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ABSTRACT. In 1914, F.W. Lanchester proposed several mathematical models based on differ-
ential equations to describe combat situations [34]. Since then, his work has been extensively
modified to represent a variety of competitions including entire wars.Differential Lanchester
type modelshave been studied from many angles by many authors in hundreds of papers and
reports. Lanchester type models are used in the planning of optimal strategies, supply and tac-
tics. In this paper, we will show how these models can be studied from aviability theorystand
point. We will introduce the notion ofwinning coneand show that it is a viable cone for these
models. In the last part of our paper we will use the viability theory of differential equations to
study Lanchester type models from the optimal theory point of view.
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2 G. ISAC AND A. GOSSELIN

1. I NTRODUCTION

TheLanchester theory of combatowes its name and origin to F.W. Lanchester. During the
first World War, in 1916, he published his bookAircraft in Warfare: The Dawn of the Fourth
Arm [34] in which he first introduced the use of differential equations to the mathematical
modelling of combat. For an excellent overview of the basis of the Lanchester theory of combat,
the reader is referred to P.R. Wallis,Recent Development in Lanchester Theory[46].

Following the second World War, it became apparent that advances in technology was having
a major impact on the way battles were fought. In an attempt to better understand the new
dynamic of the battle field, what is now know as the Lanchester theory of combat gained rapidly
in popularity and attracted the interest of many researchers generating hundreds of publications
and unpublished technical reports. James G. Taylor published a very exhaustive and detailed
synthesis of the work done prior to the early 1980’s in his bookLanchester Models of Warfare
[45].

Up until now, the research work carried out in this field of study has been done using the tools
provided by classical analysis. As such, the theory has been explored to determine the existence
of solutions along with their properties and behavior. Of particular interest, efforts have been
made to develop some time-to-end-of-battle measures. See for example the results presented by
[17], [20], [27], [31], [44], [47] to only name a few.

As the Lanchester type models were developed, numerous applications to historical battles
have been attempted [8], [10], [11], [12], [16], [19], [18], [22], [25] for example. These verifi-
cation of the validity and/or applicability of the various models to actual campaigns highlighted
a major difficulty presented by such models.This difficulty arises from the evaluation of the
ever elusiveLanchester coefficients. These coefficients express, in some form or other depend-
ing on the specific model, the ability of a combatant to inflict damage to its opponent (seeThe
Lanchester Attrition-Rate Coefficientby Seth Bonder[6] and followed up by C. Barfoot[5]).
The problem is multi-fold, the nature of combat being as it is, the collection of data is at best
incomplete and imprecise. Additionally, these coefficients vary through time and conditions in
a manner hard to quantify.

Throughout the evolution of the theory of combat, the analysis generated laws on the pro-
gression of combat such as theLinear Law, theSquare Law[34] and theLogarithmic Law[39]
among others (see Taylor [45] for further details). The validity of this analysis in respect to the
coefficients as well as the laws of combat it introduced is often criticized [23], [1], [6], [24],
[29], [32] to cite a few. Recently, Hembold [28] presented a very à propos paper on this issue
highlighting what he called theConstant Fallacy. Validation of the models have repeatedly
failed to prove the correctness of these laws of combat.By our method presented in this pa-
per, and based on viability theory, it is not necessary to to use such laws as linear, square or
logarithmic.

The interest for Lanchester type models is ongoing. They have found applications in numer-
ous fields such as economy [38], biology and evolution theory [21]. There is some interesting
work carried out using the Nash equilibrium strategies [43] in the context of armament race and
control [35] [41] as well as some publications studying Lanchester models from a dynamical
systems angle [13]. There is now an increased interest in the application of Lanchester type
models not only to economy but also to problems dealing with competitive aspects.

In view of all that is presented above, in this article we are proposing some additions to the
Lanchester theory of combat and bring to bear the tools of non-classical analysis. As a first
step, we show how differential Lanchester type models can be studied from aviability theory
point of view. We base our work on the theory presented by J.P. Aubin[4]. To this end, we
introduce the notion ofwinning coneand explore how this cone is viable for many models.
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V IABILITY AND LANCHESTER TYPE MODELS, DIFFERENTIAL SYSTEMS 3

As a last step, we take the analysis of the Lanchester type differential models to its natural
progression into the domain of optimal control. In this last section, we will introduce the notion
of optimal control by viabilityand explore its application to the Lanchester theory of combat.

2. PRELIMINARIES

In this article we will denote by(H, 〈· , ·〉) an arbitrary Hilbert space and byK a closed
convex cone inH. Unless otherwise stated, the Hilbert space under consideration will be the
Euclidean space(Rn, 〈· , ·〉). We recall that a convex setΩ ⊆ H is a subset ofH such that

x, y ∈ Ω =⇒ (1− λ)x + λy ∈ Ω, for anyλ such that0 < λ < 1.

A closed convex coneK ⊆ H is a closed subset having the following properties:

(1) K + K ⊆ K,
(2) λK ⊆ K, λ ∈ R+.

If in addition,K satisfies the property thatK ∩ (−K) = 0 then we say thatK is apointed cone.
The study of viability will require the application of the notion of contingent cone of which

we now give a definition.

Definition 2.1 (Contingent Cone). Let X be a Hilbert space,K ⊂ X a non-empty subset and
B =

{
x ∈ X

∣∣ ‖x‖ ≤ 1
}

. We say that the subset

TK(x) =
⋂
ε>0

⋂
α>0

⋃
0<h<α

(
1

h
(K − x) + εB

)
is thecontingent cone(or theBouligand’s contingent cone[7]) to K at the pointx ∈ K.

In the case whenK is convex, we callTK(x) the tangentcone toK at x. Since this article
studies the viability of dynamical systems using convex cones as the viable subset, we give the
following characterization ofTK(x).

Theorem 2.1. Given a convex coneK, a subset of a Hilbert space,x ∈ K and TK(x) the
contingent cone atx satisfying definition (2.1) then

K + Rx = K −R+x ⊂ TK(x)

furthermore

(2.1) K −R+x = TK(x).

Proof. Lets first prove thatK + Rx = K −R+x. As K is a cone,λx ∈ K for λ ∈ R+ and,
therefore

R+x ⊂ K

K + R+x ⊂ K + K ⊂ K, asK is a cone

so

(2.2) K + R+x ⊂ K.

By decomposingR into its positive and negative partsR+ and−R+ respectively,

(2.3) K + Rx = (K + R+x) + (K −R+x)

it is obvious thatK −R+x ⊂ K + Rx. Substituting equation (2.2) in the above:

K + Rx ⊂ K + (K −R+x) ⊂ K −R+x

which concludes the proof of the first equality.
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4 G. ISAC AND A. GOSSELIN

To prove thatK −R+x ⊂ TK(x), lets considerSK(x) =
⋃

h>0

(
K−x

h

)
and the fact that when

K is convex, it is known thatSK(x) = TK(x) (a proof can be found in Aubin and Frankowska
[3] or Isac [30]). Starting with the definition ofSK(x) and remarking thatK is a cone implies
K
h

= K for h > 0, we observe that

SK(x) =
⋃
h>0

(
K − x

h

)
=

⋃
h>0

(
K

h
− x

h

)
=

⋃
h>0

(
K −

(
1

h

)
x

)
=

⋃
t∈R+

(K − tx) , t ≡ 1

h
, t ∈ R+

= K −R+x.

SinceK − R+x = SK(x) ⊂ SK(x) = TK(x), we can deduce thatK − R+x ⊂ TK(x) and
K −R+x = TK(x). �

3. DIFFERENTIAL L ANCHESTER TYPE MODELS

Since the publication of Lanchester’s book in 1916, numerous variations based on the original
ideas have been proposed, see for instance the list presented by James Taylor [45]. All these
models are based on a modeling that takes roots in defining the rates of variation in strength of
opposing forces. These rates can be separated in three different categories as follows:

(1) OLR . Operational loss rate;
(2) CLR . Combat loss rate; and
(3) RR. Reinforcements rate.

The OLR represents the losses caused by non combat activities present in any conflict. The loss
of a soldier to a driving accident is an example of such losses. The CLR are losses directly
related to combat while the RR is the rate at which forces are added or removed from the
theater of operations. The generic model of Courtney S. Coleman [15] is then represented by
the differential system: 

dx1

dt
= OLRx1 + CLRx1 + RRx1

dx2

dt
= OLRx2 + CLRx2 + RRx2 .

