuedq(0, 0) is defined to be0. We can state
our first result:

Theorem 2.1. Consider the metric space(Rn, dq). Whenq ∈ ]0, 1[ the boundary of the metric
compactification is{0}.

Proof. Let (xn)n∈N be a sequence of points inRn. We start by noting that ifxn 6= 0 we have

dq(xn, 0) =
|xn|

(max{|xn|, 0})q
= |xn|1−q.

If q = 1 this quotient is just1, but if q ∈ ]0, 1[ we have thatdq(xn, 0) diverge to+∞ if, and only
if |xn| diverge to+∞. We have

hxn(y) = dq(xn, y)− dq(xn, 0) =
|xn − y|

(max{|xn|, |y|})q
− |xn|1−q.

Since we are interested in sequences(xn)n such thatd(xn, 0) diverge to+∞ we have that, for
some order,max{|xn|, |y|} = |xn|. Accordingly,

hxn(y) =
1

|xn|q
(|xn − y| − |xn|)

= |xn|1−q

(∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣− 1

)
.

From the inequality|a + b| ≤ |a| + |b|, definingc asa + b we have|c| ≤ |a| + |c − a|, or,
|c| − |a| ≤ |c− a|. Hence

1−
∣∣∣∣ y

xn

∣∣∣∣ ≤ ∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣ ≤ 1 +

∣∣∣∣ y

xn

∣∣∣∣
and

−
∣∣∣∣ y

xn

∣∣∣∣ ≤ ∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣− 1 ≤
∣∣∣∣ y

xn

∣∣∣∣ .
We are now able to compute the metric functional. From

− |y|
|xn|q

≤ hxn(y) ≤ |y|
|xn|q

,

and as|xn| diverge to infinity,

lim
xn→+∞

hxn(y) = 0

We now consider another class of Hästö metric.
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2.2. Two parameter Hästö metrics. We use the terminology "two parameter" Hästö metrics
to refer to the class of metrics

dp,q(x, y) =
|x− y|(

p
√
|x|p + |y|p

)q

wherex, y ∈ Rn, q ∈ ]0, 1] andp ≥ max{1 − q, (2 − q)/3}, given in [2]. The valued(0, 0) is
defined to be0. In this setting our result is the following:

Theorem 2.2.Consider the metric space(Rn, dp,q). We have

(1) whenq ∈ ]0, 1/2] andp = 1− q the boundary of the metric compactification is

{− q

1− q
|y|1−q}.

(2) whenq ∈ ]0, 1/2] andp > 1 − q, or whenq ∈ ]1/2, 1[, p ≥ (2 − q)/3 the boundary of
the metric compactification is{0}.

Proof. Let (xn)n∈N be a sequence of points inRn. As in §2.1 we note that, ifxn 6= 0, we have

dp,q(xn, 0) =
|xn|
|xn|q

= |xn|1−q.

If q = 1 this quotient is one, but ifq ∈ ]0, 1[ thendp,q(xn, 0) diverge to+∞ if, and only if |xn|
diverge to+∞. We have:

hxn(y) = dp,q(xn, y)− dp,q(xn, 0) =
|xn − y|(

p
√
|xn|p + |y|p

)q − |xn|1−q.

In order to compute the limit of this last expression, we define

A = |xn − y|, B = |xn|p + |y|p and C = |xn|1−q.

Although A, B andC depend onn, for simplicity the dependence will not be made explicit.
Clearly,

hxn(y) =
A

Bq/p
− C =

(
A

Bq/p
− C

) A

Bq/p
+ C

A

Bq/p
+ C

=

A2

B2q/p
− C2

A

Bq/p
+ C

.

Let us evaluate the asymptotic behaviour of both numerator and denominator. Starting by the
denominator:

A

Bq/p
+ C =

|xn − y|(
p
√
|xn|p + |y|p

)q + |xn|1−q = |xn|1−q


∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣(
p

√
1 +

|y|p

|xn|p

)q + 1

 .

Recall that

1−
∣∣∣∣ y

xn

∣∣∣∣ ≤ ∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣ ≤ 1 +

∣∣∣∣ y

xn

∣∣∣∣ .
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Now, we need the dependency onn. DefiningDn =

(
p

√
1 +

|y|p

|xn|p

)q

we can write

1

Dn

− 1

Dn

∣∣∣∣ y

xn

∣∣∣∣ ≤ 1

Dn

∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣ ≤ 1

Dn

+
1

Dn

∣∣∣∣ y

xn

∣∣∣∣ ,
and

|xn|1−q

(
1

Dn

+ 1− 1

Dn

∣∣∣∣ y

xn

∣∣∣∣) ≤ A

Bq/p
+ C ≤ |xn|1−q

(
1

Dn

+ 1 +
1

Dn

∣∣∣∣ y

xn

∣∣∣∣) .

