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1. INTRODUCTION AND PRELIMINARIES

Bicomplex numbers, just like quaternions, are a generalization of complex numbers. These
two number systems are different from each other in two important ways, quaternions, which
form a division algebra, are non commutative, whereas bicomplex numbers are commutative
but do not form a division algebra.

For the sake of completion and to make the paper self contained, we first summarize some
basic properties of bicomplex numbers and hyperbolic numbers which is used in this paper.
Bicomplex numbers have two imaginary uni@ndj satisfying

i#jij=ji=k i2=j2=-1.
Now let C(i) be the set of complex numbers with imaginary utigsd letC(j) be the set of

complex numbers with imaginary unigsWe define set of bicomplex numbers denotedly
as

BC = {z =21 + a2l + 23] + x4k : 11,29, 23,04 E R} = {2 = 21 + j2o : 21,20 € C(i)}.

We refer tol[1], [10]][14] and [16] for detailed introduction to the algebra, geometry and analysis
of the bicomplex numbers. Due to the fact that theB€thas two imaginary units i.ei,and

j, BC has three conjugations. These conjugations are bar-conjugatmmjugation andk-
conjugation defined &= z, +jz,, 2’ = 2; —j» andz* = z' =z, — jz,, respectively. Where
Z1, Z7 are the usual conjugations of complex numbgrs, in C(i).

Accordingly three types of moduli arise. These are:’, 2 - 7 andz - 2*. It is to be noted that
these modulus ar€(i), C(j) andD-valued. For details of conjugations on set of bicomplex
numbers seé [1][[10] and [14]. However, theonjugation defined by" = z; — jz,, where

z = 21 + jz9; 21, 29 € C(i) with moduli

22 =2} = 2f + 25 = (Im[* = naf?) + 2Re(mim)i

is important as it is used to define the invertiblity of a bicomplex number. A bicomplex number
z is said to be invertible if - ' £ 0 and its inverse is given by

T i
z z
2l =

22t
Further, ifz # 0, butz - 2T = |2|? = 0, thenz is said to be a zero-divisor. We denote the set of
all zero-divisors by
N(C:{z:zl—l—sz:Z#O,z-zfzzf—I—zS:O}
and is called the null cone of the set of bicomplex nunib€&r Let NC, = NC U {0} be the
null cone along with zero.
Now there are two special zero divisass = 3(1 + k) ande, = 1(1 — k) and called them
idempotent elements and having the following properties:-
eit+e=1,e —e =k
81'6220; €1 €] = e, €y ey = €.

The setBC,, = ¢;BC andBC,, = e,BC are (principal) ideals in the rinC and have the
property that

BC., NBC,, = {0}
and
(1.1) BC = BC,, + BC,,.

This equation is called the idempotent decomposition of the ring of bicomplex nurBliers
Thus each: € BC can uniquely be expressed as= z;e; + 20e, and also it allows us with
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component wise addition, multiplication and taking inverse of element&inThe Euclidean
|2

norm| - | of a bicomplex numbet is defined asz| = /27 + 23 + 22 + 22 = y/|21|° + |2
and for anyz andw in BC, we have

|2 - w| < V22| |wl.

The D-valued norm of the bicomplex number= z,e; + z,e, denoted by|z| is defined as
|z|lx = |z1|e1 + |22]ea, Where|z;| and |z | are the usual modulus of complex numbeysand

zo. Further|z - w|x = |z|x - |w|k i.€., the hyperbolic modulus of the product is equal to the
product of the corresponding moduli which is not true for the norRirand Euclidean norm
and hyperbolic norm of a bicomplex number is related|bl.| = |z| . For the above discussion
we refer to[1] and [10].

The hyperbolic numbers denoted Byis a ring of all numbers of the formmn= a + bk, where
a,be R, with k satisfyingk? = 1.

i.e., D= {a+bk:a,beR, k?=1, k¢R}.
Also the set of hyperbolic numbers have idempotent decomposition as
D = De; + Des,.

