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ABSTRACT. The purpose of this article is to shed light on a unifying framework for some
normed algebras and, in particular, for some Banach algebras. The focus is on linear opera-
torsT between normed algebrasX andY and specified subalgebrasA of Y . When the action
of T on products inX satisfies a certain operative equation, the subspaceT−1(A) is stable un-
der the multiplication ofX and is readily equipped with a family of canonical submultiplicative
norms. It turns out that many familiar and important spaces are encompassed under this versa-
tile perspective, and we offer a sampling of several such. In this sense, the article presents an
alternative lens through which to view a host of normed algebras. Moreover, recognition that a
normed linear space conforms to this general structure provides another avenue to confirming
that it is at once stable under multiplication and also outfitted with an abundance of equivalent
submultiplicative norms.
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2 R. KANTROWITZ

1. I NTRODUCTION

This article centers around linear operatorsT : X −→ Y between normed algebrasX and
Y whose actions on products of elements ofX are governed by a certain operative equation. In
each such case, the pre-imageT−1(A) of a specified subalgebraA of Y turns out to be a subal-
gebra ofX that is automatically endowed with a family of equivalent submultiplicative norms.
Under mild additional conditions, these norms onT−1(A) are complete. This general setting
is remarkably flexible, and we devote a great deal of attention to highlighting an assortment
of Banach algebras that may be construed in this way. We thereby offer a retro-fitting of sev-
eral Banach algebras to a unifying framework, exposing a certain structural consistency among
them. The current work may be viewed as a modest companion to Section 4 of the article [6]
and the attendant articles [3], [4].

In the final section, we modify the setting slightly and introduce a second operative equation
which, when satisfied, ensures thatT−1(A) is again a subalgebra ofX, this time equipped
with a family of submultiplicative seminorms. We conclude with two examples of such; as a
lagniappe, in each of these, a seminorm under consideration turns out to be a norm.

2. NORMED ALGEBRAS

Throughout this section and the next,(X, ‖ · ‖X) and(Y, ‖ · ‖Y ) represent normed algebras,
and(A, ‖ · ‖A) is a normed subalgebra ofY that is also a two-sided ideal ofY ; specifically,

(i) ‖a‖Y ≤ ‖a‖A for all a ∈ A;
(ii) Ay ⊆ A for all y ∈ Y and‖ay‖A ≤ ‖a‖A‖y‖Y for all a ∈ A and ally ∈ Y ;

(iii) yA ⊆ A for all y ∈ Y and‖ya‖A ≤ ‖y‖Y ‖a‖A for all y ∈ Y and alla ∈ A.

We will be interested in functionsf, g : X −→ Y andh : X × X −→ Y that satisfy the
following conditions:

(2.1)

 f andg are norm-decreasing;
h(u, v) ∈ A wheneveru, v ∈ T−1(A); and
there is anm > 0 such that‖h(u, v)‖A ≤ m‖Tu‖A‖Tv‖A for all u, v ∈ T−1(A).

When such functionsf , g, andh implement theoperative equation

(2.2) T (uv) = f(u)(Tv) + (Tu)g(v) + h(u, v) for all u, v ∈ X,

we define

‖u‖T,m = ‖u‖X + m‖Tu‖A for all u ∈ T−1(A).

Against this backdrop, we are prepared for the following theorem.

Theorem 2.1.Suppose that(X, ‖ · ‖X) and(Y, ‖ · ‖Y ) are normed algebras, that(A, ‖ · ‖A) is
a normed subalgebra ofY that is also a two-sided ideal ofY , and thatT : X −→ Y is a linear
operator. Iff , g, andh are functions that satisfy conditions(2.1)and implement the operative
equation(2.2), then(T−1(A), ‖·‖T,m) is a normed algebra. Moreover, ifm? > m, then‖·‖T,m?

provides an algebra norm forT−1(A) that is equivalent to‖ · ‖T,m.

Proof. It is straightforward to confirm that the function‖·‖T,m provides a norm for the subspace
T−1(A) of X. We thus proceed to establish thatT−1(A) is stable under multiplication and that
‖ · ‖T,m is submultiplicative onT−1(A). Indeed, foru, v ∈ T−1(A), we have from equation
(2.2) thatT (uv) = f(u)Tv + (Tu)g(v) + h(u, v) which, together with conditions (ii), (iii), and
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A UNIFYING V IEW OF SOME BANACH ALGEBRAS 3

(2.1), implies thatuv ∈ T−1(A). Moreover,

‖uv‖T,m = ‖uv‖X + m‖T (uv)‖A

= ‖uv‖X + m‖f(u)(Tv) + (Tu)g(v) + h(u, v)‖A

≤ ‖u‖X‖v‖X + m‖f(u)‖Y ‖Tv‖A + m‖Tu‖A‖g(v)‖Y + m‖h(u, v)‖A

≤ ‖u‖X‖v‖X + m‖u‖X‖Tv‖A + m‖Tu‖A‖v‖X + m2‖Tu‖A‖Tv‖A

= (‖u‖X + m‖Tu‖A) (‖v‖X + m‖Tv‖A)

= ‖u‖T,m‖v‖T,m

to establish the submultiplicativity of the norm‖ · ‖T,m.
For the final assertion, it is now routine to confirm that‖ · ‖T,m? is also an algebra norm for

T−1(A), and we infer the equivalence of the norms‖ · ‖T,m and‖ · ‖T,m? from the inequalities
‖u‖T,m ≤ ‖u‖T,m? ≤ (m?/m)‖u‖T,m for all u ∈ T−1(A).

In the context of Theorem 2.1, there is a family of infinitely many equivalent algebra norms
for T−1(A), namely, one for each sufficiently largem > 0. In fact, as is the case in several of
the upcoming examples, when the functionh ≡ 0, everym > 0 provides such a norm.