A conventional combat scenario is one where both forces are using conventional warfare
tactics and could be modelled with:

(CONCOM)


dx1

dt
= −ax1(t)− bx2(t) + P (t)

dx2

dt
= −cx1(t)− dx2(t) + Q(t)

wherea, b, c andd are non negative loss rate constants whileP (t) andQ(t) are reinforcements
rates typically in numbers of combatant per day. In this model, the OLR forxi is cste×xi while
its CLR iscste×xj. That is to say that the larger a force is the bigger its operational losses and,
the larger its enemy is, the bigger are its combat losses.
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The above models assumes that both forces are visible to its enemy [34] [36]. If, on the other
hand, both forces use guerilla type techniques, their elements are harder to detect and their
combat loss rates (comparable to random hits of blind gun fire through a wooded area) become
proportional to their own size as well as the enemy’s. A guerilla warfare model is

(GUERCOM)


dx1

dt
= −ax1(t)− bx1(t)x2(t) + P (t)

dx2

dt
= −dx2(t)− cx1(t)x2(t) + Q(t)

where the terms inx1(t)x2(t) are the CLR.
If we take for example the Vietnam conflict, one side was using conventional tactics while

the other was taking its tactics out of guerilla warfare. Mixing both the above models where the
conventional side isx1, we obtain:

(V IETNAM)


dx1

dt
= −ax1(t)− bx2(t) + P (t)

dx2

dt
= −dx2(t)− cx1(t)x2(t) + Q(t).

We will know review the various models introduced since, and including the work done in 1916
by Frederick W. Lanchester.

3.1. Various Lanchester type models.

3.1.1. Aimed Fire. When F.W. Lanchester introduced his model, he remarked that as a direct
consequence of the greater range that recent advances in weaponry permitted, it was then possi-
ble for one force toconcentrateits firepower in a battle. He considered two opponents, referred
to asx1 andx2, and stipulated that each forces loss was directly proportional to the opponents
numbers and their ability to destroy. In this model, the coefficientsa andb represent each oppo-
nentskilling ability. If the forces involved are homogeneous than the coefficients can be viewed
as the destructive ability of one individual. The model introduced in 1914 [33] is expressed
mathematically by 

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1

wherea, b > 0.

3.1.2. Area Fire. This model is also one of the first ones introduced by Lanchester [33]. As
can be extrapolated from its title, it is representative of the case when the exact position of
one opponent’s is unknown but a general idea of his location is available. For example, forces
hiding in a wooded area as seen from artillery. In such a case, the coefficients can be deemed
to be related to the ratio of the area of effectiveness of each round fired and the density of
enemy forces. As a result of the application of this model, the attrition rate of one force will be
proportional to both the number of assailants as well as its own (the more there is the higher the
density in the area). Mathematically,

dx1

dt
= −ax1x2, x(0) = x0

dx2

dt
= −bx1x2

wherea, b > 0.
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6 G. ISAC AND A. GOSSELIN

3.1.3. Brackney.In 1959, H. Brackney [9] introduced a model that is based on a combination
of the Aimed Firemodel in 3.1.1 and theArea Fire model of section 3.1.2. The intent is to
consider the case where asymmetric forces are at play such as when a convention forcex1

meets with a guerilla forcex2. Typically, the guerilla forces are somewhat aware of the location
and whereabouts of the conventional forces justifying the use of an aimed fire model for the
attrition of the conventional forces. On the other hand, the guerilla forces are small in numbers
and their location is often only known to be within a general region justifying in this case an
attrition rates modeled on area fire. Brackney’s model is expressed by

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1x2

wherea, b > 0.

3.1.4. Peterson.At first glance, this model appears to be non applicable and only introduced for
the sake of completeness as the attrition rate of one force is independent of the other. However,
it has been noticed that at the onset of conflict, the casualty rates strangely appear to be more a
function of one’s size than of its opponent. In an attempt to explore this initial stage of battle,
R. Peterson [39] introduced this model:

dx1

dt
= −ax1, x(0) = x0

dx2

dt
= −bx2

wherea, b > 0.

3.1.5. Morse and Kimball.All the previous models attempted to provide a description of the
casualty rates within the context of an engagement. However, military operations are not com-
posed strictly of losses directly caused by the opponent. In fact, many losses are caused by the
operations themselves (i.e. vehicle accidents, etc...). P. Morse and G. Kimball [36] put forth
the hypothesis that losses from both combat and related operations contributed to the whole.
The model is based on the operational loss ratio being proportional to one’s numbers while the
combat loss ratio is proportional to the size of its enemy.

dx1

dt
= −ax2 − βx1, x(0) = x0

dx2

dt
= −bx1 − αx2

wherea, b, α, β > 0.

3.1.6. Coleman.This models introduces another aspect of battle: the reinforcements. In addi-
tion to losses related to combat and operations, the number of combatants involved in a battle
also varies when reinforcements are brought to bear or when elements are withdrawn. As such,
the model presented by Coleman [14] has an additional component to the expression of the
variation of each forces.

dx1

dt
= −ax1 − bx2 + Rx1 , x(0) = x0

dx2

dt
= −cx1 − dx2 + Rx2
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wherea, b, c, d > 0 andRx1 , Rx2 can be either positive or negative and are generally considered
to be step functions .

3.1.7. Hembold. In 1964, R. Hembold [26] put forward the idea that when two forces meet, if
there is a sufficiently large difference in size, there is what he termed aninefficiency of scale. In
other words, attempting to kill a fly with a sledge hammer introduces some inefficiencies. To
compensate for this in the Aimed Fire model, he introduced two mappings that are a function
of the ratio of the opposing forces numbers. The resulting model is

dx1

dt
= −ag(

x1

x2

)x2, x(0) = x0

dx2

dt
= −bh(

x2

x1

)x1

wherea, b > 0 while g(.), h(.) ≥ 0 andg(1) = h(1) = 1.

3.1.8. Weiss.When H.K. Weiss introduced his models [48], he approached the issue of the
effect that scale has on the rates from a vulnerability point of view. He suggested that the
dominant element affecting losses when a unit’s size grows in proportion to the opponent is its
vulnerability. His model became

dx1

dt
= −a(

x1

x2

)1−W x2, x(0) = x0

dx2

dt
= −b(

x2

x1

)1−W x1

wherea, b > 0.

3.1.9. Schreiber.Col T.S. Schreiber [42] was interested in a model that looked at command
and control. He thus put forth a model where theefficiency of commandcame to play through
the introduction of command efficiency constantsex1 , ex2 ∈ [0, 1]. These constants represent
the effectiveness of intelligence, command and control to bring to bear the power of their force
directly on its enemey. A value of1 signifies that fire power is never wasted and always aimed
directly at its enemy while a value of0 represents "blind" firing. With a command efficiency of
1 Schreiber’s model becomes the same as theAimed Fire model and with a command efficiency
of 0 it becomes theArea Fire model. His model can be represented by

dx1

dt
= −a

{
x1x2

x1,0 − ex2(x1,0 − x1)

}
, x(0) = x0

dx2

dt
= −b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
wherea, b > 0 andex1 , ex2 ∈ [0, 1].

3.1.10. Richardson’s model of Arms Race.In the first part of the 20th century, L.F. Richardson
[40] introduced the Lanchester type models to the arms race between nations where the variables
x1(t) andx2(t) represent their respective armament levels (often expressed in dollar value). His
model of the race between two nations is:

dx1

dt
= −ax2 − βx1 + g, x(0) = x0

dx2

dt
= −bx1 − αx2 + h

wherea andb are termeddefence coefficientsand are an expression of one nation’s response
to threat from the other. On the other hand, thefatigueor restraint coefficients,α andβ, are
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8 G. ISAC AND A. GOSSELIN

an expression of the restraining influences, internal or external, exerted on a nations towards
its disarmament. All four of these coefficients are considered to be positive. The remaining
constants,g andh, express the agressive tendency of the nations. A posive value is significant
of a nation that would tend to acquire weapons even when no threat is present.

All previous models are given with constant coefficientsa, b, α, β, c, d, · · · . In all cases, re-
lated models are also considered by replacing these coefficients with variable onesa(t), b(t), α(t), β(t), · · ·
wherea(t), b(t), α(t), β(t), · · · > 0,∀t.

