Aust. J. Math. Anal. Appl.
Vol. 20(2023), No. 1, Art. 7, 14 pp.
AIJMAA

A UNIFYING VIEW OF SOME BANACH ALGEBRAS
ROBERT KANTROWITZ

Received 30 June, 2022; accepted 6 January, 2023; published 28 March, 2023.

MATHEMATICS & STATISTICS DEPARTMENT, HAMILTON COLLEGE, 198 GOLLEGE HILL ROAD, CLINTON,
NY 13323, USA.
rkantrow@hamilton.edu

ABSTRACT. The purpose of this article is to shed light on a unifying framework for some
normed algebras and, in particular, for some Banach algebras. The focus is on linear opera-
torsT between normed algebras andY and specified subalgebrasof Y. When the action

of T'on products inX satisfies a certain operative equation, the subspacéA) is stable un-

der the multiplication ofX and is readily equipped with a family of canonical submultiplicative
norms. It turns out that many familiar and important spaces are encompassed under this versa-
tile perspective, and we offer a sampling of several such. In this sense, the article presents an
alternative lens through which to view a host of normed algebras. Moreover, recognition that a
normed linear space conforms to this general structure provides another avenue to confirming
that it is at once stable under multiplication and also outfitted with an abundance of equivalent
submultiplicative norms.
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2 R. KANTROWITZ

1. INTRODUCTION

This article centers around linear operatérs X — Y between normed algebras and
Y whose actions on products of elementsXoére governed by a certain operative equation. In
each such case, the pre-image' (A) of a specified subalgebr&of Y turns out to be a subal-
gebra ofX that is automatically endowed with a family of equivalent submultiplicative norms.
Under mild additional conditions, these normsBn!(A) are complete. This general setting
is remarkably flexible, and we devote a great deal of attention to highlighting an assortment
of Banach algebras that may be construed in this way. We thereby offer a retro-fitting of sev-
eral Banach algebras to a unifying framework, exposing a certain structural consistency among
them. The current work may be viewed as a modest companion to Section 4 of the article [6]
and the attendant articles [3]] [4].

In the final section, we modify the setting slightly and introduce a second operative equation
which, when satisfied, ensures that!(A) is again a subalgebra of, this time equipped
with a family of submultiplicative seminorms. We conclude with two examples of such; as a
lagniappe, in each of these, a seminorm under consideration turns out to be a norm.

2. NORMED ALGEBRAS

Throughout this section and the neiX, || - ||x) and(Y, || - ||y) represent normed algebras,
and(A, || - ||4) is a normed subalgebra bf that is also a two-sided ideal &f; specifically,
() llally < |la]|aforalla € A;
(i) Ay C Aforally € Y and|jay|la < ||a||ally||y foralla € Aand ally € Y;
(i) yA C Aforally € Y and|jya|la < ||ly|ly|lalla forally € Y and alla € A.

We will be interested in functiong,g : X — Y andh : X x X — Y that satisfy the
following conditions:

f andg are norm-decreasing;
(2.1) h(u,v) € Awheneven,v € T-'(A); and
there is anm > 0 such that|h(u, v)|| 4 < m||Tu||4||Tv|| 4 for all u,v € T(A).

When such functiong, g, andh implement theoperative equation
(2.2) T(uw) = f(u)(Tv) + (Tu)g(v) + h(u,v) forallu,v € X,
we define

lull7m = |lullx +m||Tul|la forallu e T 1(A).
Against this backdrop, we are prepared for the following theorem.

Theorem 2.1. Suppose thatX, || - ||x) and (Y, || - ||y) are normed algebras, that, || - ||4) is

a normed subalgebra of that is also a two-sided ideal af, and thatT" : X — Y is alinear
operator. If f, g, andh are functions that satisfy conditiorf2.1) and implement the operative
equation(2.), then(T~(A), || ||, is a normed algebra. Moreover,if* > m, then||- || 7.,
provides an algebra norm faF—'( A) that is equivalent tdj - ||z,

Proof. Itis straightforward to confirm that the functidn||+,,, provides a norm for the subspace
T-1(A) of X. We thus proceed to establish that!(A) is stable under multiplication and that
| - |l7.m is submultiplicative orii’~*(A). Indeed, foru,v € T~'(A), we have from equation
(2.2) thatT'(uv) = f(u)Tv + (T'u)g(v) + h(u, v) which, together with conditions (ii), (iii), and
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(2.1), implies thatiw € T-!(A). Moreover,
[wv[lrm = [luv]x +m||T(w)]|a
= lluvllx +ml|f(u)(Tv) + (Tu)g(v) + h(u, v)|a
< lullxllvllx +ml[f(@)lly [[Tv][a +m|Tullallg(0)]ly + mlA(u, v)]|a
< lullxlvllx +mllullx [ Tvlla +mlTullallvllx +m® | Tull 4| Tv] 4
= (Jullx +mlTull4) (l[v]lx +ml[Tv][a)
= llullmmllvllzm

to establish the submultiplicativity of the norim ||r,,.