If, instead of being norm-decreasing as stipulated in (2.1), there are positive numbersc1 and
c2, at least one of which is greater than 1, for which the functionsf andg satisfy‖f(u)‖Y ≤
c1‖u‖X and‖g(u)‖Y ≤ c2‖u‖X for all u ∈ X, then the numberc = max{c1, c2} satisfies
‖uv‖T,m ≤ c‖u‖T,m‖v‖T,m for all u, v ∈ T−1(A). In this case, there is a submultiplicative
norm forT−1(A) that is equivalent to‖ · ‖T,m ([1], Lemma 4.8).

The following corollary shows that many familiar operators automatically satisfy conditions
(2.1) and equation (2.2). In advance of the corollary, we recall that, by Definition 1.4.5 of [5],
an algebraX is left faithful if the equality{w ∈ X : wX = 0} = {0} holds andright faithful
if the equality{w ∈ X : Xw = 0} = {0} holds.

Corollary 2.2. In the setting of Theorem 2.1, if any of the following conditions is satisfied, then
(T−1(A), ‖ · ‖T,m) is a normed algebra:

(a) T : X −→ Y is an algebra homomorphism andm ≥ 1;
(b) T : X −→ X is a derivation onX andm > 0;
(c) the algebraX is left or right faithful,T : X −→ X is a multiplier onX, andm > 0.

Proof. (a) If T is an algebra homomorphism, then the equalityT (uv) = TuTv holds for all
u, v ∈ X. Equation (2.2) thus holds with the choicesf ≡ g ≡ 0 on X and the function
h : X × X −→ Y given byh(u, v) = TuTv for all u, v ∈ X. The conditions (2.1) are also
satisfied since, in particular, ifu, v ∈ T−1(A), thenh(u, v) = TuTv ∈ A and‖h(u, v)‖A =
‖TuTv‖A ≤ ‖Tu‖A‖Tv‖A. The result is therefore an immediate consequence of Theorem 2.1.

(b) If T is a derivation onX, then, by definition, the equalityT (uv) = uTv + (Tu)v holds
for all u, v ∈ X. Conditions (2.1) and equation (2.2) are thus satisfied with the choicesf(u) =
g(u) = u for all u ∈ X, the functionh ≡ 0 onX ×X, and anym > 0. The result follows from
Theorem 2.1.

(c) If T : X −→ X is a multiplier, then, by definition,(Tu)v = uTv for all u, v ∈ X. It
follows that, for anyw ∈ X,

w(T (uv)− uTv) = wT (uv)− w(Tu)v = (Tw)(uv − uv) = 0.

Thus, if X is left faithful, thenT (uv) = uTv for all u, v ∈ X, so that conditions (2.1) and
equation (2.2) are satisfied with the choicesf(u) = u for all u ∈ X, g ≡ 0 on X, h ≡ 0 on
X ×X, and anym > 0. The result follows by Theorem 2.1. The argument in the case thatX
is right faithful is similar.
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4 R. KANTROWITZ

3. BANACH ALGEBRAS

Theorem 3.1. Suppose that(X, ‖ · ‖X) is a Banach algebra, that(A, ‖ · ‖A) is a Banach
subalgebra of the normed algebra(Y, ‖ · ‖Y ) that is also a two-sided ideal ofY , and that
T : X −→ Y is a bounded linear operator. If(T−1(A), ‖ · ‖T,m) is a normed algebra, then
(T−1(A), ‖ · ‖T,m) is a Banach algebra.

Proof. If (un)n∈N is a Cauchy sequence in the normed algebra(T−1(A), ‖·‖T,m), then it follows
from the definition of‖ · ‖T,m that the sequences(un)n∈N and(Tun)n∈N are Cauchy sequences
in (X, ‖ · ‖X) and(A, ‖ · ‖A), respectively. Thus, there exist elementsx ∈ X anda ∈ A such

thatun
‖·‖X−−→ x andT (un)

‖·‖A−−→ a asn → ∞. Condition (i) on the subalgebraA implies that

T (un)
‖·‖Y−−→ a asn → ∞. On the other hand, sinceT is bounded,T (un)

‖·‖Y−−→ Tx asn → ∞.
Consequently,Tx = a. Finally, since

‖un − x‖T,m = ‖un − x‖X + m‖T (un)− T (x)‖A = ‖un − x‖X + m‖T (un)− a‖A,

we conclude thatun

‖·‖T,m−−−→ x asn →∞ which completes the proof.

Example 3.1. SEQUENCES OF GENERALIZED BOUNDED VARIATION. Let (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ) both denote the Banach algebra(`∞, ‖ · ‖∞) and, forp ≥ 1, let (A, ‖ · ‖A) denote the
Banach subalgebra(`p, ‖ · ‖p) of (`∞, ‖ · ‖∞). Next, letΛ = (λn)n∈N represent a sequence of
positive real numbers that is bounded away from zero, and defineT : `∞ −→ `∞ by

Tx =
(x2 − x1

λ
1/p
1

,
x3 − x2

λ
1/p
2

,
x4 − x3

λ
1/p
3

, . . .
)

for all x = (x1, x2, . . . ) ∈ `∞.

ThenT is a bounded linear operator on`∞, and if the sequencesx = (x1, x2, . . . ) andy =
(y1, y2, . . . ) are elements of̀∞, then then-th term of the sequenceT (xy) is

xn+1

(yn+1 − yn

λ1/p
n

)
+

(xn+1 − xn

λ1/p
n

)
yn.