4. V IABLE SOLUTIONS FOR A DIFFERENTIAL SYSTEM

In order to study the Lanchester models we must define what aviable solution consists of.
In a nutshell, we will define a closed subset of state space,K, of the system to represent be the
set ofacceptablestatus of our combat equations. That closed subset will be consideredviable
under the differential system if for every initialx0 ∈ K, there exists at least one solution to
the system starting at that point and remaining inK for some time. More formely, using the
definitions given by J.P. Aubin [4]:

Definition 4.1 (Viable function). Let K be a subset of a finite dimensional vector spaceX. We
shall say that a functionx(·) from [0, T ] to X is viable inK on [0, T ] if ∀t ∈ [0, T ], x(t) ∈ K.

Consider the following differential equation forf : Ω → X, Ω ⊂ X.

(4.1) d(x(t))/dt = f(x(t)), x(0) = x0 ∈ U.

Definition 4.2 (Viability and Invariance). Let K be a subset ofΩ. We shall say thatK is locally
viableunderf if for any initial statex0 of K, there existT > 0 and a viable solution on[0, T ]
to differential equation (4.1) starting atx0. It is said to be (globally)viableunderf if we can
always takeT = ∞.

The subsetK is said to beinvariant underf if for any initial statex0 of K, all solutions to
the differential equation (4.1) are viable inK.

Throughout the remainder of this article since we are concerned with Lanchester type combat
models, givenK ∈ Rn and a mappingx(t) : R+ → Rn, we will say thatx(t) is viable inK
wheneverx(t) ∈ K, ∀t ∈ R+.

The Nagumo theorem [37] provides an excellent tool to verify the existence of solutions that
are viable within a subsetU of a Hilbert spaceX based onTU(x), the contingent cone ofU at
x.

Theorem 4.1(Nagumo). LetU be a closed subset of a Hilbert spaceH andf be a continuous
map fromU to H, f : U → H, such that

(4.2) ∀x ∈ U, f(x) ∈ TU(x).

Then for allx0 ∈ U , there existsT > 0 such that equation (4.1) has a viable trajectory on
[0, T ].

5. W INNING CONES

As presented in section 4, the Nagumo theorem gives viability conditions in relation to the
contingent cone (or tangent cone in the case of a convex subset) at each viable pointx.

As a usefull tool in viability analysis of Lanchester type models we will use the notion of
winning cone. We give now the definition ofwinning conein the general case since this notion
can have other interesting applications in the theory of dynamical systems.

Let E be a real vector space andKα, Kβ ⊂ E be closed convex cones. Let “≤” be the
ordering defined by the convex coneK≤ ⊂ E, i.e. x ≤ y ⇔ y − x ∈ K≤.
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V IABILITY AND LANCHESTER TYPE MODELS, DIFFERENTIAL SYSTEMS 9

Figure 1: Viability defined byK1

Definition 5.1 (Winning cone). Consider the vector spaceE×E. We say that the closed convex
poined coneK0 is awinning coneif it has the following properties:

(1) K0 ⊂ Kα ×Kβ; and
(2) (x, y) ∈ K0 ⇒ x ≥ y, where “≤” is the ordering defined byK≤.

The above notion was termedwinning coneas for all points within such a cone, one compo-
nentdominatesthe other. In many practical problems we haveE = Rn andKα, Kβ, K≤ = Rn

+.
In our case, the analysis of Lanchester type models of combat, we will haveE = Kβ = R,
Kα = K≤ = R+, such that whenever(x1, x2) ∈ K0 we have thatx1 dominates his oponentx2.

As a first analytical step, we define the fourwinningcones where the first three are selected
on the basis that they provide a set in which combat power of one opponent always dominates
the other and a fourth cone that guarantees no loss of advantage. For each of these conesK we
determine the tangent coneTK(x) associated with everyx = (x1, x2) ∈ K, and the conditions
it imposes inR2 on the dynamical system

dx1

dt
= f1(x), x(0) = x0

dx2

dt
= f2(x)

wheref(x) =
(
f1(x), f2(x)

)
.

5.1. Winning cone K1. The first cone selected, see figure 1, is the most intuitive one. The
combat power (i.e. resources available to destroy the enemy) of those facing each other in a real
armed conflict cannot be negative. Furthermore, as we wish to select the viable solutions where
one, lets choosex1, always dominates the other,x2, we obtain the following definition for the
first viable set:

(5.1) K1 :=
{
x ∈ R2 | (x1 ≥ x2) and(x2 ≥ 0)

}
.

Prior to determining the tangent cone associated with each point inK1 let us first note the
well known fact that forx ∈ int(K1) the tangent coneTK(x) = X, see for instance Aubin
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10 G. ISAC AND A. GOSSELIN

Figure 2: Viability defined byK2

and Celina [2]. As a consequence, the problem is reduced to findingTK(x) whenx is in the
boundary ofK1.

5.1.1. Case:x = 0. This is the rather trivial case whereTK1(0) = K1 since

(5.2) TK1(0) = K1 −R+0 = K1 = K1.

5.1.2. Case: “Upper” boundary.By “Upper” boundary, it is meant the half-linex1 = x2,
wherex1 > 0. To determine the setTK1(x) we consider

−R+x =
{
x ∈ R2 | x1 = x2, x1 ≤ 0

}
−R+x + K =

{
x ∈ R2 | x1 ≥ x2

}
= −R+x + K1.

Therefore, in order forf(x) to be an element ofTK1(x) it must respect the condition

(5.3) f1(x) ≥ f2(x), x1 = x2, x1 > 0.

5.1.3. Case: “Lower” boundary.By “Lower” boundary, it is meant the half-linex2 = 0, where
x1 > 0. In a manner similar to the previous boundary,

−R+x =
{
x ∈ R2 | x2 = 0, x1 ≤ 0

}
−R+x + K1 =

{
x ∈ R2 | x2 ≥ 0

}
= −R+x + K1.

Therefore, in order forf(x) to be an element ofTK1(x) it must respect the condition

(5.4) f2(x) ≥ 0, x2 = 0, x1 > 0.

5.2. Winning cone K2. The second cone considered, see figure 2, can be viewed a natural
extension to the first cone presented in section 5.1. Remember that these cones are meant to be
used with Lanchester type models and, for these models, solutions to the system that cross the
x1 axis on the positive side are not only acceptable but desirable. To relax the conditions and
allow these desired solutions as part of the viable set, consider the following cone:

(5.5) K2 :=
{
x ∈ R2 | x1 ≥ |x2|

}
.
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Figure 3: Viability defined byK3

As for K1, the tangent cone atx ∈ int(K2) is TK2(x) = R2. All that then remains to examine
is the tangent cone at points on the boundaries ofK2.

5.2.1. Case:x = 0. Again, this is trivial andTK2(0) = K2 since

(5.6) TK2(0) = K2 −R+0 = K2 = K2.

5.2.2. Case: “Upper” boundary.Here the “Upper” boundary is the same half-line used for the
previous cone:x1 = x2, wherex1 > 0. To determine the setTK2(x) we consider

−R+x =
{
x ∈ R2 | x1 = x2, x1 ≤ 0

}
−R+x + K2 =

{
x ∈ R2 | x1 ≥ x2

}
= −R+x + K2.

Therefore, in order forf(x) to be an element ofTK2(x) it must respect the condition

(5.7) f1(x) ≥ f2(x), x1 = x2, x1 > 0.

5.2.3. Case: “Lower” boundary.Here the “Lower” boundary differs from the previous cone.
It is the half-linex1 = −x2, wherex1 > 0 and

−R+x =
{
x ∈ R2 | x1 = −x2, x1 ≤ 0

}
−R+x + K2 =

{
x ∈ R2 | x1 ≥ −x2

}
= −R+x + K2.

Therefore, in order forf(x) to be an element ofTK2(x) it must respect the condition

(5.8) f1(x) ≥ −f2(x), x1 = −x2, x1 > 0.

5.3. Winning cone K3. This third cone, see figure 3, is the least restrictive one wherex1

exceedsx2 without allowingx1 to fall below0, effectively disallowing solutions that intersect
the axisx2. Furthermore, this is thelargestcone satisfying Definition 5.1 withE = Kβ = R,
Kα = K≤ = R+ and we can writeK2 =

{
(x1, x2) ∈ Kα ×Kβ

∣∣ x ≥ y
}

. The subset ofR2

definingK3 is

(5.9) K3 :=
{
x ∈ R2 | x1 ≥ x2 andx1 ≥ 0

}
.
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Figure 4: Viability defined byK4

As for both previous cones, the tangent cone atx ∈ int(K3) is R2. Again, all that then remains
to examine is the tangent cone at points on the boundaries ofK3.