The BC is not one point Alexendrov compactification but is the union of with three different
types of infinitive elements:

BC = BC U {oce; + C(i)ey} U {C(i)e; + ooey} U {ooe; + coe,}

i.e., BC contains the elements of the forsae; + ze, andz,e; + coe, With z;, z, € C(i) and
unique elementoe; + ocoey. Thus infinity inBC have three different type of elements. For
more details we refer td [12].

If Z = Zi1e1 + Zsey # 0 ¢ NC,, then it is invertible. Writing
Z =|Z|Z| ' (Z1ey + Zaes) = | ZIi (| Z1] ' e1 + | Zo| "' e2) (Z1€1 + Zaey),
implies
Z Z )
Z =\Z ——e; + ——ey |.
2 (e e

As e; ande;, are the coefficient of complex numbers of modulus one, we takes for real numbers
py andg, % = el andé—;l = ez, Let U, = u, e, + p,e, be the hyperbolic number. Then
U, is called the hyperbolic argument associated with the bicomplex nufbef. [13]. It has
trigonometric representation in hyperbolic terms given as:

Z = ’Z’k ’ (COS\IIZ + iSZTL‘Pz) = ’Z’k . (eilhel + eiu2e2)

_ |Z|k . ellmertpse) |Z|k ez

A set() C BC is said to be product-type set {f can be written as) = Q,e; + se,
whereQ; = II,;(Q2) andQy, = II,;(2) are the projections dBC on C(i). A set) C BC is
said to be product-type domain BIC if €2; and(2, are domains in the complex plane. Also
if ~,, v, are curves inC then hyperbolic curves i8C are product-type and are denoted as
v = v,e1 + 7,€2 and a hyperbolic curve is said to B&-rectifiable BC-Jordan andC-closed
if and only if v, and~, are rectifiable, Jordan and closed respectively, lsee [2][and [10]. A
function F : Q@ — BC is said to be product-type if there exidts: ; — C fori = 1,2 such
thatF(Zlel + dez) = Fl(Zl)el + FQ(ZQ)GQ for all Z1e1 + Zyey € ). For more details and
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examples refer to [10].

Definition 1.1. The bicomplex open ball with centef, = 7, ye; + Z; pe, and positive hyper-
bolic radiusr = rie; + o€y, (r; # 0 andry # 0) is

B(ZO,T) = {Z . |Z—Zo|k < 7’} = {Z = Zlel+deg : ‘Z]__ZLO’ <Tr and’ZQ—Z270| < 7“2}.

The bicomplex circumference of this bi-disk has the shape of torous, but it is a torus that lives
in the four dimensional world, that is, it is not usual torus that can exigfin

Bec(Zy, 1) = Bo, x Bo, C BC,

whereB,, C BC,, is a disk with center i, ; and radius, and similarly3., C BC,, is disk
with center inZ, o and radius-,.
Now, we define a bicomplex ball with centre at the origin and hyperbolic radius 1 as

B, = {ZeBC:|Z|x <1}
{Z = Z1e1 + Zses : |Zl| < 1, |Z2| < 1}

Also, let
(12) Bl = 18171 X BLQ
whereB,; = {Z, : |Z| < 1}, [ = 1,2 is a cartesian product of unit ball {@(i).

Definition 1.2. Let Q) C BC be a product-type domain, then a functiBn 2 ¢ BC — BC is
BC-rational if‘R‘ is the quotient of two continuod3C-functions i.e.,

G(2)

(Z) = 72 such that H(Z) ¢ NC,.

Also bicomplex holomorphic rational functions are product-type, i.e., there exist holomorphic
R, :Q, - C fori = 1,2 such thatR(Z1e1 + deg) = Rl(Zl)el + RQ(ZQ)GQ for all Zie1 +
Zyeq € Q.