It follows thatT (xy) = LxTy + (Tx)y, whereL is the left shift operator oǹ∞, that is,

Lx = L(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

The operative equation (2.2) thus holds with the norm-decreasing functionL in the role off ,
the identity function onX in the role ofg, and the functionh ≡ 0 on X × X. Since these
clearly satisfy conditions (2.1), Theorem 2.1 implies that, for anym > 0, the function defined
by

‖x‖T,m = ‖x‖X + m‖Tx‖A = ‖x‖∞ + m
( ∞∑

n=1

|xn+1 − xn|p

λn

)1/p

for all x ∈ T−1(`p)

provides a norm for the algebraT−1(`p); in fact, as a consequence of Theorem 3.1, the pair
(T−1(`p), ‖ · ‖T,m) is a Banach algebra. The classical Banach algebra(bv, ‖ · ‖bv) of sequences
of bounded variation([5], Example 4.1.44) arises, for example, whenp = 1, m = 1, andΛ
is the constant sequence whose terms are all ones. Moreover, the condition that the sequence
Λ is bounded away from zero ensures thatbv is a subalgebra of any of the Banach algebras
(T−1(`p), ‖x‖T,m) of sequences of generalized bounded variation. �
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3.1. Suppose that(X, ‖ · ‖X) is a Banach algebra, that(A, ‖ · ‖A) is a Banach subalgebra of
the normed algebra(Y, ‖ · ‖Y ) that is also a two-sided ideal ofY , and thatTα : X −→ Y
is a bounded linear operator for eachα in the index setJ . Suppose further that, for each
α ∈ J , the pair(T−1

α (A), ‖ · ‖Tα,mα) is a normed subalgebra of(X, ‖ · ‖X). By Theorem 3.1,
(T−1

α (A), ‖ · ‖Tα,mα) is, therefore, a Banach algebra for eachα ∈ J . Let

W = {u ∈
⋂
α∈J

T−1
α (A) : sup

α∈J
‖u‖Tα,mα < ∞},

and define

‖u‖W = sup
α∈J

‖u‖Tα,mα = ‖u‖X + sup
α∈J

mα‖Tα(u)‖A for all u ∈ W.

Theorem 3.2. In the setting detailed above,(W, ‖ · ‖W ) is a Banach algebra.

Proof. It is routine to verify that(W, ‖ · ‖W ) is a normed linear space, so we confirm that the
norm‖ · ‖W is submultiplicative and complete. Foru, v ∈ W andα ∈ J ,

‖uv‖Tα,mα ≤ ‖u‖Tα,mα‖v‖Tα,mα ≤ ‖u‖W‖v‖W ,

which implies thatuv ∈ W and that‖uv‖W ≤ ‖u‖W‖v‖W .
Next, suppose that(un)n∈N is a Cauchy sequence in the normed algebra(W, ‖ · ‖W ). By the

definition of‖ · ‖W , it follows that(un)n∈N is ‖ · ‖X-Cauchy and, for eachα ∈ J , the sequence

mαTα(un) is ‖ · ‖A-Cauchy. Thus, there are elementsx ∈ X andaα ∈ A such thatun
‖·‖X−−→

x andmαTα(un)
‖·‖A−−→ aα asn → ∞. The continuity ofTα ensures thatmαTα(un)

‖·‖Y−−→
mαTα(x) ∈ Y asn → ∞. It follows that, for eachα ∈ J , andε > 0 given, there is an integer
N ∈ N so large that whenevern ≥ N , we have

‖mαTα(x)− aα‖Y ≤ ‖mαTα(x)−mαTα(un)‖Y + ‖mαTα(un)− aα‖Y

<
ε

2
+ ‖mαTα(un)− aα‖A

<
ε

2
+

ε

2
= ε.

ThereforemαTα(x) = aα for eachα ∈ J , which implies thatx ∈ T−1
α (A) for all α ∈ J , that

is, x ∈
⋂

α∈J T−1
α (A).

Now, for eachα ∈ J , there is an integerNα ∈ N for which ‖mαTα(un) −mαTα(x)‖A < 1
whenevern ≥ Nα. Thus,

‖mαTα(x)‖A ≤ ‖mαTα(x)−mαTα(uNα)‖A + ‖mαTα(uNα)‖A

< 1 + ‖uNα‖W

≤ 1 + M,

where the numberM > 0 is an upper bound for the‖ · ‖W -Cauchy sequence(un)n∈N. Con-

sequently,supα∈J ‖mαTα(x)‖A is finite, sox ∈ W . It remains to show thatun
‖·‖W−−−→ x as

n →∞. To this end, for anyα ∈ J and any integersi, j ∈ N:∣∣‖ui − uj‖Tα,mα − ‖x− uj‖Tα,mα

∣∣
=

∣∣ (‖ui − uj‖X + ‖mαTα(ui − uj)‖A)− (‖x− uj‖X + ‖mαTα(x− uj)‖A)
∣∣

≤
∣∣‖ui − uj‖X − ‖x− uj‖X

∣∣ +
∣∣‖mαTα(ui − uj)‖A − ‖mαTα(x− uj)‖A

∣∣
≤ ‖ui − x‖X + ‖mαTα(ui − x)‖A,
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6 R. KANTROWITZ

which tends to zero asi →∞. Thus,

(3.1) lim
i→∞

‖ui − uj‖Tα,mα = ‖x− uj‖Tα,mα for all j ∈ N.

Now, because(un)n∈N is a‖·‖W -Cauchy sequence, letN ∈ N be so large that‖ui−uj‖W < ε/2
for all i, j ≥ N . By definition of‖ · ‖W , for anyα ∈ J , we have‖ui − uj‖Tα,mα < ε/2 for all
i, j ≥ N . As a consequence of equation (3.1),‖x − uj‖Tα,mα ≤ ε/2 for all j ≥ N . Finally,
therefore, for allj ≥ N ,

‖x− uj‖W = sup
α∈J

‖x− uj‖Tα,mα ≤ ε/2 < ε,

to complete the proof.

Example 3.2. L IPSCHITZ FUNCTIONS. Let (X, ‖ · ‖X) = (Bd[a, b], ‖ · ‖∞) and(Y, ‖ · ‖Y ) =
(A, ‖ · ‖A) = (C, | · |), and fixδ ∈ (0, 1]. For a given pairα = (x, y) of distinct numbers in the
interval[a, b], defineTα : Bd[a, b] −→ C by

Tα(f) =
f(x)− f(y)

|x− y|δ
for all f ∈ Bd[a, b].