5.3.1. Case:x = 0. It is clear thatTK3(0) = K3 since

(5.10) TK3(0) = K3 −R+0 = K3 = K3.

5.3.2. Case: “Upper” boundary.Once more, the “Upper” boundary, is the same half-line used
in previous cones:x1 = x2, wherex1 > 0. To determine the setTK3(x) we consider

−R+x =
{
x ∈ R2 | x1 = x2, x1 ≤ 0

}
−R+x + K3 =

{
x ∈ R2 | x1 ≥ x2

}
= −R+x + K3.

In order forf(x) to be an element ofTK3(x) it must respect the condition

(5.11) f1(x) ≥ f2(x), x1 = x2, x1 > 0.

5.3.3. Case: “Lower” boundary.This “Lower” boundary is simply the half-linex1 = 0, where
x2 < 0 and

−R+x =
{
x ∈ R2 | x1 = 0, x2 ≥ 0

}
−R+x + K3 =

{
x ∈ R2 | x1 ≥ 0

}
= −R+x + K3.

Therefore, in order forf(x) to be an element ofTK3(x) it must respect the condition

(5.12) f1(x) ≥ 0, x1 = 0, x2 < 0.

5.4. Winning coneK4. This fourth and last cone, see figure 4, is somewhat different then the
previous ones as its definition is dependant on the starting pointx0. Thisgainingcone expresses
the desire to improve one’s position in reference to its opponent. The subset ofR2 definingK4

is

(5.13) K4 :=

{
x ∈ R2 | x1 ≥

x1(0)

x2(0)
x2 andx1 ≥ 0

}
.

Again, the tangent cone atx ∈ int(K3) is R2 while that at its boundaries is as follows.
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Winning cone(K) Points in K Conditions onf(x)

K1 x ∈ int(K1) f(x) ∈ R2

x = (0, 0) f(x) ∈ K1

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x2 = 0, x1 > 0 f2(x) ≥ 0

K2 x ∈ int(K2) f(x) ∈ R2

x = (0, 0) f(x) ∈ K2

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x1 = −x2, x1 > 0 f1(x) ≥ −f2(x)

K3 x ∈ int(K3) f(x) ∈ R2

x = (0, 0) f(x) ∈ K3

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x1 = 0, x2 < 0 f1(x) ≥ 0

K4 x ∈ int(K4) f(x) ∈ R2

x = (0, 0) f(x) ∈ K4

x1 = x1(0)
x2(0)

x2, x1 > 0 f1(x) ≥ x1(0)
x2(0)

f2(x)

x1 = 0, x2 < 0 f1(x) ≥ 0

Table 5.1: Tangent cones atx ∈ K

5.4.1. Case:x = 0. As for the previousWinning Cones, TK4(0) = K4 since

(5.14) TK4(0) = K4 −R+0 = K4 = K4.

5.4.2. Case: “Upper” boundary. In this case, the “Upper” boundary varies for each Cauchy
problem as it depends onx0. Points on this boundary are those meeting the two conditions:
x1 = x1(0)

x2(0)
x2 andx1 > 0. To determine the setTK4(x) we consider

−R+x =

{
x ∈ R2 | x1 =

x1(0)

x2(0)
x2, x1 ≤ 0

}
−R+x + K4 =

{
x ∈ R2 | x1 ≥

x1(0)

x2(0)
x2

}
= −R+x + K4.

Therefore, in order forf(x) to be an element ofTK4(x) it must respect the condition

(5.15) f1(x) ≥ x1(0)

x2(0)
f2(x), x1 =

x1(0)

x2(0)
x2, x1 > 0.

5.4.3. Case: “Lower” boundary.This “Lower” boundary is simply the half-linex1 = 0, where
x2 < 0 and the resulting tangent cone is the same as forK3.

−R+x =
{
x ∈ R2 | x1 = 0, x2 ≥ 0

}
−R+x + K4 =

{
x ∈ R2 | x1 ≥ 0

}
= −R+x + K4.

Therefore, in order forf(x) to be an element ofTK4(x) it must respect the condition

(5.16) f1(x) ≥ 0, x1 = 0, x2 < 0.

5.5. Compilation of conditions – Winning cones.The results of this section are important in
the further study of viable solutions. For easy reference, the various conditions generated on all
cones are presented in table 5.1.
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6. W INNING CONES FOR DIFFERENTIAL L ANCHESTER TYPE MODELS

In the past, one of the biggest difficulty in the analysis of combat through the use of Lanchester
type mathematical models has been the determination of the coefficients in each of them. The
problem is further amplified by the lack of data available and its lack of precision that is caused
by the unclear collection or recollection of information during a conflict. This lack of clear per-
ception of the ongoing battle is often referred to as thefog of war. To avoid this slippery ground,
our approach is based on the application of viability theory where we establish conditions on
the Lanchester coefficients that ensure viable solutions. Through careful definition, the viable
sets selected in section 5 guarantee one’s victory against his opponent.

For each model presented, we will derive a set of conditions on the coefficients to satisfy
the viability requirements listed in table 5.1 such that once a trajectory of a solution to the
differential equation enters the viable set, it never leaves it again .

6.1. Aimed Fire. As we recall, from section 3.1.1 the model introduced in 1914 is expressed
mathematically by 

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1

wherea, b > 0. To link the models with the differential equation given earlier, the right hand
side of equation (4.1) is defined by

f(x) =

{
f1(x) = −ax2

f2(x) = −bx1

wherex = (x1, x2).

6.1.1. Winning cone is defined byK1. From the tangent cones defined in table 5.1, it is clear
that for points belonging to the interior of the cone,x ∈ int(K1), any values fora and b
are viable. Similarly, sincef(0) = 0 for any a, b > 0 we havef(x) ∈ K1 for any choice
of coefficients. It remains to examine the coefficients required to meet the conditions of the
Nagumo theorem at the cone’s boundaries. For theupperboundary, we must have

f1(x) ≥ f2(x)

−ax1 ≥ −bx1

−ax1 ≥ −bx1, x1 = x2

−a ≥ −b, x1 > 0

a ≤ b.(6.1)

While the restrictions on the coefficients for thelowerboundary become

f2(x) ≥ 0

−bx1 ≥ 0

−b(1) ≥ 0, choosex = (1, 0) on boundary

−b ≥ 0

b ≤ 0(6.2)

but since the model requiresb > 0 it implies that there is no viable solution to equation (4.1)
that remain viable once it reaches the lower boundary of coneK1.
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6.1.2. Winning cone is defined byK2. As for coneK1 in section 6.1.1, there are no restrictions
for the choice ofa or b for x ∈ int(K2) or x = 0. As the tangent cone for interior points is
the totality of the space independently of the model chosen, further analysis in this article will
be confined to the study of the behavior at the boundaries of cones. As theupperboundary of
K2 yields the same condition onf(x) as didK1, the conditions on the coefficients is given by
equation (6.1). For the last region ofK2, thelowerboundary, from table 5.1 we have

f1(x) ≥ −f2(x)

−ax2 ≥ bx1

−a(−x1) ≥ bx1, x2 = −x1

ax1 ≥ bx1

a ≥ b, x1 > 0.(6.3)

To combine all the conditions on the regions of coneK2, we are required to meet the inequal-
ities of equations (6.1) and (6.3). For a solution to theaimed firemodel to remain viable once
it entersK2, its coefficients must be such thata = b. We can see why usingK2 as a viable set
for this particular model is too restrictive when we compare it to the results obtained in section
6.1.3.

6.1.3. Winning cone is defined byK3. It is obvious through the similarities with the previous
cones that the only restrictions additional to those imposed by the model are those generated
by theupperandlower boundaries. In the case of the former, the results are also identical and
given by equation (6.1) while for the latter, using table 5.1 we have

f1(x) ≥ 0

−ax2 ≥ 0

−a ≤ 0, x2 < 0

a ≥ 0.(6.4)

The restrictions imposed by equation (6.4) are more relaxed then that imposed by the model.
As a consequence only the additional inequality of equation (6.1) is required to consider. For a
solution to theaimed firemodel to remain viable once it entersK3, its coefficients must be such
thata ≤ b.