Definition 1.3. We say that functiod” : (2 ¢ BC — BC is BC-holomorphic if for everyZ € Q
there exist derivativé” (7) for which the following limit exist

lim F(Y)—-F(Z)

Jim ———, whereY € Qand (Y — Z) ¢ NC,.

A function F(Z161 + deg) = Fl(Zlel + ZQQQ)Gl -+ FQ(Zlel + deg)eg is BC-hOlomorphiC
if and only if F} (Z1e1 + Zsey) andFy(Z1e; + Zse,y) are holomorphic functions with respect to
only Z; andZ, respectively. For the above discussions we referitol[1],[2], [10] and [14].

In this paper we extend the theory of univalent functions to bicomplex version and analyze its
various properties whether they hold in bicomplex number framework, particularly in bicom-
plex unit disk. In section 2, we define bicomplex univalent function and also analyze the prop-
erties of specific class of bicomplex univalent functions which we denot€ bybicomplex.

Here we investigate the bicomplex version of Koebe function which is an important example in
classF. Section 3, deals with a brief discussionBff-Mobius invariant properties of class.
For a study of the univalent functions, we refer(to [4],[5]/[15] and reference therein.
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2. BC-UNIVALENT FUNCTIONS

In this section, we introduce the clagsof BC-univalent functions. The property of uni-
valence is much stronger in complex case than in real which led to the development of theory
of univalent function. This theory was born around the past century and is still active field of
research. Now we defingC-univalent function.

Definition 2.1. A BC-holomorphic function' : € BC — BC is said to be &8C-univalent
function onQ if F\(Z,) # F(Zs), ¥ Z1, Zy € Q with Z; # Z,.

Definition 2.2. The upper half plane in bicomplex is denoted[y. and is define by:

+ +
(2.2) HI {Z:Zlel+de2:(Zl,Zg)GHXH},

BC 1 2
where[[[ = {Z, € C: Im(Z;) > 0}, i = 1,2.

Example 2.1.LetZ = Z,e; + Zse;, € BCandS = S; x Sy C By, x By, be a Cartesian
domain inBC such that

(2.2) S={Z€BC:0< |2l < 1,0 < argeZ < g}
ThenS is a part of bicomplex unit disk in the first quadrant and

+ + +
BBC N H = {Z = Zlel -+ deg : (Zl, ZQ) & (Bl,l N H) X (Bl’g N H) } .
BC 1 2

Then the functiod” : S — Bgc N [[4 such that?(Z) = Z? is BC-conformal mapping. When

we separate the idempotent parts of the above system, we get two different systems, one with
the complex variabl¢; in the planeBC,, and other with the complex variabl in the plane

BC.,. Taking only the first idempotent component from|(1.2),(2.1) [anfl (2.2) we get:

Se1 = eSS = {Zlel € C(i)e1 0 < |Zl| <1,0< arg@(i)(Zl) < z},

2
Bel = ellB%Ll = {Zlel . |Zl‘ < 1} and
+ +
II = e]]={%ei €Cli)er: Im(Z) > 0},then
1

€1

+
e N = 1€1 € 1)e; 1 U < 1| < Lyim(4y) > .
Be, V][ {z Cli)er : 0 < |Z1] < 1,Im(Z,) > 0}

From this, we find a real two-dimensional surfaceRd and Fig[ shows its idempotent
projection onBCe;. Then, clearly the mapping; : Se;, — Bo, N H; such thatr (Z,) = Z#
is conformal mapping. Its projection dB(Ce, is quite similar.
The mapping of(Z) = Z? in BC 2 D? is shown in Fid 2, where planés andiD are seen as
lines, although they are real two dimensional planes, as shot83nFig 3]

From bicomplex Riemann mapping theorem|[10, Theorem 8.6.2 page-190], for any product-
type simply connected domaihin BC, there exists a bijectiv®-conformal mapping” : 2 —
B,. Furthermore, for any fixed, € Q, we can find anf” such thatF'(Z,) = 0 andF'(Z,) is
strictly positive hyperbolic numbers with such a specificattors unique.
As aresult, a statement ab@(t-univalent function on arbitrary product-type simply connected
domain can be translated to statement alitHunivalent function on the unit ball. We shall
examine the following class &C-univalent functions.
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Figure 1: The projection of? (Z;) = Z? in BCe;

F(2) = 22

7 N\

iD BC =, D?