For the final assertion, it is now routine to confirm that| ..+ is also an algebra norm for
T-*(A), and we infer the equivalence of the norfns||r,, and|| - ||..- from the inequalities
|l 7m < [Jullrme < (m*/m)||ullrm forallu e T1(A). §

In the context of Theorein 2.1, there is a family of infinitely many equivalent algebra norms
for T=1(A), namely, one for each sufficiently large > 0. In fact, as is the case in several of
the upcoming examples, when the functfoe:= 0, everym > 0 provides such a norm.

If, instead of being norm-decreasing as stipulated in (2.1), there are positive numbats
9, at least one of which is greater than 1, for which the functipasdg satisfy || f(u)||y <
crllullx and|jg(u)]ly < eoflu|lx for all u € X, then the numbet = max{c, c,} satisfies
|wv||l7m < cllullzmllvllrm for all u,o € T71(A). In this case, there is a submultiplicative
norm for7T~*(A) that is equivalent td - ||z, ([Z], Lemma 4.8).

The following corollary shows that many familiar operators automatically satisfy conditions
(2.7) and equation} (2.2). In advance of the corollary, we recall that, by Definition 1.4.5 of [5],
an algebraX is left faithful if the equality{w € X : wX = 0} = {0} holds andight faithful
if the equality{w € X : Xw = 0} = {0} holds.

Corollary 2.2. In the setting of Theorem 2.1, if any of the following conditions is satisfied, then
(T7*(A), || - l.m) is @a normed algebra:

(@) T : X — Y is an algebra homomorphism amd > 1;
(b) T: X — X is a derivation onX andm > 0;
(c) the algebraX is left or right faithful, 7 : X — X is a multiplier onX, andm > 0.

Proof. (a) If T is an algebra homomorphism, then the equédlity.v) = TuTv holds for all
u,v € X. Equation [(2.R) thus holds with the choicgs= ¢ = 0 on X and the function
h: X x X — Y given byh(u,v) = TuTw for all u,v € X. The conditions[(2]1) are also
satisfied since, in particular, if, v € T~'(A), thenh(u,v) = TuTv € A and||h(u,v)||s =
|TuTv||a < ||Tu|l4]|Tv|| 4. The result is therefore an immediate consequence of Thg¢orem 2.1.

(b) If T" is a derivation onX, then, by definition, the equality(uv) = «Tv + (T'w)v holds
for all u,v € X. Conditions|(2.]l) and equation (R.2) are thus satisfied with the chpiegs=
g(u) = uforallu € X, the functionh = 0 on X x X, and anym > 0. The result follows from
Theorem Z.11.

() If T': X — X is a multiplier, then, by definition(7u)v = uTv for all u,v € X. It
follows that, for anyw € X,

w(T(uwv) — uTv) = wl (ww) — w(Tu)v = (Tw)(uv — uv) = 0.
Thus, if X is left faithful, thenT'(uv) = uT'w for all u,v € X, so that conditions (2/1) and
equation[(2.R) are satisfied with the choigés) = u forallu € X, g =0o0nX, h = 0on

X x X, and anym > 0. The result follows by Theoren 2.1. The argument in the caseXhat
is right faithful is similar.n
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3. BANACH ALGEBRAS

Theorem 3.1. Suppose thatX, | - ||x) is a Banach algebra, that4, | - ||4) is a Banach

subalgebra of the normed algebfd’, || - ||y) that is also a two-sided ideal df, and that

T : X — Y is a bounded linear operator. fI'~*(A),|| - ||z.») is @ normed algebra, then
(T7*(A), | - |l.m) is @ Banach algebra.

Proof. If (u,).en is @ Cauchy sequence in the normed algébra (A), || - ||, ), then it follows
from the definition of|| - ||, that the sequenceés,, ),y and(7'u,),cy are Cauchy sequences
in (X, || -|lx)and(A,]| - ||a), respectively. Thus, there exist elements X anda € A such

thatu,, e, andT(u,) I, ) asn — oo. Condition (i) on the subalgebr implies that

lI-lly [I-lly

T(u,) — a asn — oo. On the other hand, sinéis bounded?(u,) — Tz asn — cc.
Consequently]'z = a. Finally, since

[un = @llzm = llun = zllx +m|T(un) = T(@)||a = lun = zllx +m|T(un) = ala,

-l m

we conclude that,, —— x asn — oo which completes the proog

Example 3.1. SEQUENCES OF GENERALIZED BOUNDED VARIATION Let (X, | - ||x) and
(Y, |l - |ly) both denote the Banach algel§rer, || - ||.) and, forp > 1, let (A4, || - || a) denote the
Banach subalgebr@?, || - ||,) of (£, - ||). Next, letA = (\,),en represent a sequence of
positive real numbers that is bounded away from zero, and dé&fing® — (> by

Tog —T1 T3 — T2 Tg— T3
Tx =

, , e forall x = (1, 29,...) € .
/\}/P )\é/p /\é/p )