6.1.4. Winning cone is defined byK4. From the inspection of table 5.1 the only differences
between this cone andK3 are at the “Upper” boundary. From the corresponding entry in the
table we have

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ax2 ≥
x1(0)

x2(0)
(−b)x1

−ax2 ≥
x1(0)

x2(0)
(−b)

x1(0)

x2(0)
x2, x1 =

x1(0)

x2(0)
x2

−a ≥
(

x1(0)

x2(0)

)2

(−b), x2 > 0

a ≤
(

x1(0)

x2(0)

)2

b.(6.5)
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The restrictions on the coefficients imposed by the model are more restrictive then the boundary
conditions with the exception of (6.5). As such, to makeK4 viable the coefficients must meet
a
b
≤

(
x1(0)
x2(0)

)2

anda, b > 0.

6.2. Area Fire. In section 3.1.2 we introduced the model
dx1

dt
= −ax1x2, x(0) = x0

dx2

dt
= −bx1x2

wherea, b > 0. Rewriting this model in the form of the differential equation given earlier, the
right hand side of equation (4.1) is defined by

f(x) =

{
f1(x) = −ax1x2

f2(x) = −bx1x2

wherex = (x1, x2).

6.2.1. Winning cone is defined byK1. Let us consider the tangent cones defined in table 5.1 in
conjunction with theArea Firemodel. At the origin, sincef(0) = 0 for anya, b > 0 we have
f(x) ∈ K1 for any choice of coefficients. To meet the requirements of the Nagumo theorem,
the coefficients at theupperboundary must be such that

f1(x) ≥ f2(x)

−ax1x2 ≥ −bx1x2

−a ≥ −b, x1, x2 > 0

a ≤ b.(6.6)

While the restrictions on the coefficients for thelowerboundary become

f2(x) ≥ 0

−bx1x2 ≥ 0

b ∈ R, x1, x2 > 0(6.7)

and of course, there is no further restrictions ona. As a result, combining the results of (6.6)
and (6.7) with the initial conditions imposed by the model, for a solution enteringK2 to remain
viable, the coefficients must be such that0 < a ≤ b.

6.2.2. Winning cone is defined byK2. As for K1, the origin does not impose restrictions on the
coefficients and the behavior at theupperboundary is identical. Focusing our attention to the
remaining frontier,

f1(x) ≥ −f2(x)

−ax1x2 ≥ bx1x2

−a ≤ b, x2 = −x1, x1x2 < 0.(6.8)

Sincea, b > 0 from the model’s initial conditions, this last inequality does not further restrict
the viable values for the coefficients. Consequently the conditions of the Nagumo theorem are
met forK2 when0 < a ≤ b.
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6.2.3. Winning cone is defined byK3. Again, the only analysis remaining to be carried out is
that of the behavior at thelowerboundary. From table 5.1

f1(x) ≥ 0

−ax1x2 ≥ 0

0 ≥ 0, x1 = 0

a, b ∈ R.(6.9)

Combining this result with the conditions of equation (6.6) we are again left with the viability
conditions0 < a ≤ b for K3.

6.2.4. Winning cone is defined byK4. As above, we only need to inspect the behavior of the
system at the “Upper” boundary since this is the only difference withK3. From the correspond-
ing entry in table 5.1 we have

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ax1x2 ≥
x1(0)

x2(0)
(−b)x1x2

−a ≥ x1(0)

x2(0)
(−b), x1, x2 > 0

a ≤ x1(0)

x2(0)
b.(6.10)

When examining the conditions at all the boundaries and including the limitations on the
coefficients imposed by the model, we obtain that forK4 to be viable, it is required that
0 < a ≤ x1(0)

x2(0)
b. In this case, the limiting factor is from equation (6.10).

6.3. Brackney. To model the case where asymmetric forces are at play, such as when a con-
vention forcex1 meets with a guerilla forcex2, we introduced the following in section 3.1.3.

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1x2

wherea, b > 0. To fit the original differential equation form as before, the right hand side of
equation (4.1) becomes

f(x) =

{
f1(x) = −ax2

f2(x) = −bx1x2

wherex = (x1, x2).

6.3.1. Winning cone is defined byK1. A quick analysis of the system at the origin finds that
f(x) ∈ K1 for any choice of coefficients (f(0) = 0). Applying the conditions of table 5.1 to
explore the first boundary:

f1(x) ≥ f2(x)

−ax2 ≥ −bx1x2

−a ≥ −bx1, x2 > 0

a ≤ bx1

a

b
≤ x1, b > 0.(6.11)
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Unfortunately, the model allows (for this boundary)x1 ∈ (0,∞) which results fora = infx1∈(0,∞) bx1 =
0 which is impossible asa > 0 from the initial coefficients definition. However, the reality being
modelled does not typically allow forx1, x2 < 1 so we could modify the model to become

(6.12) f(x) =

{
f1(x) = −ax2, x1 ≥ 1; 0 otherwise

f2(x) = −bx1x2, x2 ≥ 1; 0 otherwise

resulting in the restrictiona
b
≤ 1 to obtainf(x) viable inK1. At the lowerboundary

f2(x) ≥ 0

−bx1x2 ≥ 0

0 ≥ 0, x2 = 0

a, b ∈ R,(6.13)

which does not further restrict the coefficients. If the model being considered is the modified
version provided at equation (6.12) then obviouslyf2(x) ≥ 0 sincef2(x) = 0 along this bound-
ary. As a consequence, no conditions on the coefficients allow this model (in it’s original form)
to remain viable inK1. However the modified version expressed at equation (6.12) remains
viable if 0 < a ≤ b.

6.3.2. Winning cone is defined byK2. The problems identified in section 6.3.1 are again present
for this cone at theupperboundary. Exploring the behavior at thelowerend based on table 5.1,

f1(x) ≥ −f2(x)

−ax2 ≥ bx1x2

−a ≤ bx1, x2 < 0

−a

b
≤ x1(6.14)

and sincea, b, x1 > 0 at this boundary, it does not further restrict the values of the coefficients.
However, as theupperboundary required the introduction of a modified version, the behavior
at this side of the cone is affected and becomes

f1(x) ≥ −f2(x)

−ax2 ≥ 0

−a ≤ 0, x2 < 0

a ≥ 0(6.15)

which is less restrictive than the original conditions ona and does not impose any constraints
on b. To discuss a possible viability of Brackney’s model inK2 the modified version presented
at equation (6.12) should be considered resulting on the constraint0 < a ≤ b.

6.3.3. Winning cone is defined byK3. If we were to analyse the original model, thelower
boundary would not yield any additional restrictions on the coefficients however, the problems
cited in section 6.3.1 are still present. The modified model yieldsf(x) = 0 for all x on the
lower boundary which guaranteesf(x) ∈ TK3(x). Again, as with the other cones, the Nagumo
conditions are satisfied whenever0 < a ≤ b.
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6.3.4. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ax2 ≥
x1(0)

x2(0)
(−b)x1x2

−a ≥ x1(0)

x2(0)
(−b)x1, x2 > 0

a

b
≤ x1(0)

x2(0)
x1, −b < 0.(6.16)

Again, as for equation (6.11) of section 6.3.1 this is impossible fora > 0. However, in a similar
fashion, modifying the model to become

(6.17) f(x) =


f1(x) = −ax2, x1 ≥ 1; 0 otherwise

f2(x) = −bx1x2, x2 ≥
x2(0)

x1(0)
; 0 otherwise

allowsK4 to be viable for0 < a ≤ x1(0)
x2(0)

b (from equation (6.16) withx1 = 1).

6.4. Peterson. We recall that R. Peterson [39] introduced this model:
dx1

dt
= −ax1, x(0) = x0

dx2

dt
= −bx2

wherea, b > 0. This model yields for the right hand side of equation (4.1)

f(x) =

{
f1(x) = −ax1

f2(x) = −bx2

wherex = (x1, x2).