This leads to

|xn|1−q

(
1

Dn

+ 1

)
− 1

Dn

|y|
|xn|q

≤ A

Bq/p
+ C ≤ |xn|1−q

(
1

Dn

+ 1

)
+

1

Dn

|y|
|xn|q

.

As n goes to infinityDn → 1 and|xn|q → +∞ and we see that

A

Bq/p
+ C

has the asymptotic behavior of2|xn|1−q, i.e.,

A

Bq/p
+ C ∼ 2|xn|1−q

Regarding the numerator:

A2

B2q/p
− C2 =

A2 − C2B2q/p

B2q/p
=
|xn − y|2 − |xn|2−2q

(
p
√
|xn|p + |y|p

)2q

(
p
√
|xn|p + |y|p

)2q

= |xn|2−2q


∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣2 −
(

p

√
1 +

|y|p

|xn|p

)2q

(
p

√
1 +

|y|p

|xn|p

)2q

 .

For the root in the numerator of this expression we will use the first-order Taylor expansion

(1 + t)α = 1 + αt + o(t), (t → 0).

Now, similarly to the last case, we can write(
1−

∣∣∣∣ y

xn

∣∣∣∣)2

≤
∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣2 ≤ (1 +

∣∣∣∣ y

xn

∣∣∣∣)2

,

Therefore, subtracting

(
p

√
1 +

|y|p

|xn|p

)2q

gives, on the LHS of the inequality,

∣∣∣∣ y

xn

∣∣∣∣2 − 2

∣∣∣∣ y

xn

∣∣∣∣− 2q

p

∣∣∣∣ y

xn

∣∣∣∣p + εn ≤
∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣2 −
(

p

√
1 +

|y|p

|xn|p

)2q

,

and, on the RHS of the inequality,∣∣∣∣ xn

|xn|
− y

|xn|

∣∣∣∣2 −
(

p

√
1 +

|y|p

|xn|p

)2q

≤
∣∣∣∣ y

xn

∣∣∣∣2 + 2

∣∣∣∣ y

xn

∣∣∣∣− 2q

p

∣∣∣∣ y

xn

∣∣∣∣p + εn
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6 G. BETTENCOURT AND S. MENDES

whereεn = |y|p × o
( 1

|xn|p
)

.

Hence, we obtain on the LHS,

|y|2

|xn|2q
− 2|y|
|xn|2q−1

− 2q

p

|y|p

|xn|p+2q−2
+

εn

|xn|2q−2
≤ A2

B2q/p
− C2,

and, on the RHS,

A2

B2q/p
− C2 ≤ |y|2

|xn|2q
+

2|y|
|xn|2q−1

− 2q

p

|y|p

|xn|p+2q−2
+

εn

|xn|2q−2
.

Finally, using the fact that the denominator is asymptotic to2|xn|1−q, we get

|y|2

2|xn|1+q
− |y|
|xn|q

− q

p

|y|p

|xn|p+q−1
+

εn

2|xn|q−1
≤ hxn(y)

and

hxn(y) ≤ |y|2

2|xn|1+q
+

|y|
|xn|q

− q

p

|y|p

|xn|p+q−1
+

εn

2|xn|q−1
.

Sinceq is greater than zero the terms with denominators with exponentsq and1 + q go to
zero as|xn| → +∞. If we choosep, q such thatp + q = 1, then

εn

2|xn|q−1
=
|y|p

2
×

o
( 1

|xn|1−q

)
1

|xn|1−q

→ 0.

It follows that
lim

xn→+∞
hxn(y) = − q

1− q
|y|1−q.

Recall thatdp,q(x, y) is a metric forq ∈ ]0, 1] and

p ≥ max{1− q, (2− q)/3}
By inspection we can see that ifq ∈ ]0, 1/2] the condition onp is p ≥ 1− q. This is compatible
with p + q = 1. If q ∈ ]1/2, 1[ the condition onp is p ≥ (2 − q)/3, but now this condition is
incompatible withp + q = 1. Summarizing, for the metric space(Rn, d1−q,q) with q ∈ ]0, 1/2]
we have the metric functional

h(y) = − q

1− q
|y|1−q.

If q ∈ ]0, 1/2] andp > 1− q or q ∈ ]1/2, 1[ andp ≥ (2− q)/3, the metric functional is the null
function.
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