ThenT is a bounded linear operator @, and if the sequences = (x,z,,...) andy =
(y1,v2, ... ) are elements of*°, then then-th term of the sequencg(xy) is

T (yn—H - yn) + (xn-i-l - xn)
ntl /\711/1) /\711/1) Yn-

It follows thatT'(xy) = LxTy + (T'x)y, whereL is the left shift operator off°, that is,
Lx = L(Jil,ﬂfg, T3, ... ) = (1}2,$3, Tgy.o.. )

The operative equation (2.2) thus holds with the norm-decreasing funktiorthe role of f,
the identity function onX in the role ofg, and the functiorh = 0 on X x X. Since these
clearly satisfy conditiong (2.1), Theor¢gm 2.1 implies that, for any 0, the function defined
by

Il = Il + Il Txla = e +m (3

n=1

M)”” for all x € T~(¢7)

provides a norm for the algebf@a'(¢?); in fact, as a consequence of Theo@ 3.1, the pair
(T=1(¢?),] - ll7.) is @ Banach algebra. The classical Banach algghrd - ||;,) of sequences

of bounded variatior([5], Example 4.1.44) arises, for example, when= 1, m = 1, andA

is the constant sequence whose terms are all ones. Moreover, the condition that the sequence
A is bounded away from zero ensures thatis a subalgebra of any of the Banach algebras
(T=1(¢7), |Ix||.m) of sequences of generalized bounded variation O
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3.1. Suppose thdtX, || - ||x) is a Banach algebra, thad, || - ||4) is a Banach subalgebra of
the normed algebrd&’ || - ||y) that is also a two-sided ideal of, and that7,, : X — Y

is a bounded linear operator for eachin the index set/. Suppose further that, for each
a € J, the pair(T;*(A), | - |l7..m.) is @ normed subalgebra X, || - ||x). By Theorenj 3]1,

(T7HA), || - l7.m.) is, therefore, a Banach algebra for eachk J. Let
W ={uce ﬂ TN (A) = sup ||ullz, m, < oo},
aeld acJ
and define
lullw = sup ez, m, = Jlullx +supmal|Ta(u)]a  forallu e W.

Theorem 3.2.In the setting detailed abovéV, || - || ) is a Banach algebra.

Proof. It is routine to verify that(1V, || - ||w ) is @ normed linear space, so we confirm that the
norm|| - ||y is submultiplicative and complete. Forv € W anda € J,

[woll 2 ma < Nllzmallvllzme < llullwllvllw,

which implies thatw € W and that|uv||lw < ||u|lw||v]w-
Next, suppose thdt., ),cy is @ Cauchy sequence in the normed alge€biral| - ||;/). By the
definition of | - ||y, it follows that(u,).en is || - || x-Cauchy and, for each € J, the sequence

II-llx

maTw(uy,) is || - ||a-Cauchy. Thus, there are element& X anda, € A such thaty,, —

[I-lla lI-lly

x andm,T,(u,) — a, asn — oo. The continuity of7, ensures thatn,T, (u,)
maTo(xz) € Y asn — oo. It follows that, for eachy € J, ande > 0 given, there is an integer
N € N so large that whenever > N, we have

HmaTa(x) - aa”Y < maTu(z) — maTa(un)HY + HmaTa(un> - aaHY
19
§‘+|hnajh(un)_'aaHA
< 19 1 g

2 2
= €.

<

Thereforem, T, (z) = a, for eacha € J, which implies thatr € T.;'(A) for all « € J, that
is,z € oy Ia ' (A).
Now, for eachn € J, there is an integeN,, € N for which ||m,T,(u,) — m.To(z)]|a < 1
whenevem > N,. Thus,
[MmaTa()]|a < [MmaTa(r) — maTo(un,)lla + [MmaTa(un, )]
<1+ |lun, llw
<14+ M,

where the numbet/ > 0 is an upper bound for thg - ||,-Cauchy sequenc@:,)nen. Con-

II-llw

sequentlysup,c; ||maTu(x)| 4 is finite, sox € W. It remains to show that, —— =z as
n — oo. To this end, for anyr € J and any integers j € N:

}||Uz' - Uj”Ta,ma - ||iU - UjHTa,ma|
= | (s = il x + maTau; — u;)lla) = (le = willx + ImaTu(z — uj)|la) |
< i = wyl|x = llz = will x| + | lmaTa(w — uj)lla = [maTo(z — uy)| 4]

< flui = 2llx + ImaTa(ui — )| a,
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which tends to zero as— oo. Thus,

(3.1) lim |lw; — ujl|70me = | — 4j||7.m. foralljeN.