6.4.1. Winning cone is defined byK1. Concentrating our observations to the boundaries, let us
first remark thatf(0) = 0 ∈ TK1(0). At the boundaryx1 = x2 Nagumo’s conditions require

f1(x) ≥ f2(x)

−ax1 ≥ −bx2

ax1 ≤ bx2

ax1 ≤ bx1, x1 = x + 2

a ≤ b, x1 > 0(6.18)

which is the same type of conditions as that obtained on the previous models. Examining the
frontierx2 = 0 yields

f2(x) ≥ 0

−bx2 ≥ 0

0 ≥ 0, x2 = 0

a, b ∈ R.(6.19)
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Since the initial restrictions on the coefficients is more restrictive, we remain witha, b > 0
at this boundary. As such, the conditions of Nagumo’s theorem are met throughoutK1 when
0 < a ≤ b.

6.4.2. Winning cone is defined byK2. The only subset remaining to investigate for this cone
and this model is thelowerboundary. From table 5.1 we have

f1(x) ≥ −f2(x)

−ax1 ≥ bx2

−ax1 ≥ b(−x1), x2 = −x1

a ≤ b, −x1 < 0(6.20)

which together with equation (6.18) once more sets the Nagumo condition to0 < a ≤ b.

6.4.3. Winning cone is defined byK3. Analysis of the boundary atx1 = 0 can easily be seen to
always satisfyf1(x) ≥ 0 and therefore provides no addition conditions to equation (6.18). The
restrictions on the coefficients are therefore the same as that ofK1 andK2.

6.4.4. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ax1 ≥
x1(0)

x2(0)
(−b)x2

ax1 ≤
x1(0)

x2(0)
bx2

a ≤ x1(0)

x2(0)
b, x1 = x2 > 0.(6.21)

Here againf1(0) = 0 at the lower boundary and (6.21) is the only additional restriction for the
viability of the model.

6.5. Morse and Kimball. With the introduction of operational losses, section 3.1.5 presented
the following model by Morse and Kimball.

dx1

dt
= −ax2 − βx1, x(0) = x0

dx2

dt
= −bx1 − αx2

wherea, b, α, β > 0. This model yields for the right hand side of equation (4.1)

f(x) =

{
f1(x) = −ax2 − βx1

f2(x) = −bx1 − αx2

wherex = (x1, x2).
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6.5.1. Winning cone is defined byK1. The first point to consider is the behavior at the origin.
As f(0) = 0 ∈ TK(0), the condition’s of Nagumo’s theorem are met for all values of coef-
ficients (a, b, α, β). Again, using the results compiled in section 5.5 exploration of theupper
boundary reveals

f1(x) ≥ f2(x)

−ax2 − βx1 ≥ −bx1 − αx2

−(a + β)x1 ≥ −(b + α)x1, x1 = x2

a + β ≤ b + α.(6.22)

At the remaining frontier ofK1, the requirement is

f2(x) ≥ 0

−bx1 − αx2 ≥ 0

−bx1 ≥ 0, x2 = 0

−b ≥ 0, x1 > 0

b ≤ 0(6.23)

which is impossible since the model stipulates,b > 0. There is therefore no conditions on the
coefficients that would makef(x) viable onK1 for the model of Morse and Kimball.

6.5.2. Winning cone is defined byK2. As for the previous models, the only variation between
cones is at thelowerboundary. Starting with the general condition

f1(x) ≥ −f2(x)

−ax2 − βx1 ≥ bx1 + αx2

−a(−x1)− βx1 ≥ bx1 + α(−x1), x2 = −x1

(a− β)x1 ≥ (b− α)x1

a− β ≥ b− α, x1 > 0.(6.24)

Combining the conditions imposed by all the boundaries,

a− b ≤ α− β, from (6.22)

a− b ≥ β − α, from (6.24)

|a− b| ≤ α− β.(6.25)

As a direct consequence, it is clear thatα − β ≥ 0. As a conclusion,f(x) will be viable inK2

if |a− b| ≤ α− β which is equivalent to saying(α− β, a− b) ∈ K2.

6.5.3. Winning cone is defined byK3. By increasing the viable set toK3, the viability condition
becomes

f1(x) ≥ 0

−ax2 − βx1 ≥ 0

−ax2 ≥ 0, x1 = 0

−a ≤ 0, x2 < 0

a ≥ 0(6.26)

which does not further restrain the range of viable coefficients. The only remaining requirement
to Nagumo’s theorem is therefore stated by equation 6.22.
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6.5.4. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

(−ax2 − βx1) ≥
x1(0)

x2(0)
(−bx1 − αx2)

−(a + β)x1 ≥ −x1(0)

x2(0)
(b + α)x1, x1 = x2

a + β ≤ x1(0)

x2(0)
(b + α), x1 > 0.(6.27)

The lower boundary yields the same result as forK3 and as such, the viability conditions are
those expressed by (6.27).

6.6. Coleman. This model, from section 3.1.6, introduced another aspect of battle: the rein-
forcements. 

dx1

dt
= −ax1 − bx2 + Rx1 , x(0) = x0

dx2

dt
= −cx1 − dx2 + Rx2

wherea, b, c, d > 0 andRx1 , Rx2 can be either positive or negative and are generally considered
to be step functions . This model yields for the right hand side of equation (4.1)

f(x) =

{
f1(x) = −ax1 − bx2 + Rx1

f2(x) = −cx1 − dx2 + Rx2

wherex = (x1, x2).

6.6.1. Winning cone is defined byK1. To begin the analysis considerf(0). SinceTK1(0) = K1

this implies that viability requires that reinforcements when both forces are at the brink of
annihilation be such that0 ≤ Rx2 ≤ Rx1. Let us turn our attention to theupperboundary of
K1.

f1(x) ≥ f2(x)

−ax1 − bx2 + Rx1 ≥ −cx1 − dx2 + Rx2

−(a + b)x1 + Rx1 ≥ −(c + d)x1 + Rx2 , x1 = x2

(a + b)x1 ≤ (c + d)x1 + Rx1 −Rx2

(a + b− c− d)x1 ≤ Rx1 −Rx2

(a + b− c− d) ≤ Rx1 −Rx2

x1

, x1 > 0.(6.28)

To continue the analysis, first consider the situation whereRx1 < Rx2. Sincex1 ∈ (0,∞)
it would be required thata + b − c − d ≤ −∞ which means that no value ofa, b, c, d could
guarantee Nagumo’s condition in this case. The model must than be restricted toRx1 ≥ Rx2

which has for consequence thatlimx1→∞
Rx1−Rx2

x1
= 0. Applying this to equation (6.28) results

in

(a + b− c− d) ≤ 0

a + b ≤ c + d.(6.29)
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We have yet to examine the behavior of the system at thelowerboundary where we require

f2(x) ≥ 0

−cx1 − dx2 + Rx2 ≥ 0

−cx1 + Rx2 ≥ 0, x2 = 0

Rx2 ≥ cx1(6.30)

although mathematically possible, in practice, such a condition could require the opponent to
commit and have an astronomical amount of forces in reserve.

6.6.2. Winning cone is defined byK2. The results stated at equation (6.29) are obviously still
valid. Turning our attention to the boundary wherex1 = −x2:

f1(x) ≥ −f2(x)

−ax1 − bx2 + Rx1 ≥ cx1 + dx2 −Rx2

−ax1 + bx1 + Rx1 ≥ cx1 − dx1 −Rx2 , x2 = −x1

(b− a + d− c)x1 ≥ −Rx1 −Rx2

(a− b + c− d)x1 ≤ Rx1 + Rx2

a− b + c− d ≤ Rx1 + Rx2

x1

, x1 > 0.(6.31)

We must again consider two cases. IfRx1 + Rx2 < 0 then, using the same reasoning as that of
section 6.6.1, it is impossible to determine satisfactory coefficients. We must therefore impose
the restrictionRx1 + Rx2 ≥ 0 resulting ina− b + c− d ≤ 0.

Putting all this together forK2 we conclude that forf(x) to be viable, it is also required that
Rx1 ≥ Rx2 , Rx1 + Rx2 ≥ 0 which is equivalent to|Rx2| ≤ Rx1 (i.e. (Rx1 , Rx2) ∈ K2). In
addition, the coefficients must satisfy|b− c| ≤ d− a (i.e. (d− a, b− c) ∈ K2).

6.6.3. Winning cone is defined byK3. As for the previous models, it is only required to examine
the behavior of the system at the boundary wherex1 = 0. As per table 5.1

f1(x) ≥ 0

−ax1 − bx2 + Rx1 ≥ 0

−bx2 + Rx1 ≥ 0, x1 = 0

bx2 ≤ Rx1

b ≥ Rx1

x2

, x2 < 0.(6.32)

To remain viable inK3 the system must be such that wheneverx1 = 0 then b ≥ Rx1

x2
.