It follows thatTα is a bounded linear operator and, forf, g ∈ Bd[a, b],

Tα(fg) =
fg(x)− fg(y)

|x− y|δ
= f(x)

g(x)− g(y)

|x− y|δ
+

f(x)− f(y)

|x− y|δ
g(y) = εx(f)Tα(g)+Tα(f)εy(g),

whereεx and εy denote the norm-decreasing evaluation functionals onBd[a, b] at x and y,
respectively. Conditions (2.1) and the operative equation (2.2) are thus satisfied with the choices
εx, εy, andhα ≡ 0 so that, by Theorems 2.1 and 3.1, for any choice ofmα > 0, the function

‖f‖Tα,mα = ‖f‖∞ + mα|Tα(f)| = ‖f‖∞ + mα
|f(x)− f(y)|
|x− y|δ

provides a complete submultiplicative norm for the algebraT−1
α (C) = Bd[a, b].

Now, letJ denote the collection of all pairsα = (x, y) of distinct numbersa ≤ x < y ≤ b
from the interval[a, b] and fix a numbermα > 0 for eachα ∈ J . Theorem 3.2 thus ensures that
the pair(W, ‖ · ‖W ) is a Banach algebra, where

W = {f ∈
⋂
α∈J

T−1
α (C) : sup

α∈J
‖f‖Tα,mα < ∞}

and
‖f‖W = sup

α∈J
‖f‖Tα,mα = ‖f‖∞ + sup

α∈J
mα|Tα(f)| for all f ∈ W.

In particular, with the choicemα = 1 for all α ∈ J , the function that assigns the number

(3.2) ‖f‖∞ + sup

{
|f(x)− f(y)|
|x− y|δ

: x 6= y

}
to eachf is a complete algebra norm for the spaceLipδ[a, b] of Lipschitz functions, which
addresses a part of Exercise 4.13 of [1] in the case of the compact metric space[a, b]. �

Example 3.3. FUNCTIONS OF BOUNDED SECOND VARIATION. Let X denote the algebra
Lip1[a, b] of Lipschitz functions that is theW of the preceding Example 3.2, with the complete
algebra norm‖·‖X prescribed by expression (3.2) for the choiceδ = 1. Further, let(Y, ‖·‖Y ) =
(`∞, ‖ ·‖∞), with subalgebra(A, ‖ ·‖A) = (`1, ‖ ·‖1). For a partitionπ = {a = t0 < t1 < · · · <
tn = b} of the interval[a, b], define the bounded linear operatorTπ : Lip1[a, b] −→ `∞ by

Tπ(f) = (∆1(f)−∆0(f), ∆2(f)−∆1(f), . . . , ∆n(f)−∆n−1(f), 0, 0, . . . )
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for all f ∈ Lip1[a, b], where∆0(f) = 0 and∆k(f) denotes the difference quotient

∆k(f) =
f(tk)− f(tk−1)

tk − tk−1

for k = 1, 2, . . . n.

Computation of∆k(fg) for functionsf, g ∈ Lip1[a, b] andk = 1, 2, . . . n yields

∆k(fg) = f(tk)∆k(g) + ∆k(f)g(tk−1)

so that fork = 1, 2, . . . , n, thek-th term of the sequenceTπ(fg) is

∆k(fg)−∆k−1(fg) = f(tk)∆k(g) + ∆k(f)g(tk−1)− f(tk−1)∆k−1(g)−∆k−1(f)g(tk−2)

= f(tk)(∆k(g)−∆k−1(g)) + (∆k(f)−∆k−1(f))g(tk−1)

+ ∆k−1(g)∆k(f)(tk − tk−1) + ∆k−1(f)∆k−1(g)(tk−1 − tk−2).

Equation (2.2) is thus satisfied, specifically,

Tπ(fg) = σπ(f)Tπg + (Tπf)τπ(g) + hπ(f, g) for all f, g ∈ Lip1[a, b],

where the norm-decreasing functionsσπ, τπ : Lip1[a, b] −→ `∞ are defined by

σπ(f) = (f(t1), f(t2), . . . , f(tn), 0, 0, . . . ) and τπ(g) = (g(t0), g(t1), . . . , g(tn−1), 0, 0, . . . )

for all f, g ∈ Lip1[a, b], and the functionhπ : Lip1[a, b]× Lip1[a, b] −→ `∞ assigns to the pair
(f, g) the bounded sequence havingk-th term

∆k−1(g)∆k(f)(tk − tk−1) + ∆k−1(f)∆k−1(g)(tk−1 − tk−2)

for k = 2, 3, . . . , n and zeros otherwise. The range ofhπ thus clearly lies inA = `1, and
estimation of‖hπ(f, g)‖1 yields

‖hπ(f, g)‖1 =
n∑

k=2

|∆k−1(g)∆k(f)(tk − tk−1) + ∆k−1(f)∆k−1(g)(tk−1 − tk−2)|

≤
n∑

k=2

(
|∆k−1(g)| |∆k(f)| (tk − tk−1) + |∆k−1(f)| |∆k−1(g)| (tk−1 − tk−2)

)
≤ 2(b− a) sup

1≤k≤n
|∆k(f)| sup

1≤k≤n−1
|∆k(g)|

≤ 2(b− a)‖Tπ(f)‖1‖Tπ(g)‖1,

where the last inequality is a result of the following simple telescoping computation for any
k = 1, 2, . . . , n:

|∆k(f)| = |∆k(f)−∆k−1(f) + ∆k−1(f)− · · ·+ ∆2(f)−∆1(f) + ∆1(f)−∆0(f)|
≤ |∆1(f)−∆0(f)|+ |∆2(f)−∆1(f)|+ · · ·+ |∆k(f)−∆k−1(f)|
≤ ‖Tπ(f)‖1.