Now, becauséu,, ),cn is a||-||w-Cauchy sequence, |18t € N be so large thadtu; —u;||w < /2
for all i, j > N. By definition of|| - ||, for anya € J, we havel|ju; — u;|z, m, < /2 for all

i,j > N. As a consequence of equation (3.1, — ;|7 m. < ¢/2 forall j > N. Finally,
therefore, forallj > N,

[l = ujllw = sup |2 — ujllz,m. <e/2 <e,
acJ
to complete the proofy

Example 3.2. LIPSCHITZ FUNCTIONS Let (X, || - |lx) = (Bd[a,b], || - ||o) @nd(Y, || - |ly) =
(A, |l - 1]a) = (C,|-]), and fixd € (0, 1]. For a given pairx = (x,y) of distinct numbers in the
interval [, b], defineT,, : Bd[a,b] — C by

To(f) = w for all f € Bda, b].
r—y
It follows thatT,, is a bounded linear operator and, fory € Bd|a, b],

1,(f9) = POy B0 L= ) — e (11 )T Do)

wheree, ande, denote the norm-decreasing evaluation functional83df, b] at = andy,
respectively. Condition$ (4.1) and the operative equaftiof (2.2) are thus satisfied with the choices
€q1 €y, @Ndh, = 0 so that, by Theorenjs 2.1 ahd[3.1, for any choicewgf> 0, the function

|f(x) = f(y)]

|z —yl°

A7 ma = [ flloo +malTa(F)] = ([ flleo + 1m0

provides a complete submultiplicative norm for the algebifa(C) = Bd|a, b].

Now, let.J denote the collection of all pairs = (z,y) of distinct numbers < z <y <b
from the intervalq, b] and fix a numbern,, > 0 for eacha € J. Theorenj 32 thus ensures that
the pair(1W, || - |w ) is a Banach algebra, where

W ={fe ) T."C) :sup||fllz,m. < oo}
ac) aed

and
| fllw = sup | f 7 ma = 1 fllo +surj>ma|Ta(f)l forall f € W.
aE ac

In particular, with the choice:,, = 1 for all a € J, the function that assigns the number

(3.2) HfHooJrsup{Wix#y}

to eachf is a complete algebra norm for the spdde;|a, b] of Lipschitz functionswhich
addresses a part of Exercise 4.13.0f [1] in the case of the compact metridsgéce O

Example 3.3. FUNCTIONS OF BOUNDED SECOND VARIATION Let X denote the algebra
Lip, [a, b] of Lipschitz functions that is th&/ of the preceding Example 3.2, with the complete
algebra nornj - || x prescribed by expressidn (B.2) for the chaice 1. Further, le(Y || -||y) =
(0>, || ll), with subalgebrdA, || - || 4) = (¢%,]|-]|1). For a partitiont = {a =t; < t; < --- <

t, = b} of the intervalla, b], define the bounded linear operafQr: Lip, [a, b] — (> by

Tr(f) = (Au(f) = Ao(f), Da(f) = As(f), - An(f) = Ana(f), 0,0, ...)
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for all f € Lip,[a, b], whereAy(f) = 0 andA(f) denotes the difference quotient
() - =)
k k—1
Computation ofA,( fg) for functionsf, g € Lip,[a,b] andk = 1,2, ...n yields
Ar(fg) = f(tr)Ar(g) + Ar(f)g(te-1)
so that fork = 1,2, ..., n, thek-th term of the sequencg (fg) is
Ar(fg) — Ar-1(fg) = f(te)Ar(g) + Ar(f)g(te-1) — f(th-1)Ar-1(9) — Dx—1(f)g(tr—2)
= f(te)(Ar(g) — Ar-1(9)) + (Ar(f) — Dik-1(f))g(te-1)
+ Ap—1(9) Ak () (tr — thio1) + Ap1 (f) Ap—1(9) (to—1 — te—2).
Equation|(2.R) is thus satisfied, specifically,
Tr(f9) = on(f)Trg + (Trf)T2(9) + h=(f,g) forall f,g € Lip,|a, b],
where the norm-decreasing functiongs 7 : Lip, [a, b] — ¢>° are defined by

ox(f) = (f(tr), f(ta), -, [(24),0,0,...) and 7(g) = (9(to), 9(t1), - - 9(tn-1),0,0,. )

forall f, g € Lip,[a, b], and the functiork,. : Lip,[a, b] x Lip, [a, b] — ¢>° assigns to the pair
(f,9) the bounded sequence havitgh term

Ap—1(9)Ar(f)(tr = te-1) + D1 () Ar—1(9) (te-1 — tr—2)

for K = 2,3,...,n and zeros otherwise. The range/gf thus clearly lies inA = ¢!, and
estimation of| i (f, g)||1 yields

fork=1,2,...n.