Additionally from equation (6.29) it is required thatRx1 ≥ Rx2.
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6.6.4. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ax1 − bx2 + Rx1 ≥
x1(0)

x2(0)
(−cx1 − dx2 + Rx2)

−(a + b)x1 + Rx1 ≥ −x1(0)

x2(0)
(c + d)x1 +

x1(0)

x2(0)
Rx2 , x1 = x2

((a + b)x1 −
x1(0)

x2(0)
(c + d))x1 ≤ Rx1 −

x1(0)

x2(0)
Rx2

(a + b)− x1(0)

x2(0)
(c + d) ≤

Rx1 −
x1(0)
x2(0)

Rx2

x1

.(6.33)

Again, in this case, the denominator of the right hand side must be positive. Considering the
limx1→∞ we obtain:

(a + b) ≤ x1(0)

x2(0)
(c + d)(6.34)

to guarantee viability.

6.7. Hembold. To deal with inefficiency of scale, Hembold (see section 3.1.7) introduced the
model: 

dx1

dt
= −ag(

x1

x2

)x2, x(0) = x0

dx2

dt
= −bh(

x2

x1

)x1

wherea, b > 0 while g(.), h(.) ≥ 0 andg(1) = h(1) = 1. Accordingly, the right hand side of
equation (4.1) is defined by

f(x) =


f1(x) = −ag(

x1

x2

)x2

f2(x) = −bh(
x2

x1

)x1

wherex = (x1, x2).
Although in general the model does not require so, most attempt at applying it consider

g ≡ h. Hembold himself focused his interest ong(x1

x2
) = h(x1

x2
) = (x1

x2
)c.

6.7.1. Winning cone is defined byK1. In a first step, considerf(0). As it currently stands,
the value is undefined. To overcome this, we will consider a modification tof(x) such that
f(0) = 0 and consequentlyf(0) ∈ TK(0). At theupperboundary, the conditions are such that
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we must have

f1(x) ≥ f2(x)

−ag(
x1

x2

)x2 ≥ −bh(
x2

x1

)x1

ag(
x1

x2

)x2 ≤ bh(
x2

x1

)x1

ag(
x1

x1

)x1 ≤ bh(
x1

x1

)x1, x1 = x2

ag(1)x1 ≤ bh(1)x1

ax1 ≤ bx1, g(1) = h(1) = 1

a ≤ b, x1 > 0(6.35)

which, not surprisingly, is similar to the results in section 6.1. At the remaining boundary set,

f2(x) ≥ 0

−bh(
x2

x1

)x1 ≥ 0

bh(
x2

x1

)x1 ≤ 0

bh(
x2

x1

) ≤ 0, x1 > 0.(6.36)

We must therefore have that eitherb = 0 or h(x2

x1
) = 0 and sinceb > 0 we conclude that

we must haveh(x2

x1
) = 0 wheneverx2 = 0 (i.e h(0) = 0). Combining this with the results

expressed at equation (6.35) we have that the system is viable inK1 whena ≤ b andh(0) = 0.

6.7.2. Winning cone is defined byK2. To verify viability in K2, we need to verify the behavior
of f(x) at the cone’slowerboundary where we need

f1(x) ≥ −f2(x)

−ag(
x1

x2

)x2 ≥ bh(
x2

x1

)x1

−ag(
x1

−x1

)(−x1) ≥ bh(
−x1

x1

)x1, x2 = −x1

ag(−1) ≥ bh(−1), x1 > 0

a

b
≥ h(−1)

g(−1)
, b > 0, g(−1) 6= 0.(6.37)

However, in most applicationg ≡ h and we havea
b
≥ 1 which, when combined with equation

(6.35) yields1 ≤ a
b
≤ 1 which restricts viability to the casea = b.

6.7.3. Winning cone is defined byK3. The interest in this cone is that its lower boundary rarely
generates additional constraints for viability. This the case for this model as we can see by
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verifying that the last condition in table 5.1 is met:

f1(x) ≥ 0

−ag(
x1

x2

)x2 ≥ 0

ag(
x1

x2

)x2 ≤ 0

ag(
x1

x2

) ≥ 0, x2 < 0(6.38)

and since we have from the model definitiona > 0 and g(.) ≥ 0 we can remark that no
additional restrictions are generated. Therefore for the system to remain viable inK3 it suffices
to have0 < a ≤ b.

6.7.4. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

−ag(
x1

x2

)x2 ≥ −x1(0)

x2(0)
bh(

x2

x1

)x1

−a ≥ x1(0)

x2(0)
(−b), x1 = x2, g(1) = h(1) = 1

a ≤ x1(0)

x2(0)
b.(6.39)

As the lower boundary does not bring about any additional conditions, viability is dependant
on:

0 < a ≤ x1(0)

x2(0)
b.(6.40)

6.8. Weiss. This section’s model is expressed by:
dx1

dt
= −a(

x1

x2

)1−W x2, x(0) = x0

dx2

dt
= −b(

x2

x1

)1−W x1

wherea, b > 0. Accordingly, the right hand side of equation (4.1) is defined by

f(x) =


f1(x) = −a(

x1

x2

)1−W x2

f2(x) = −b(
x2

x1

)1−W x1

wherex = (x1, x2).
We will not carry any further analysis of this model except to say that if we letc = 1 −W ,

Weiss’ model can be viewed as a specialization of Hembold’s presented in section 6.7.
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6.9. Schreiber. The Schreiber model deals with the efficiency of command and is expressed
mathematically by:

dx1

dt
= −a

{
x1x2

x1,0 − ex2(x1,0 − x1)

}
, x(0) = x0

dx2

dt
= −b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
wherea, b > 0 andex1 , ex2 ∈ [0, 1]. Accordingly, the right hand side of equation (4.1) is defined
by

f(x) =


f1(x) = −a

{
x1x2

x1,0 − ex2(x1,0 − x1)

}
f2(x) = −b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
wherex = (x1, x2).

6.9.1. Winning cone is defined byK1. It is clear thatf(0) = 0 and thereforef(0) ∈ TK(0).
Applying again the results presented in table 5.1, at theupperboundary

f1(x) ≥ f2(x)

−a

{
x1x2

x1,0 − ex2(x1,0 − x1)

}
≥ −b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
−a(x2,0 − ex1(x2,0 − x2)) ≥ −b(x1,0 − ex2(x1,0 − x1)), x1 = x2 > 0

a(x2,0 − ex1(x2,0 − x2)) ≤ b(x1,0 − ex2(x1,0 − x1))

a

b
≤ x1,0 − ex2(x1,0 − x1)

x2,0 − ex1(x2,0 − x1)
, b > 0, x1 = x2

a

b
≤ (1− ex2)x1,0 + ex2x1

(1− ex1)x2,0 + ex1x1

.(6.41)

It can be verified that the right hand side of the last inequality in a monotone function ofx1.
Sincelimx1→∞ =

ex2

ex1
and thatlimx1→0 =

(1−ex2 )x1,0

(1−ex1 )x2,0
we obtain for a restriction on the coeffi-

cients:

a

b
≤ inf

x1>0

(
ex2

ex1

,
(1− ex2)x1,0

(1− ex1)x2,0

)
.(6.42)

It is interesting to note that the conditions on the coefficients are dependant on the value ofx0.
Let us now consider what is happening at the boundary wherex2 = 0:

f2(x) ≥ 0

−b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
≥ 0

0 ≥ 0, x2 = 0(6.43)

which of course is always true. A consequence of this and considering the symmetrical problem
by interchangingx1 andx2, we can conclude that any solution to the Cauchy problem wherex0

is in the first quadrant never leaves the quadrant. Since all applications of combat models start
within the first quadrant (reality has it that negative forces are hard to come by) it is unnecessary
to pursue any cones extending outside for purpose of viability and are only left with the analysis
atK4 “Upper” boundary.
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6.9.2. Winning cone is defined byK4. The inspection of the behavior of the system at the
“Upper” boundary yields:

f1(x) ≥ x1(0)

x2(0)
f2(x)

−a

{
x1x2

x1,0 − ex2(x1,0 − x1)

}
≥ −x1(0)

x2(0)
b

{
x1x2

x2,0 − ex1(x2,0 − x2)

}
−a(x2,0 − ex1(x2,0 − x2)) ≥ −x1(0)

x2(0)
b(x1,0 − ex2(x1,0 − x1)), x1 = x2 > 0

a(x2,0 − ex1(x2,0 − x2)) ≤
x1(0)

x2(0)
b(x1,0 − ex2(x1,0 − x1))

a

b
≤ x1(0)

x2(0)

(1− ex2)x1,0 + ex2x1

(1− ex1)x2,0 + ex1x1

.(6.44)

As for K1, considering the limits we obtain as a viability condition:

a

b
≤ x1(0)

x2(0)
inf

x1>0

(
ex2

ex1

,
(1− ex2)x1,0

(1− ex1)x2,0

)
.(6.45)

6.10. Variable coefficients. The previous analysis provided some insights on the use of vi-
ability with Lanchester type models. We now consider the “less restrictive” case where the
coefficients involved are variable in time. These systems are considered less restrictive as the
conditions imposed on the coefficients need only be met when the boundaries are reached. As
these models represent war scenarios, we will only inspect their behavior at the “Upper” bound-
ary. The work is presented for a few examples and the compiled results are then given in table
format.