Figure 2: The mapping of (Z) = Z?2 in BC = D?

Definition 2.3. Let F denote the set dBC-holomorphic,BC-univalent functions on the unit
disk Bgc normalized by the conditiof’(0) = 0 andF'(0) = 1. That s,

F = {F : Bgc — BC : FisBC-holomorphic andC-univalent orBgc, F'(0) = 0, F'(O) =1}

Then it follows from [10, Theorem 10.5.2, page 208], that for evérg F has a bicomplex
Taylor series expansion of the form

F(Z)=Z+ A7+ ..., | Z|x = 1,

whereA,, € BC,n € N.
Now, we introduce the bicomplex Koebe function which is one of the most important member
of F. The Koebe function in complex plane is defined as:

(1-2)?

1 /1+2)" 1
4 \1—2z 4
wherez € C.

Then the bicomplex Koebe function is given as

K(z) =

AJMAA Vol. 20(2023), No. 1, Art. 3, 15 pp. AIMAA
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i81

1+, iey | BC,
= 1
BC,, &@)=i=
ey b €1

Hy (Zl) =[G (Zl)]z

. »),
IB(Cel ey B (Ce1

k() = 31H(z) -1]

1
[BCEI\(—OO, - Z]

whereZ € BC. Now,

K(Zlel + ZQGQ)

(2.3)

(2.4)

eq eq

BCe, \(—0,0]

Figure 3: The projection of<; (Z;) in BCe;

1/1+2\> 1
K2) = 1(—1_2) T
B A
- (1-2)

1 + (Z161 -+ ZQGQ))2 _
1-— (Z1e1 + ZQGQ)
1
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iD | BC =, D* =~ 14z iD | BC =, D?
T1-z i
77 TN |
D D
H(Z) = [6@2)P?
iD| BC =, D? iD| BC =, D?

K@) = FH@ - 1]

1
BC \(=c0, — -] BC \(-,0]
4
Figure 4: The mapping dBC-Koebe functionk (Z) in BC = D?

When we separate the idempotent parts of the above system, we get the two different systems,
one with the complex variablg, in the planeC(i)e; and other with the complex variabl in
the planeC(i)e,. Taking only the first idempotent components from(2.3) (2.4), we obtain:

1 (1+2\° 1
it = (z (%) - z)

From this, we find a real two-dimensional surfaceRh and Fid.8 shows its idempotent
projection onBCe;. Its projection orBCe; is quite similar.

The mapping ofK' (Z) = ; (%)2 — 1 in BC = D? is shown in Fig[|4. As in[[13, Fig 3],
planeD andiD are seen as lines, although they are real two dimensional planes.
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3. BC-MoBIUS INVARIANT CLASS F

In this section, we will studBBC-Mobius invariant function of clas%.

If F,G : Q = Qie; + ey € BC — BC beBC-holomorphic function. Then, for every
7 € Q, there existZ, € ; andZ, € ), such that
F(Z) = Fi(Zi)e+ Fy(Z3)e;
G(Z) = Gi(Z)er + Gay(Zs)ey
and so
(FoG)(Z)=(F10G1)(Z1)e + (Fy 0 Gy)(Z3)es,
whereF; o Gy : 2, — C andF;, o G5 : 25 — C are holomorphic functions.