1= (f, 9)ll = Z | Ak-1(9) Ak (f)(tr = te1) + Dp1 () Ar-1(9) (to-1 — ti—2)]

< Z Ak (AR (= thr) + [ A1 (A A1 ()] (1 — tr2))

§2(b—a) sup |Ax(f)] sup |Ax(g)]

1<k<n 1<k<n-—1
< 2(b = a)| TR (NI 1 T%(9) 1,
where the last inequality is a result of the following simple telescoping computation for any
k=1,2,...,n
[ AR = [A%(f) = Apa(f) + Apa(f) =+ + Da(f) = As(f) + As(f) — Do(f)]
< [AL(f) = Dol O] + [A2(f) = As(f)] + -+ |[A(f) = Ap—i (f)]
< T ()]s

The conditions[(2]1) are thus all satisfied, so, by Theofenjs 2.[ ahd 3.1, for any partifon
the intervalla, b], the preimagd&’~'(¢') = Lip, [a, b] is a Banach algebra when equipped with
the norm

1Al 2eme = 1Fllx +mal[ T2 ()

=l sup { LI o ST 180 = A
1l sup P ZIOo b (1 |+Z|Ak ~ ()
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for any numbern, > 2(b — a). An application of Theorein 3.2 leads to the conclusion that
(3.3) W={fe 1T : sup | fllz.m. < oo}

TeP
is a Banach algebra when equipped with the complete algebra |t = sup.cp || 17, mar
forall f € W.

The valuesup,.cp > 1o |Ax(f) — Ax—1(f)| , where the supremum is taken over the collec-
tion P of all partitions of[a, b], is called thetotal second variatiorof the functionf on the
interval[a, b]. Functions whose total second variation are finite play a role in an extension of the
Riemann-Stieltjes integral, as is comprehensively detaileéd in [7]. Moreoverpwith 2(b—a),
say, for all partitionsr € P, Lemma 1.2 of[[7] implies that the equality = BV5]a, b] holds,
wherelV is our algebra[(3]3) an®1;[a, b] denotes the space @fnctions of bounded second
variation. The present example thus parallels and re-contextualizes the similar result Theorem
5.1 of [4] in which a different Banach algebra norm is provided Bir;[a, b]. Evidently the
algebraBV;[a, b] is semi-simple so, byohnson’s uniqueness-of-norm theor@fj, Corollary
5.29), these Banach algebra normsiW;,[a, b] are equivalent. O

Example 3.4. FUNCTIONS OF GENERALIZED BOUNDED VARIATION Let (X, - |x) =
(Bdfa,b], | - lloc)s (VoI - ly) = (€[] - lloc), @nd (A, [[ - [[a) = (&, ] - |I), wherep > 1
and, as in Exampl@.l, lét = (\,).en be a sequence of positive numbers that is bounded
away from zero. In addition, fix a partition= {a = zo < 27 < --- < z,, = b} of the compact
interval [a, b], and definél’; : Bd[a, b] — ¢ to be the bounded linear operator that assigns to
afunctionf € Bd|[a, b] the sequence

Tﬂ'(f) = (A1<f)aA2(f>> < '7An(f)70707 . ")7

where here
f(ka) - f(xkfl)
)\1/17

Ak(f) =
k
Thus, forf, g € Bd[a,b] andk = 1,2,. .., n, thek-th entry of the sequencg.(fg) is
Ax(fg) = [(@1)Ar(g) + Dk(f)g(@r-1),
and all the remaining entries are zeros. It follows that for functifse Bd|a, b],
Tw(f9) = 0x(f)Tx(g) + Tx(f)7(9),
whereo,, 7, : Bd[a,b] — (> are defined by
o-(f) = (f(x1),..., f(2,),0,0,...) and 7,(9) = (9(x0),...,9(xn-1),0,0,...).

Conditions|[(2.]l) and the operative equation](2.2) are thus satisfied with the chpjoes and
h. = 0. By Theorem$ 2]1 ar{d 3.1, it follows that, for each partitioof the intervalfa, b], and
anym, > 0, the pair(T.-*(¢#), || - ||7..m.) is @ Banach algebra. The algelita' (¢?) = Bd|a, b]

so that ’
(2 ——— S +mﬂ(z |f(zr) — f(a:k_l),p)
k=1

fork=1,2,....,n.

Ak

provides a submultiplicative norm f&d|a, b].
Now, letP denote the collection of all partitions of the interf@lb] and fix a numbem, > 0
for eachr € P. Theoren 32 ensures that the space

Wy ={f € (YT () 5 |l m. < o0}

TeP
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is rendered a Banach algebra when equipped with the complete submultiplicative norm
||f||Wp = Sug | fll 7 me = 1 lloo + Sug m7r||T7r(f>Hp forall f € W),
TE TE

With the canonical choice:, = 1 for each partitionr € P, the space$l, are the spaces of
functions of generalized bounded variatiarihe sense of Waterman-Shiba that were introduced
in 1980 by Shibal[9]. Fop = 1, it turns out thatl/; is the spacé\ BV studied by Waterman

in [10], and the classical spa¢8l” of functions of bounded variaticarises, for example, when
m, = 1 forall = € P, p =1, andA is the constant sequence of all ones. O

Example 3.5. ALGEBRAS OFJAMES TYPE. In this example, we allow the algebras = Y

to represent any af*, ¢, or ¢, equipped with the supremum noim ||, while (A, || - ||4) =
(er.] - ||,) for somep > 1. Denote byQ the set of integek-tuplesq = (g, ..., qx) such
thatk > 2andl < ¢ < ¢ < --- < q. Forq € Q, define the bounded linear operator
T,: X — Y by