6.10.1. Aimed fire.Considering the model presented in section 3.1.1 and replacing the coeffi-
cients by variable ones we get

dx1

dt
= −a(t)x2, x(0) = x0

dx2

dt
= −b(t)x1.

In the case ofK3, the conditions at the “Upper” boundary become

f1(x) ≥ f2(x)

−a(t)x2 ≥ −b(t)x1

−a(t) ≥ −b(t), x1 = x2 > 0

a(t) ≤ b(t).(6.46)

Here, as we are not dealing with constant coefficients, there is no reason to require that this
condition be met for allt ∈ R+. It is therefore only necessary to havea(t) ≤ b(t) when
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Model K1 to K3 Gaining coneK4

Aimed Fire a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Area Fire a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Brackney a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

(Modified)
Peterson a(t) ≤ b(t) a(t) ≤ x1(0)

x2(0)
b(t)

Morse a(t) + β(t) ≤ b(t) + α(t) a(t) + β(t) ≤ x1(0)
x2(0)

(b(t) + α(t)

and Kimball
Coleman (a(t) + b(t))− (c(t) + d(t)) (a(t) + b(t))− (c(t) + d(t))

≤ Rx1 (t)+Rx2 (t)

x1(t)
≤ x1(0)(Rx1 (t)+Rx2 (t))

x2(0)x1(t)

Hembold a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Schreiber a(t)
b(t)

≤ (1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)
a(t)
b(t)

≤ x1(0)
x2(0)

(1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)

Table 6.1: Viability conditions for variable coefficients models

x1(t) = x2(t) > 0. In the case ofK4, we obtain

f1(x) ≥ x1(0)

x2(0)
f2(x)

−a(t)x2 ≥ −x1(0)

x2(0)
b(t)x1

−a(t) ≥ −x1(0)

x2(0)
b(t), x1 = x2 > 0

a(t) ≤ x1(0)

x2(0)
b(t).(6.47)

And once more, this condition only has to be met whenx1(t) = x2(t) > 0.

6.10.2. Hembold.Modifying the model of section 3.1.7 with variable coefficients, it becomes
dx1

dt
= −a(t)g(

x1

x2

)x2, x(0) = x0

dx2

dt
= −b(t)h(

x2

x1

)x1

and consideringK3, viability conditions become

f1(x) ≥ f2(x)

−a(t)g(
x1

x2

)x2 ≥ −b(t)h(
x2

x1

)x1

−a(t)g(1) ≥ −b(t)h(1), x1 = x2 > 0

−a(t) ≥ −b(t), g(1) = h(1) = 1

a(t) ≤ b(t).(6.48)

It is interesting to note that again, with this choice ofwinning conethe system’s viability con-
ditions are exactly those of the Aimed fire model at this boundary.
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6.10.3. Compiled results for variable coefficients.The work for the determination of the vi-
ability conditions for the remaining variable coefficients models and cones in omitted but the
results for each of them is given in table 6.1.

6.11. Comments. In this section, we have looked at various Lanchester type models to exam-
ine the restrictions on the coefficients thatguaranteevictory for one side. Thisguaranteewas
established through the verification of viability using the notion ofwinning cone. This analysis
method provided us with conditions to meet on the Lanchester coefficients to lead one side to
victory. We will now proceed to the study of those models through optimal control by viability.

7. OPTIMAL CONTROL BY VIABILITY

In combat situations, as for many others, the control over variables is of a discrete nature. For
example, the decision as to whether or not artillery should be brought to bear, reinforcements
committed to battle or simply to rest the troops in order for them to recuperate.

These decisions have an impact either on their effectiveness in combat or in their number,
resulting in changes in the variables at play in the models used. Optimal Control in such cases
shouldn’t be about minimizing/optimizing a function but should rather reflect the reality being
modelled. That is whereOptimal Control by Viabilityprovides us with interesting tools.

With the application of viability concepts, the set of desired states can be defined, such as our
winning cones, and the conditions for viability determined. Once these conditions are known,
the evolution of the dynamical system can be studied and themomentswhen they will become
unsatisfied can be established. This identifies the situations/states at which control must be
applied to ensure continued viability. This process is what we callOptimal Control by Viability.

Given the reality to which models such as Lanchester types are applied, it is more appropriate
to consider this type of optimal control then that commonly defined.

7.1. Optimal control by viability of Lanchester type models. In the previous work presented
in this article, conditions have been developed to make the systems viable for the respective
cones. However, for optimal control by viability, we are interested in using these conditions to
determine the momentT at which the system will cease to be viable.

Let us consider, for example, the Aimed Fire model. In the case of fixed coefficients, it is a
somewhat simple process. Ifa ≤ b, the model is forever viable while ifa > b, then we need to
find T such thatx1(T ) = x2(T ).

The variable coefficients case is more interesting. As the coefficients vary over time, we need
to identify the timeT such thata(T ) > b(T ) andx1(T ) = x2(T ). It no longer suffices to look
at the coefficients to determineT .

From an optimal control by viability point of view we are interested in

(7.1) inf
{{

t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

.

This represents the moment when a new control scheme must be employed. For the Lanchester
type models, it may represent a moment when engagement should be broken to allow troops
to rest, or a time to change the type of forces employed, or a time to apply other tactical tools
available to the commander. In either case, this represents a moment of decision taking. For the
various models presented herein, the decisions timesT can be determined from table 6.1 and
are given in table 7.1 for the “Upper” boundaries of the winning cones.

It is clear thatOptimal Control by Viabilitycloser models the real system and how effects
are generated by the participants. Models using such a concept provide and excellent decision
making assistance tool as well as a mean of studying the various effects of command decisions.
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Model Decision time
Aimed Fire inf

{{
t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Area Fire inf
{{

t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Brackney inf
{{

t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

(Modified)
Peterson inf

{{
t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Morse inf
{{

t ∈ R+

∣∣ a(t) + β(t) > b(t) + α(t)
}

and Kimball ∩
{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Coleman inf
{{

t ∈ R+

∣∣ (a(t) + b(t))− (c(t) + d(t)) >
Rx1 (t)+Rx2 (t)

x1(t)

}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Hembold inf
{{

t ∈ R+

∣∣ a(t) > b(t)
}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Schreiber inf
{{

t ∈ R+

∣∣ a(t)
b(t)

>
(1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)

}
∩

{
t ∈ R+

∣∣ x1(t) = x2(t)
}}

Table 7.1: Viability conditions for variable coefficients models

8. CONLUSION

In this article we have introduced the new concept ofWinning Coneand have seen how it
can be applied to dynamical systems such as the Lanchester type models for combat. Noting
that these models are used in other areas (such as economy, biology . . . ) and that other dy-
namical systems can also employ the notion of winning cone, this concept has a wide range of
application.

Following the above analysis, we have introduced the idea ofOptimal Control by Viability.
We have seen how combining this notion with that ofWinning Conegenerated a very useful
tool in Command and Control. We will develop this idea in a next paper.

To this point, we have not addressed the issue of the difficulty in determining the Lanchester
coefficients raised in the introduction (see [6],[5]). This is the subject of our next article. In this
second part we will show howInterval Analysis, Differential Inclusions, ViabilityandOptimal
Controlcan be used together to resolve this issue.
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