Remark 3.1. F is not closed under addition. Here is the example:

Example 3.1.Let F(Z) = Z andG(Z) = {Z; so thatF,G € F. However,F' (Z) = 1 and

G/(Z) - ﬁ Then

/ !

F(Z)+G(2) = 1+

(1-2)
A A:
- =z

from which we conclude thdt' (Z) + G'(Z) = 0,if Z =1+1i, 1 —i, 1 +j, 1 —j. It follows
that F + G is not one-to-one g, hencel’ + G ¢ F.

Theorem 3.1. The classF is preserved under the followir§C-transformation:
(I) Rotation: If I € 7,0 € BC andG(Z) = e 1 F(¢l€), thenG € F.
(I1) Dilation: If F € F,0 <r <1andG(Z) = 1F(rZ),thenG € F.

Proof. (I): Let F' = Fie; + Fye, € F and also letS(Z) = ¢'®1Z1e; + €192 Z,e, andT'(Z) =
e 17 e, + e 192 7,e,. First, we have to show that : BC — BC is one-to-one. For this, let
7 = 71e1 + Zyes, Y = Yie; + Yse, € BC and suppose that
S(Z)=58(Y).
Then
€91 Z1e) + €92 Z5ey = €©1Ye; + €i®2Y2e_2 .
<= (9 + €192ey)(Z1€) + Zoey) = (e91e; + €9%ey)(Yie, + Yaes)
<~ 2161 + Zzeg = }/181 + }/282
— Z=Y.
Therefore,S is one-to-one. Similarly/’ : BC — BC is one-to-one. Now,
G(Z) = e PF(°2)

= €7i®1F1 (€i®121)91 -+ €7i®2F2(€i@2Z2)62

= (Tl o Fl o Sl)(Zl)el + (TQ e} FQ 9] SQ)(ZQ)GQ.
Since, (17 o F} 0 51)(Z1) and(T5 o F, o S,)(Z,) are one-to-one mapping, séeé [7, Theorem 5,

page-6]. So(Z(7) is one-to-one mapping. Thus we conclude thas BC-univalent inBp.
Now,

G (Z) — 6—i91 . ei@l . Fll (6i91 Zl)el + €_i®2 . €i®2 . Fl' (ei@222)e2
= F(e®12)e; + F, (92 Z,)e,.

AJMAA Vol. 20(2023), No. 1, Art. 3, 15 pp. AIMAA
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Since, F, (¢©1 Z,) and F,(e1©2 Z,) are holomorphic, se€][7, Theorem 5, page-6]. We conclude
that, G is alsoBC-holomorphic inBgc. Also, G(0) = e ©1F;(0)e; + e ©2F5(0)e, = 0 and
G'(0) = Fy(0)e, + Fy(0)ey = e, + e, = 1. ThenG € F.

(): Let F € Fand0 < r,7y < 1. SupposeS(Z) = riZie; + ryZse, andT(Z) =
Zie) + Z2e,. Then clearlyS, T : BC — BC are one-to-one. Now,

G(z) — %F(rZ)

1 1
= —Fi(rnZ))e; + —Fy(raZs)es
(& T2

= (Tl 0] Fl @) Sl)Zlel + (T1 ¢} Fg @) SQ)ZQGQ.

Clearly, G(Z) is a composition of one-to-one mappings, we conclude ¢ha BC-univalent
on Bpc.
Now,

1 / 1 ,
G(Z) = —-rn-Fi(nZie + T Fy(roZs)ey

™ 2
= F{(lel)el + FQI(TQZQ)QQ.

Since,Fl' (r1Z1)ey andFQ’(rQZQ)eQ are holomorphic. Sai is BC-holomorphic onBgc. Also,
G(0) = £Fi(0)er + £ Fy(0)e; = 0 andG' (0) = Fy(0)e; + Fy(0)ey = e; + e, = 1. Then
GeF.