The conditions (2.1) are thus all satisfied, so, by Theorems 2.1 and 3.1, for any partitionπ of
the interval[a, b], the preimageT−1

π (`1) = Lip1[a, b] is a Banach algebra when equipped with
the norm

‖f‖Tπ ,mπ = ‖f‖X + mπ‖Tπ(f)‖1

= ‖f‖∞ + sup

{
|f(x)− f(y)|
|x− y|

: x 6= y

}
+ mπ

n∑
k=1

|∆k(f)−∆k−1(f)|

= ‖f‖∞ + sup

{
|f(x)− f(y)|
|x− y|

: x 6= y

}
+ mπ

(
|∆1(f)|+

n∑
k=2

|∆k(f)−∆k−1(f)|
)
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for any numbermπ ≥ 2(b− a). An application of Theorem 3.2 leads to the conclusion that

(3.3) W = {f ∈
⋂
π∈P

T−1
π (`1) : sup

π∈P
‖f‖Tπ ,mπ < ∞}

is a Banach algebra when equipped with the complete algebra norm‖f‖W = supπ∈P ‖f‖Tπ ,mπ

for all f ∈ W .
The valuesupπ∈P

∑n
k=2 |∆k(f)−∆k−1(f)| , where the supremum is taken over the collec-

tion P of all partitions of[a, b], is called thetotal second variationof the functionf on the
interval[a, b]. Functions whose total second variation are finite play a role in an extension of the
Riemann-Stieltjes integral, as is comprehensively detailed in [7]. Moreover, withmπ = 2(b−a),
say, for all partitionsπ ∈ P, Lemma 1.2 of [7] implies that the equalityW = BV2[a, b] holds,
whereW is our algebra (3.3) andBV2[a, b] denotes the space offunctions of bounded second
variation. The present example thus parallels and re-contextualizes the similar result Theorem
5.1 of [4] in which a different Banach algebra norm is provided forBV2[a, b]. Evidently the
algebraBV2[a, b] is semi-simple so, byJohnson’s uniqueness-of-norm theorem([1], Corollary
5.29), these Banach algebra norms onBV2[a, b] are equivalent. �

Example 3.4. FUNCTIONS OF GENERALIZED BOUNDED VARIATION. Let (X, ‖ · ‖X) =
(Bd[a, b], ‖ · ‖∞), (Y, ‖ · ‖Y ) = (`∞, ‖ · ‖∞), and (A, ‖ · ‖A) = (`p, ‖ · ‖p), wherep ≥ 1
and, as in Example 3.1, letΛ = (λn)n∈N be a sequence of positive numbers that is bounded
away from zero. In addition, fix a partitionπ = {a = x0 < x1 < · · · < xn = b} of the compact
interval [a, b], and defineTπ : Bd[a, b] −→ `∞ to be the bounded linear operator that assigns to
a functionf ∈ Bd[a, b] the sequence

Tπ(f) = (∆1(f), ∆2(f), . . . , ∆n(f), 0, 0, . . . ),

where here

∆k(f) =
f(xk)− f(xk−1)

λ
1/p
k

for k = 1, 2, . . . , n.

Thus, forf, g ∈ Bd[a, b] andk = 1, 2, . . . , n, thek-th entry of the sequenceTπ(fg) is

∆k(fg) = f(xk)∆k(g) + ∆k(f)g(xk−1),

and all the remaining entries are zeros. It follows that for functionsf, g ∈ Bd[a, b],

Tπ(fg) = σπ(f)Tπ(g) + Tπ(f)τπ(g),

whereσπ, τπ : Bd[a, b] −→ `∞ are defined by

σπ(f) = (f(x1), . . . , f(xn), 0, 0, . . . ) and τπ(g) = (g(x0), . . . , g(xn−1), 0, 0, . . . ).

Conditions (2.1) and the operative equation (2.2) are thus satisfied with the choicesσπ, τπ, and
hπ ≡ 0. By Theorems 2.1 and 3.1, it follows that, for each partitionπ of the interval[a, b], and
anymπ > 0, the pair(T−1

π (`p), ‖ · ‖Tπ ,mπ) is a Banach algebra. The algebraT−1
π (`p) = Bd[a, b]

so that

‖f‖Tπ ,mπ = ‖f‖∞ + mπ

( n∑
k=1

|f(xk)− f(xk−1)|p

λk

)1/p

provides a submultiplicative norm forBd[a, b].
Now, letP denote the collection of all partitions of the interval[a, b] and fix a numbermπ > 0

for eachπ ∈ P. Theorem 3.2 ensures that the space

Wp = {f ∈
⋂
π∈P

T−1
π (`p) : sup

π∈P
‖f‖Tπ ,mπ < ∞}
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is rendered a Banach algebra when equipped with the complete submultiplicative norm

‖f‖Wp = sup
π∈P

‖f‖Tπ ,mπ = ‖f‖∞ + sup
π∈P

mπ‖Tπ(f)‖p for all f ∈ Wp.

With the canonical choicemπ = 1 for each partitionπ ∈ P, the spacesWp are the spaces of
functions of generalized bounded variationin the sense of Waterman-Shiba that were introduced
in 1980 by Shiba [9]. Forp = 1, it turns out thatW1 is the spaceΛBV studied by Waterman
in [10], and the classical spaceBV of functions of bounded variationarises, for example, when
mπ = 1 for all π ∈ P, p = 1, andΛ is the constant sequence of all ones. �

Example 3.5. ALGEBRAS OF JAMES TYPE. In this example, we allow the algebrasX = Y
to represent any of̀∞, c, or c0 equipped with the supremum norm‖ · ‖∞, while (A, ‖ · ‖A) =
(`p, ‖ · ‖p) for somep ≥ 1. Denote byQ the set of integerk-tuplesq = (q1, . . . , qk) such
that k ≥ 2 and1 ≤ q1 < q2 < · · · < qk. For q ∈ Q, define the bounded linear operator
Tq : X −→ Y by

Tq(x) =
(
xq2 − xq1 , xq3 − xq2 , . . . , xqk

− xqk−1
, xqk

− xq1 , 0, 0, . . .
)

for all x = (x1, x2, . . . ) ∈ X. For sequencesx = (x1, x2, . . . ) andy = (y1, y2, . . . ) in X, and
distinct indicesi, j ∈ {1, 2, . . . , k}, the equality

(xqi
yqi
− xqj

yqj
) = xqi

(yqi
− yqj

) + (xqi
− xqj

)yqj

implies that
Tq(xy) = σq(x)Tq(y) + Tq(x)τ q(y),

whereσq, τ q : X −→ Y are defined by

σq(x) = (xq2 , xq3 , . . . , xqk−1
, xqk

, xqk
, 0, 0, . . . )

and
τ q(y) = (yq1 , yq2 , . . . , yqk−2

, yqk−1
, yq1 , 0, 0, . . . ).