Tq(x> = (xqz T LqisTgy — Lgpy v o Ly, — Lg gy gy _I(I170707"')

forall x = (x1,29,...) € X. For sequences = (21, x9,...) andy = (y1,v2,...) in X, and
distinct indices, j € {1,2,..., k}, the equality

(inyQi - xq]'ng‘) = Ty, (yqz' - ij) + (:qu - aj‘]j)ij
implies that
Ty(xy) = 0(x)T,(y) + Ty (x)74(y),
whereo,, 7, : X — Y are defined by

UQ(X) = (xquq;w T 7xq1c—1vxquqwo’ 0,. )
and

TQ(Y) = (quyqz? o Ya—o Yaqr_1 Yaqrs 0,0,... )
Clearly, ||y (x)[lso < [|%[l @nd||74(y)]ls < |l¥]lo SO that conditiong (2]1) and the operative
equation[(2.R) are satisfied with the choiegsr,, andh, = 0. Thus, by Theorenjs 2.1 ahd B.1,
for eachq € Q and arbitraryn, > 0, a Banach algebra norm qufl(ép) is prescribed by the
function

k—1 1/p
HXHTqvmq = HXHOO + quTq(X)Hp = HX”oo + mCI(Z |xq]‘+1 - xq]'|p + |qu - qu|p>
j=1

forall x € T,7'(f"). In fact, T,7'(¢*) = X so each function|x||z, .., provides a complete
submultiplicative norm for the algebrd. Furthermore, as a consequence of Thedrein 3.2, the
space
W= {xe (T, () : supmy|| Ty(x)]], < o0}
qeQ qeQ
is rendered a Banach algebra when equipped with the complete submultiplicative norm

[x[[w = sup [|x[|7,m, = [IX[loc + supmg[|Ty(x)[l, forallx e W.
qeQ qeQ

In the case thak’ = YV = ¢, A = (2, andm, = 1 for all ¢ € Q, the resulting algebrél’
is the famouslames’ spacea non-reflexive Banach space that is isometrically isomorphic to
its second dual. WheX = Y = /°°, it turns out thati¥ is the unitization of James’ space.
A detailed and comprehensive analysis of James’ space equipped with a Banach algebra norm
different from those presented here is undertaken in the article [2]; Example 4.1/45 of [5] is
also based ori [2]. Among its many interesting properties, James’ algebra is semi-simple so,
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by Johnson’s uniqueness-of-norm theorghj, Corollary 5.29), all Banach algebra norms on it
are equivalent. O

Example 3.6. ALGEBRAS OFFEINSTEIN TYPE As in Exampld 35, here, too, we allow the
algebrasX = Y to represent any of*, ¢, or ¢, equipped with the supremum norim ||,
while (A, || - ||la) = (7, ]| - ||,) for somep > 1. Forn € N, define the bounded linear operator
T,: X — Y by

T,.(x) = - (9 — 1,2(x3 — x9),3(x4 — x3), ..., N(Tpy1 — 2,),0,0,...)

for all x = (z1,x9,...) € X. Given sequences = (x,s,...) andy = (y1,yz,...) in X,
and an integet < k < n, thek-th term of the sequencg, (xy) is

k k

k
ﬁ($k+1yk+1 — TpYk) = That - — (Ykt1 — Uk) + E(Ikﬂ — Tk) - Yk

n
Consequently, the formula
To(xy) = L(X)To(y) + Tn(x)y

holds, where, as in Examgle B.ljs the (norm-decreasing) left shift operatordn Conditions
(2.7) and the operative equatign (2.2) are thus clearly satisfied/withe identity function on
X, and the functioh = 0 for eachn € N. By Theoren] 31, for each € N and arbitrary
m, > 0, the pair(T,,* (¢*),| - |z..m,) is @ Banach algebra, where

n
m 1/p
X0 7m0 = [Xlloo + M| Ta(X)llp = [[%/loo + — kP |21 — 2nf?
n
k=1

for all x € 7., *(¢7). Similar to Exampl¢ 35, for each € N the equalityZ’, ! (¢*) = X holds,
so the functionj|x|| 7, ., provides a submultiplicative norm for the algebYa
Next, define
W={xe ()T, (") : supmy||T,(x)|, < oo},
neN neN
and apply Theorein 3.2 to conclude thEta Banach algebra when equipped with the complete

submultiplicative norm

1x|lw = sup ||x||7,, m, = |X||cc +supm,||T.(x)||, forallxe W.
neN neN
The choicesX =Y = ¢y, A = (', andm, = 1 for all ¢ € Q (as defined in Example 3.5) re-
sultin a Banach algebi& that coincides with one constructed by J. F. Feinstein; its remarkable
properties are highlighted and detailed in Example 4.1.46!of [5]. Here, too, Feinstein’s algebra
is semi-simple, sdohnson’s uniqueness-of-norm theorghj, Corollary 5.29) guarantees that
it supports a unique complete norm. O