We have three types of conjugations in bicomplex;-conjugation,f-conjugation anck-
conjugation. By the combination of these three conjugations we get nine different conjugation.
From those nine combination of conjugations, class preserved under three conjugations and
is not preserved under six conjugations. This concept is explored in the following theorems:

Theorem 3.2.Let H(F) = {F(Z),(F(Z)*)*,(F(Z)")!} be a class of different combinations
of conjugations. I' € F andG(Z) € H(F), thenG € F.

Proof. If F € F,G(Z) = F(Z),andW (Z2) = Z = Z e, + Zse;, thenW : BC — BC is
clearly one-to-one.
Now,

G(Z)

I
=
N

= (Wl o Fl o Wl)(Zl)el + (W2 ¢} FQ o Wg)(Zg)eg.

Since(W; o Fy o W1)(Z1) and(Ws o Fy o W5)(Z5) are one-to-one from usingl[7, Theorem 5,
page-6], we conclude th&t(7) is a composition of one-to-one mapping,&as BC-univalent
onBgc. SincelV (Z) is notBC-holomorphic orBgc, SO we cannot simply use the assumption
that a composition oBC-holomorphic functions i8C-holomorphic. Instead, we observe that
the BC-Taylor series oft’, namely

(3.1) 7+ i A 2"

n=2

AJMAA Vol. 20(2023), No. 1, Art. 3, 15 pp. AIMAA
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has a radius of convergence 1, se€ [10, Theorem 10.5.2, page-208]. With the uniform conver-
gence on every closed digK|, < r < 1, theBC-Taylor series/(3]1) convergeskiZ), V | Z | <
1. It follows that theBC-Taylor series

(3.2) Z+> A"

n=2
has radius of convergence 1 and thus|(3.2) definé&holomorphic function ogc. Hence,
we conclude that

GZ)=F(Z) =2+ AZ + A2 +..= 2+ A 2% + A, 7 + ...
is BC-holomorphic orBgc with G(0) = 0 andG’(0) = 1. Thus,G € F.
Similarly, we can show that fa& (Z2) = (F(Z*))*, G(Z) = (F(Z")), G € F. 1
Theorem 3.3.Supposd (F) = {F(Z*), (F(Z")), (F(Z))*, (F(Z")*, (F(Z))t and(F(Z*))}
be a class of conjugations IBC. If ' € F andG(Z) € I(F), thenG ¢ F.
Proof. Supposéd” € F andG(Z) = F(Z*) andW (Z) = Z* = Zie, + Z;e; andS(Z) = 7 =

Z1ey + Zse,. ThenW, S : BC — BC are clearly one-to-one.
Now,

G(Z) = F(Z%)

Since(S; o Fy o W) (Z;) and (S, o Fy 0 W5)(Z5) are one to one mappings. Thus, we conclude
thatG is BC-univalent onBgc.

SinceW (Z7) is not BC-holomorphic inBgc, so we cannot simply use the assumption that a
composition ofBC-holomorphic functions i8C-holomorphic. Now,

G(Z2)=F(Z*) = 2"+ A(Z*)2 + As(Z*)3 + ... = ZT + Ag(Z1)? + As(Z)3 + ...
is notBC-holomorphic inBgc. So,G ¢ F.
Similarly, we can show that fak(2) = (F(Z1)), G(Z) = (F(Z))*, G(Z) = (F(Z"))*,G(Z) =
(F(Z)tandG(Z) = (F(Z*))!, G ¢ F. Therefore, these six conjugation is not preserved the
classF.

Theorem 3.4. The classF is preserved under the followirgC-transformation:

Z+Zo _
(I) Disk automorphism: IfF € F andG(Z) = F§1<1_§%>F$Z)) for any |Z,[x < 1, then
GelF.

(Il Range transformation: Iff' € F, & : F(Bpc) — BC is BC-holomorphic andBC-
univalent onF'(Bgc) and

_ (20 /)(2) - 2(0)
thenG € F.
(111) Omitted value transformation: If" € F with W — F(Z) ¢ NC,,
WF(Z)
7y = — 7
¢(2) W —F(Z)
thenG € F.