Clearly,‖σq(x)‖∞ ≤ ‖x‖∞ and‖τ q(y)‖∞ ≤ ‖y‖∞ so that conditions (2.1) and the operative
equation (2.2) are satisfied with the choicesσq, τ q, andhq ≡ 0. Thus, by Theorems 2.1 and 3.1,
for eachq ∈ Q and arbitrarymq > 0, a Banach algebra norm forT−1

q (`p) is prescribed by the
function

‖x‖Tq ,mq = ‖x‖∞ + mq‖Tq(x)‖p = ‖x‖∞ + mq

( k−1∑
j=1

|xqj+1
− xqj

|p + |xqk
− xq1|p

)1/p

for all x ∈ T−1
q (`p). In fact, T−1

q (`p) = X so each function‖x‖Tq ,mq provides a complete
submultiplicative norm for the algebraX. Furthermore, as a consequence of Theorem 3.2, the
space

W = {x ∈
⋂
q∈Q

T−1
q (`p) : sup

q∈Q
mq‖Tq(x)‖p < ∞}

is rendered a Banach algebra when equipped with the complete submultiplicative norm

‖x‖W = sup
q∈Q

‖x‖Tq ,mq = ‖x‖∞ + sup
q∈Q

mq‖Tq(x)‖p for all x ∈ W.

In the case thatX = Y = c0, A = `2, andmq = 1 for all q ∈ Q, the resulting algebraW
is the famousJames’ space, a non-reflexive Banach space that is isometrically isomorphic to
its second dual. WhenX = Y = `∞, it turns out thatW is the unitization of James’ space.
A detailed and comprehensive analysis of James’ space equipped with a Banach algebra norm
different from those presented here is undertaken in the article [2]; Example 4.1.45 of [5] is
also based on [2]. Among its many interesting properties, James’ algebra is semi-simple so,
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by Johnson’s uniqueness-of-norm theorem([1], Corollary 5.29), all Banach algebra norms on it
are equivalent. �

Example 3.6. ALGEBRAS OF FEINSTEIN TYPE. As in Example 3.5, here, too, we allow the
algebrasX = Y to represent any of̀∞, c, or c0 equipped with the supremum norm‖ · ‖∞,
while (A, ‖ · ‖A) = (`p, ‖ · ‖p) for somep ≥ 1. Forn ∈ N, define the bounded linear operator
Tn : X −→ Y by

Tn(x) =
1

n
(x2 − x1, 2(x3 − x2), 3(x4 − x3), . . . , n(xn+1 − xn), 0, 0, . . . )

for all x = (x1, x2, . . . ) ∈ X. Given sequencesx = (x1, x2, . . . ) andy = (y1, y2, . . . ) in X,
and an integer1 ≤ k ≤ n, thek-th term of the sequenceTn(xy) is

k

n
(xk+1yk+1 − xkyk) = xk+1 ·

k

n
(yk+1 − yk) +

k

n
(xk+1 − xk) · yk.

Consequently, the formula

Tn(xy) = L(x)Tn(y) + Tn(x)y

holds, where, as in Example 3.1,L is the (norm-decreasing) left shift operator onX. Conditions
(2.1) and the operative equation (2.2) are thus clearly satisfied withL, the identity function on
X, and the functionh ≡ 0 for eachn ∈ N. By Theorem 3.1, for eachn ∈ N and arbitrary
mn > 0, the pair(T−1

n (`p), ‖ · ‖Tn,mn) is a Banach algebra, where

‖x‖Tn,mn = ‖x‖∞ + mn‖Tn(x)‖p = ‖x‖∞ +
mn

n

( n∑
k=1

kp|xn+1 − xn|p
)1/p

for all x ∈ T−1
n (`p). Similar to Example 3.5, for eachn ∈ N the equalityT−1

n (`p) = X holds,
so the function‖x‖Tn,mn provides a submultiplicative norm for the algebraX.

Next, define

W = {x ∈
⋂
n∈N

T−1
n (`p) : sup

n∈N
mn‖Tn(x)‖p < ∞},

and apply Theorem 3.2 to conclude thatW a Banach algebra when equipped with the complete
submultiplicative norm

‖x‖W = sup
n∈N

‖x‖Tn,mn = ‖x‖∞ + sup
n∈N

mn‖Tn(x)‖p for all x ∈ W.

The choicesX = Y = c0, A = `1, andmq = 1 for all q ∈ Q (as defined in Example 3.5) re-
sult in a Banach algebraW that coincides with one constructed by J. F. Feinstein; its remarkable
properties are highlighted and detailed in Example 4.1.46 of [5]. Here, too, Feinstein’s algebra
is semi-simple, soJohnson’s uniqueness-of-norm theorem([1], Corollary 5.29) guarantees that
it supports a unique complete norm. �

4. SEMINORMED ALGEBRAS

In this section, we begin with an algebraX and again suppose that(Y, ‖ · ‖Y ) is a normed
algebra with a normed subalgebra(A, ‖ · ‖A) that is also a two-sided ideal ofY satisfying the
conditions (i), (ii), and (iii) of Section 2. This time, however, we are interested in a multiplica-
tive linear functionalϕ on X and a functionh : X ×X −→ Y that satisfies the relevant parts
of conditions (2.1), specifically,

(4.1)

{
h(u, v) ∈ A wheneveru, v ∈ T−1(A); and
there is anm > 0 such that‖h(u, v)‖A ≤ m‖Tu‖A‖Tv‖A for all u, v ∈ T−1(A).
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Whenϕ andh implement the secondoperative equation

(4.2) T (uv) = ϕ(u)(Tv) + ϕ(v)(Tu) + h(u, v) for all u, v ∈ X,

we define

ρT,m(u) = |ϕ(u)|+ m‖Tu‖A for all u ∈ T−1(A).