4. SEMINORMED ALGEBRAS

In this section, we begin with an algebia and again suppose th@t’ || - ||y) is a normed
algebra with a normed subalgeljrd, || - ||4) that is also a two-sided ideal &f satisfying the
conditions (i), (ii), and (iii) of Section 2. This time, however, we are interested in a multiplica-
tive linear functionalp on X and a functior : X x X — Y that satisfies the relevant parts
of conditions|(2.]1), specifically,

@.1) h(u,v) € Awheneven,v € T~!(A); and
: there is anm > 0 such that|h(u,v)||a < m||Tul|a||Tv|4 for all u,v € T~1(A).
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Wheny andh implement the seconaperative equation
4.2 T(uwv) = o(u)(Tv) + o(v)(Tu) + h(u,v) forallu,v € X,

we define
prm(u) = |@(w)| +m|Tulls forallu e T-'(A).
In this setting, we have the following analogue of Theofem 2.1.

Theorem 4.1. Suppose thaK is an algebra, that A, || - ||4) is a normed subalgebra of the
normed algebraY, || - ||v) that is also a two-sided ideal df, and thatT : X — Y is a
linear operator. Suppose further thatis a multiplicative linear functional otX and thath is

a function that satisfies conditior4.1). If the operative equatiof@.2) holds, theri'~!(A) is
an algebra for whichp;,, provides a submultiplicative seminorm. Moreoveryif > m, then
pr.m+ 1S @ submultiplicative seminorm f@i—'(A) that is equivalent tg,. ..

Proof. It is straightforward to check that;,, is a seminorm for the subspae’(A) of X.

The proofs of the stability of"~!(A) under multiplication, the submultiplicativity Qfr,, On
T-1(A), and the equivalence of the seminorms all proceed as in the proof of Thm 2.1
mutatis mutandisg

Example 4.1. SEQUENCES OF BOUNDED VARIATION Let X denote the algebré&®, and let
(Y, ||-|ly) denote the Banach algelia®, ||-|| ) with Banach subalgebi@, ||-||.4) = (¢4, ||-]]1)-
Define the operatdf : X — Y by

Tx = (A1(x), A2(x), As(x),...) forallx = (z1,29,23,...) € X,

where, in this example),(x) simply represents the differeneg,; — z; for all £ € N. Thus,
for sequences = (x4, 9, x3,...) andy = (v, y2,ys, . . . ) in £>°, thek-th entry of T'(xy) is

Ap(Xy) = Tp1Yrt1 — TrUr
= Tp1 8k (y) + ypdi(x)
= 218(y) + y18x(x) + (@41 — 21) Ax(y) + (Yr — Y1) Ar(x)
= @(x)Ty + ¢(y)Tx + h(x,y),

wherey denotes the projection functional 6F onto the first entry, that isp(x) = z; for all
X = (x1,T9, x3,...) € £°°, and the functiork : (> x (> — (> assigns to each paik,y) of
bounded sequences the sequéice y) € (> whosek-th entry is

(Trr1 — 21) AR(Y) + (Ye — y1) Ar(x)

for all k € N. Since the operative equatign (4.2) holds with these choicesaoflf, it remains
to establish that the conditiors (4.1) are satisfied. To this end, et 7-!(¢'), and consider
the following computations which are motivated by those in [8].
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For any integen > 2,

i s — 2)Aky) + (e — ) Ak(%)

SZ\ka—xl ) Aily |+Z\yk—yl Ap(x)]
n—1 k knl k—1

= > as60) A )+z)( A1) Aulx)|
k=1 j=1 j=1

n—1 k n—1 k—1

<3 1A A+ 33 1A A
k=1 j=1 k=1 j=1

n—1n—1 n—1 k—1

=D D 1A EHAMI+ DD 18] Ak)]
Jj=1 k=j k=1 j=1

n—1 n—1 n—1 k—1
=3 Y IANAMT+ DD 18] Akx)]
k=1 j=k k=1 j=1

n—1 n—1

=D D 1A 14(y)]

k=1 j=1

=3 Y 1A )

< [T NT () -

Consequently, the image(x,y) of any pair of sequences,y) € T 1(¢') x T1(¢) lies
in ¢* as required by{ (4]1) and, moreover, the estinjdiex, )| < [|7(x)[:]|7(y)|: holds.
Theorenj 4.]1 thus implies that, for any choicenof> 1, the definition

prm(%) = (GO +ml|Tx|[a = o2 +m Y |wp — x| forallx e 771 (")
n=1

provides a seminorm for the algelira= 7! (¢') of sequences of bounded variatiokctually,
if x € T-'(¢") satisfiesp;,,(x) = 0, thenx € ker(p) Nker(T) = {0} so that, in fact, the
function p;,,,(x) is a norm for the algebrw = 7' (¢').