AJMAA Vol. 20(2023), No. 1, Art. 3, 15 pp. AIMAA


https://ajmaa.org

12 MOHD ARIF, AMJAD ALI, RAJAT SINGH* AND ROMESH KUMAR

Proof. (I): Let F € F andW (Z) = IZ;%’ be theBC-Mobius transformation which maps the
unit diskBgc BC-conformally onto itself WitV (0) = Zy = Z,1e1 + Z,2€5. SinceZ, € BC,

we conclude that
(Wi (Zy)) — Fi(Z,, 1) Fy(Wa(Zs)) — Fo(Z,2)

G Z — , /
) = 12D F (Zon) (1~ 1 Zoa) F' (Z0)
is BC-univalent onB; ; x B, » with G(0) = 0.
Furthermore,
G(2) = Wi(Z)Fy(Wi(Z4)) Wy (Z2) Fy (W2(Zz))) e

(= 1ZoaDF1(Zon) " (L= 1Zoa) Fy(Zos
FL(Wi(Zy)) . Fy(Wa(Z,))
(1= Zo1Z0)2F(Zon) ' (1= Z02Z0)?Fy(Zos)

so thatG is BC-holomorphic omBgc = By ; x B, with G'(0) = 1. Thus,G € F.
(I): SupposeF’ € F and letd : F(Bgc) — BC beBC-holomorphic andBC-univalent on

€2,

IJ;’(IBBC).

_ (2o F)(Z) — 2(0)

‘= T
_ (P 0 F1)(Z1) — <I>1(0)e N (Py 0 Fy)(Zs) — <I>2(O)e
P;(0) 1 P, (0) B
thenG is clearlyBC-univalent onBgc with G(0) = 0.
Furthermore, / , , ,
¢(7) = F1(Zl)q’1(F1(Zl))el F5(Z5) P5(F2(22)) .

@' (0) D,(0)
so thatG' is BC-holomorphic orB, ; x B, » with G’(O) =1.Thus,G € F.
(I): Suppose that” € F with W — F(Z) ¢ NC, and let
WiFi(Zy) WoFy(Zs)
(S5} €9
Wl _F1<Zl) WQ_F2(Z2)

Clearly, T(I') = WV,Vfl e + ‘Z{F? e, is one-to-one iy # W, andTl’y # W,. Then it follows

thatG( ) (Tl o F1>(X1)el + (T2 o FQ)(XQ)GQ is BC-univalent OrﬂBl 1 X By 2.
Furthermore,

G(Z) =

, W2F|(Z,) W2F,(Z,)
G (Z)= e €,
=R - RZ)P
and sincéV — F(Z) ¢ NC,, it follows thatG is BC-holomorphic onBgc with G'(0) = 1.
ThusG € F.
1

Lemma 3.5. If F' be BC-holomorphic onBgc: with NC, ¢ F(Bgc), then there exist afBC-
holomorphic function on BC with H? = F.

Proof. LetG( ) be any bicomplex number withep{G(0)} = F(0). For any othedV € By,

let G(W) = G(0) + [, & al 71dZ, wherey : [0, 1]p — BC is any curve fron to I¥'. From the

fundamental theorem of mtegral calculusBft [14, Theorem 33.1, page 222], it follows that
, P (W)

(3.3 G (W)= FaT)”
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Note thatF(Z) ¢ NC, for Z € Bgc so thatG' (Z) is well defined for allZ € Bgc showing that
G is BC-holomorphic orBgc, it follows from (3.3) that

FeO (W) = [F(W)e @] e + [R(Wa)e 07)] e,
_ [F{(Wl)e‘Gl(Wl — G (Wy)e GV Fl(Wl)]