In this setting, we have the following analogue of Theorem 2.1.

Theorem 4.1. Suppose thatX is an algebra, that(A, ‖ · ‖A) is a normed subalgebra of the
normed algebra(Y, ‖ · ‖Y ) that is also a two-sided ideal ofY , and thatT : X −→ Y is a
linear operator. Suppose further thatϕ is a multiplicative linear functional onX and thath is
a function that satisfies conditions(4.1). If the operative equation(4.2) holds, thenT−1(A) is
an algebra for whichρT,m provides a submultiplicative seminorm. Moreover, ifm? > m, then
ρT,m? is a submultiplicative seminorm forT−1(A) that is equivalent toρT,m.

Proof. It is straightforward to check thatρT,m is a seminorm for the subspaceT−1(A) of X.
The proofs of the stability ofT−1(A) under multiplication, the submultiplicativity ofρT,m on
T−1(A), and the equivalence of the seminorms all proceed as in the proof of Theorem 2.1
mutatis mutandis.

Example 4.1. SEQUENCES OF BOUNDED VARIATION. Let X denote the algebrà∞, and let
(Y, ‖·‖Y ) denote the Banach algebra(`∞, ‖·‖∞) with Banach subalgebra(A, ‖·‖A) = (`1, ‖·‖1).
Define the operatorT : X −→ Y by

Tx = (∆1(x), ∆2(x), ∆3(x), . . . ) for all x = (x1, x2, x3, . . . ) ∈ X,

where, in this example,∆k(x) simply represents the differencexk+1 − xk for all k ∈ N. Thus,
for sequencesx = (x1, x2, x3, . . . ) andy = (y1, y2, y3, . . . ) in `∞, thek-th entry ofT (xy) is

∆k(xy) = xk+1yk+1 − xkyk

= xk+1∆k(y) + yk∆k(x)

= x1∆k(y) + y1∆k(x) + (xk+1 − x1)∆k(y) + (yk − y1)∆k(x)

= ϕ(x)Ty + ϕ(y)Tx + h(x,y),

whereϕ denotes the projection functional of`∞ onto the first entry, that is,ϕ(x) = x1 for all
x = (x1, x2, x3, . . . ) ∈ `∞, and the functionh : `∞ × `∞ −→ `∞ assigns to each pair(x,y) of
bounded sequences the sequenceh(x,y) ∈ `∞ whosek-th entry is

(xk+1 − x1)∆k(y) + (yk − y1)∆k(x)

for all k ∈ N. Since the operative equation (4.2) holds with these choices ofϕ andh, it remains
to establish that the conditions (4.1) are satisfied. To this end, letx,y ∈ T−1(`1), and consider
the following computations which are motivated by those in [8].
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For any integern ≥ 2,
n−1∑
k=1

|(xk+1 − x1)∆k(y) + (yk − y1)∆k(x)|

≤
n−1∑
k=1

|(xk+1 − x1) ∆k(y)|+
n−1∑
k=1

|(yk − y1) ∆k(x)|

=
n−1∑
k=1

∣∣∣( k∑
j=1

∆j(x)
)
∆k(y)

∣∣∣ +
n−1∑
k=1

∣∣∣( k−1∑
j=1

∆j(y)
)
∆k(x)

∣∣∣
≤

n−1∑
k=1

k∑
j=1

|∆j(x)| |∆k(y)|+
n−1∑
k=1

k−1∑
j=1

|∆j(y)| |∆k(x)|

=
n−1∑
j=1

n−1∑
k=j

|∆j(x)| |∆k(y)|+
n−1∑
k=1

k−1∑
j=1

|∆j(y)| |∆k(x)|

=
n−1∑
k=1

n−1∑
j=k

|∆k(x)| |∆j(y)|+
n−1∑
k=1

k−1∑
j=1

|∆j(y)| |∆k(x)|

=
n−1∑
k=1

n−1∑
j=1

|∆k(x)| |∆j(y)|

=
n−1∑
k=1

|∆k(x)|
n−1∑
j=1

|∆j(y)|

≤ ‖T (x)‖1‖T (y)‖1.

Consequently, the imageh(x,y) of any pair of sequences(x,y) ∈ T−1(`1) × T−1(`1) lies
in `1 as required by (4.1) and, moreover, the estimate‖h(x,y)‖1 ≤ ‖T (x)‖1‖T (y)‖1 holds.
Theorem 4.1 thus implies that, for any choice ofm ≥ 1, the definition

ρT,m(x) = |ϕ(x)|+ m‖Tx‖A = |x1|+ m
∞∑

n=1

|xn+1 − xn| for all x ∈ T−1(`1)

provides a seminorm for the algebrabv = T−1(`1) of sequences of bounded variation. Actually,
if x ∈ T−1(`1) satisfiesρT,m(x) = 0, thenx ∈ ker(ϕ) ∩ ker(T ) = {0} so that, in fact, the
functionρT,m(x) is a norm for the algebrabv = T−1(`1).

Note that, without an appropriate choice for the factorm, the normρT,m is not, in general,
submultiplicative. Consider, for example, the sequencex = (0, 1, 1

2
, 0, 0, . . . ) ∈ `∞ and let

m = 1
4
. Thenx2 = (0, 1, 1

4
, 0, 0, . . . ) so that

ρT,m(x2) = 0 +
1

4

(
1 +

3

4
+

1

4

)
=

1

2
and ρT,m(x) = 0 +

1

4

(
1 +

1

2
+

1

2

)
=

1

2
.