Note that, without an appropriate choice for the faatgrthe normp,,, is not, in general,
submultiplicative. Consider, for example, the sequexce (0, 1, ;,O 0,...) € £~ and let
m = 1. Thenx® = (0,1, 1,0,0,...) so that

1 3 1 1 1 1 1 1
Prm(X7) O+4( +4+4) 5 and  pg,,(x) 0+4( +2+2> 5

Thus,pp,,(x?) =3 > 1 = (;)T7,71(:)<))2 which confirms thap,, is not submultiplicative. [

4.1. Paralleling the situation in subsection 3.1, supposelthatY — Y is a linear operator
for eacha in the index set/ and that(7; ' (A), pr, ,,...) iS @ seminormed subalgebra ¥t Let

(4.3) W={ue (T,"(A4) supmaHT (u)||4 < 00},

aed acJ
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and define

(4.4) pw (u) = Sup pr, ma (W) = [o(w)] + sup ma|To(u)la  forallu e W.
ac

acJ

It is straightforward to confirm thaiV, p;;,) is a seminormed algebra.

Example 4.2. LIPSCHITZ FUNCTIONS- REDUX. Let X denote the algebrBd[a, b], and let
(Y, || |ly) and(A, | - ||4) both denote the Banach algel§ez, || - ||.). For a fixed) € (0, 1] and
a paira = (z,y) of numbers that satisfy < = < y < b, defineT, : Bd[a,b] — (C%,] - ||o)

by
_(f@) = f0) fly) = f(@) )
To(f) = ( G—ar () > forall f € Bd[a, b].

It follows that, for f, g € Bd[a, b],

T.(fq) = (fgﬁ)_—;;g(a), fﬂ(zﬁ_—g{)g(@)

—(t(a g(w) —g(a) nf@) = fa) o 9) —gl@) L fy) — fl2)
(), f(y ))T< )+ (9(a), g())Ta(f)
( ); )

=(f o
(f(z) = f(a), f(y) = f(a))Tu(g) + (f(a), f(a))Ta(g)

+ (9(a), 9(a))Tu(f) + (0, g(z) — g(a))Tu(f)
= o(f)Talg) + ©(9)Ta(f) + half, 9),

where the functionap on Bd[a, b] represents point evaluation@and

ha(f,9) = (f(x) = f(a), f(y) = f(a))Talg) + (0, 9(x) — g(a))Ta(f)

forall (f,g) € Bda, b] x Bd|a, b]. The functionsp andh thus implement the operative equation
(4.2), and we can estimalé,,(f, g)||« by:

I(f () = f(a), f(y) = fa)Talg) + (0, 9(z) = g(a))Ta(f)loo

= [I(f(x) = fa), f(y) = f(2))Talg) + (0, f(x) = f(a))Talg) + (0, 9(x) — g(a)) Ta(f)lloo
< (@ = a)’, (y = 2)°) oo | Ta(N)llc/I Ta(9) oo + 2z = @) [ Ta(F)lsol| Ta(9) oo

< 3(b = @)’ [ Ta(H)lloo ]| Tal9)llc

Conditions|[(4.11) are thus satisfied so that by Thedrein 4.1, for any number 3(b — a)’, the
functionpr, . given by

oo (1) = [P+ Mol Ta(F)lle = 17(@)] + e max { -/ <(”;)_‘ Cﬁﬁ“)', 1/ ((yy) - xf)ff)'}

forall f € T,'(C?) provides a submultiplicative seminorm for the algebra (C?) = Bd|a, b].
Note that without an appropriate factar,, the normp, . is not, in general, submultiplica-
tive. Consider, for example, the pair of numbers= (1, 1) from the interval0, 1], the choice
me, = 1, and the resulting function

e |f(0>|+max{|f(l) AUIHURS(C)

Then, forf : [0,1] — R defined byf(¢) = ¢ for all t € [0,1], we findp,(f?) =3/2 > 1 =
(p(f))? which confirms thap,,(f) is not submultiplicative ofd[0, 1].

} for all f € Bd[0, 1].
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Now, if m,, = 3(b— a)°, say, for all pairsy from the set/ = {(z,y) : a < z < y < b}, then,
apropos of equation§ (4.3) arjd (4.4), the function

(4.5)  pw(f) = suppg, 1, (f) = | f(@)] +3(b — a)’ sup

acJ acJ

|f(x) = fla)] [f(y) = f(2)]
(x—a) "~ (y—ux)
provides a submultiplicative seminorm for the subalgefeof Bd|a, b] consisting of those
f € Bd|[a, b] for which

f(x) = fla)] [f(y) — f(2)]
(L T <o
Evidently, W is thus the subalgebra 8id[a, b] consisting of thos¢ € Bd|a, b] for which

IO A

ly — x|
that is,IW = Lipg[a, b] and

o () = 1£(@)] + 306 — a)asup{

Moreover, one may easily check thatif, (f) = 0, thenf = 0 on [q, b], so thatp,, actually

HORHOINY

ly — x|°

provides an algebra norm faoip;|a, b]. O
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