+ [y (Wa)e 00— G (Wo)e " (i) e
= e W [F{(Wl) - Gi(Wl)Fl(Wl)} e

o= Ga(W2) [FQ’(Wz) — FQI(WZ)FQ(WZ)} €
= 04+0=0.
The equatior{ Fe=¢ ] (W) = 0 implies thatF(W) = e~ ¢W),

Hence, the proof is complete if we tak&(Z) = exp{ “)} so thatH is BC-holomorphic on
Bgc with HQ( ) (Z) VZ € Bge. 1

Lemma 3.6. Suppose&’ € F. Then for every/ € Bgc, there exist an odd functiofl € F
with H*(Z) = F(Z?).

Proof. If F' € F, sinceF is BC-holomorphic function, we can write
F(Z) = Fi(Z))e, + Fy(Z)es.
ThenBC-Taylor series oft” can be written as
F(Z) = Fi(Z))e1+ Fy(Zs)e;

= <Z1 —+ Z ALnZ?) e + <Z2 + Z A27nZ§L> €9
n=2

n=2

= (Zlel + Zzeg) ((1 + ZAl,nZ{L> e + (1 —+ Z AQJLZ;L) 82> .
n=2

n=2
Therefore,

@ = (1 + ;AMZ?) e + (1 + ;AMZQ) (<

is non-zero, non-null-con&C-holomorphic function oBgc. Then by Lemma 3|5, there

exist anBC-holomorphic function on By such that
F(Z
c(z) =2,
so their idempotent decomposition form is
2\G*(Z))ey + ZoGP(Zy)ey = Fi(Z))ey + Fa(Zs)es.
If we defineH (Z) = Z,G1(Z})e; + Z2Go(Z3)e,, then clearlyH is odd function and
HX(Z) = ZiGi(Zi)e\ + Z3G5(Z3)ey
= Fi(Z)er + Fy(Z3)es

Also, H(0) = 0andH'(0) = G(0) = 1.
Now, suppose that’, Z € Bpc and letH(Y) = H(Z). Then from theBC-univalence ofF’
implies thatY’? = Z2. So, there are two case arise that eitder Z orY = - Z. If Y = —Z,
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thenH(Y) = —H(—Z). But we know thatH is odd function, it contradicts the assumption
that H(Y) = H(Z). So we conclude that = Z. HenceH € F. i

Theorem 3.7. The classF is preserved under the square radBC-transformation that is, if
F e FandG(Z) =/ F(Z?),thenG € F.

Proof. Suppose that’ € F and
G(Z) = F(Z?)

1 1
= (Fl(Z%))Zel‘i‘ (FQ(Z%))2e2.
In order to defing, we must care some point. Sing&€~Z) = 0 ifand only if Z = 0, so it is
possible to choose a single-valued branch of the square root by writing

1

G(Z) = (Fi(Z)%er+ (Fa(Z2)) ey

00 % 9]
= <Zl2 -+ Z Al,nZ12n> e + (Zg —+ Z A27nZ22n) (SH)
n=2

N

n=2
_ <21 +) Bl,nzf"—1> el + <22 +) BQ,HZQ%L*) e
n=2 n=2

for |Z1],|Z,| < 1 for some coefficients3, ,,, B»,, € C. Then by Lemma 3|6(7(Z) is BC-
univalent onBgc = B, ; x By 2 and that7(Z) is alsoBC-holomorphic orBpc with G(0) = 0
andG'(0) = 1. Thatis,G € F and the proof is completa.

4. CONCLUSION

In BC unlike inC, there are three types of conjugations. We see that in the bicomplex univa-
lent function theory, there is a contrast in the closure of conjugatioB€edinivalent functions.
In this paper, we study the behavior and geometric structuBgetinivalent functions. We are
also able to explore an aspectdd real surface, which is the cartesian product of lines that are
playing role in the process of construction of Koebe function. We conclude that this theory will
form a base for geometric function theory and bicomplex dynamics.
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