Thus,ρT,m(x2) = 1
2

> 1
4

=
(
ρT,m(x)

)2
which confirms thatρT,m is not submultiplicative. �

4.1. Paralleling the situation in subsection 3.1, suppose thatTα : X −→ Y is a linear operator
for eachα in the index setJ and that(T−1

α (A), ρTα,mα
) is a seminormed subalgebra ofX. Let

(4.3) W = {u ∈
⋂
α∈J

T−1
α (A) : sup

α∈J
mα‖Tα(u)‖A < ∞},
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and define

(4.4) ρW (u) = sup
α∈J

ρTα,mα
(u) = |ϕ(u)|+ sup

α∈J
mα‖Tα(u)‖A for all u ∈ W.

It is straightforward to confirm that(W, ρW ) is a seminormed algebra.

Example 4.2. L IPSCHITZ FUNCTIONS- REDUX. Let X denote the algebraBd[a, b], and let
(Y, ‖ ·‖Y ) and(A, ‖ ·‖A) both denote the Banach algebra(C2, ‖ ·‖∞). For a fixedδ ∈ (0, 1] and
a pairα = (x, y) of numbers that satisfya < x < y ≤ b, defineTα : Bd[a, b] −→ (C2, ‖ · ‖∞)
by

Tα(f) =

(
f(x)− f(a)

(x− a)δ
,
f(y)− f(x)

(y − x)δ

)
for all f ∈ Bd[a, b].

It follows that, forf, g ∈ Bd[a, b],

Tα(fg) =

(
fg(x)− fg(a)

(x− a)δ
,
fg(y)− fg(x)

(y − x)δ

)
=

(
f(x)

g(x)− g(a)

(x− a)δ
+ g(a)

f(x)− f(a)

(x− a)δ
, f(y)

g(y)− g(x)

(y − x)δ
+ g(x)

f(y)− f(x)

(y − x)δ

)
= (f(x), f(y))Tα(g) + (g(a), g(x))Tα(f)

= (f(x)− f(a), f(y)− f(a))Tα(g) + (f(a), f(a))Tα(g)

+ (g(a), g(a))Tα(f) + (0, g(x)− g(a))Tα(f)

= ϕ(f)Tα(g) + ϕ(g)Tα(f) + hα(f, g),

where the functionalϕ onBd[a, b] represents point evaluation ata and

hα(f, g) = (f(x)− f(a), f(y)− f(a))Tα(g) + (0, g(x)− g(a))Tα(f)

for all (f, g) ∈ Bd[a, b]×Bd[a, b]. The functionsϕ andh thus implement the operative equation
(4.2), and we can estimate‖hα(f, g)‖∞ by:

‖(f(x)− f(a), f(y)− f(a))Tα(g) + (0, g(x)− g(a))Tα(f)‖∞
= ‖(f(x)− f(a), f(y)− f(x))Tα(g) + (0, f(x)− f(a))Tα(g) + (0, g(x)− g(a))Tα(f)‖∞
≤ ‖

(
(x− a)δ, (y − x)δ

)
‖∞‖Tα(f)‖∞‖Tα(g)‖∞ + 2(x− a)δ‖Tα(f)‖∞‖Tα(g)‖∞

≤ 3(b− a)δ‖Tα(f)‖∞‖Tα(g)‖∞

Conditions (4.1) are thus satisfied so that by Theorem 4.1, for any numbermα ≥ 3(b− a)δ, the
functionρTα,mα

given by

ρTα,mα
(f) = |ϕ(f)|+ mα‖Tα(f)‖∞ = |f(a)|+ mα max

{
|f(x)− f(a)|

(x− a)δ
,
|f(y)− f(x)|

(y − x)δ

}
for all f ∈ T−1

α (C2) provides a submultiplicative seminorm for the algebraT−1
α (C2) = Bd[a, b].

Note that without an appropriate factormα, the normρTα,mα
is not, in general, submultiplica-

tive. Consider, for example, the pair of numbersα = (1
2
, 1) from the interval[0, 1], the choice

mα = 1, and the resulting function

ρα(f) = |f(0)|+ max

{ |f(1
2
)− f(0)|
1
2
− 0

,
|f(1)− f(1

2
)|

1− 1
2

}
for all f ∈ Bd[0, 1].

Then, forf : [0, 1] −→ R defined byf(t) = t for all t ∈ [0, 1], we findρα(f 2) = 3/2 > 1 =
(ρ(f))2 which confirms thatρα(f) is not submultiplicative onBd[0, 1].
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Now, if mα = 3(b− a)δ, say, for all pairsα from the setJ = {(x, y) : a < x < y ≤ b}, then,
apropos of equations (4.3) and (4.4), the function

(4.5) ρW (f) = sup
α∈J

ρTα,mα
(f) = |f(a)|+ 3(b− a)δ sup

α∈J

{
|f(x)− f(a)|

(x− a)δ
,
|f(y)− f(x)|

(y − x)δ

}
provides a submultiplicative seminorm for the subalgebraW of Bd[a, b] consisting of those
f ∈ Bd[a, b] for which

sup
α∈J

{
|f(x)− f(a)|

(x− a)δ
,
|f(y)− f(x)|

(y − x)δ

}
< ∞.

Evidently,W is thus the subalgebra ofBd[a, b] consisting of thosef ∈ Bd[a, b] for which

sup

{
|f(y)− f(x)|
|y − x|δ

: x 6= y

}
< ∞,

that is,W = Lipδ[a, b] and

ρW (f) = |f(a)|+ 3(b− a)δ sup

{
|f(y)− f(x)|
|y − x|δ

: x 6= y

}
.

Moreover, one may easily check that ifρW (f) = 0, thenf ≡ 0 on [a, b], so thatρW actually
provides an algebra norm forLipδ[a, b]. �
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