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ABSTRACT. In 1914, F.W. Lanchester proposed several mathematical models based on differ-
ential equations to describe combat situations [34]. Since then, his work has been extensively
modified to represent a variety of competitions including entire waxifferential Lanchester

type modeldave been studied from many angles by many authors in hundreds of papers and
reports. Lanchester type models are used in the planning of optimal strategies, supply and tac-
tics. In this paper, we will show how these models can be studied fremabdity theorystand

point. We will introduce the notion afvinning coneand show that it is a viable cone for these
models. In the last part of our paper we will use the viability theory of differential equations to
study Lanchester type models from the optimal theory point of view.
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2 G. ISAC AND A. GOSSELIN

1. INTRODUCTION

The Lanchester theory of combatves its name and origin to F.W. Lanchester. During the
first World War, in 1916, he published his bodkrcraft in Warfare: The Dawn of the Fourth
Arm [34] in which he first introduced the use of differential equations to the mathematical
modelling of combat. For an excellent overview of the basis of the Lanchester theory of combat,
the reader is referred to P.R. WallRecent Development in Lanchester Thgd#].

Following the second World War, it became apparent that advances in technology was having
a major impact on the way battles were fought. In an attempt to better understand the new
dynamic of the battle field, what is now know as the Lanchester theory of combat gained rapidly
in popularity and attracted the interest of many researchers generating hundreds of publications
and unpublished technical reports. James G. Taylor published a very exhaustive and detailed
synthesis of the work done prior to the early 1980’s in his bbakchester Models of Warfare
[45].

Up until now, the research work carried out in this field of study has been done using the tools
provided by classical analysis. As such, the theory has been explored to determine the existence
of solutions along with their properties and behavior. Of particular interest, efforts have been
made to develop some time-to-end-of-battle measures. See for example the results presented by
[17], [20], [27], [31], [44], [47] to only name a few.

As the Lanchester type models were developed, numerous applications to historical battles
have been attempted [8], [10], |11, 1121, [16], [19], [18], [22], [25] for example. These verifi-
cation of the validity and/or applicability of the various models to actual campaigns highlighted
a major difficulty presented by such modelBhis difficulty arises from the evaluation of the
ever elusivdanchester coefficientd’hese coefficients express, in some form or other depend-
ing on the specific model, the ability of a combatant to inflict damage to its opponeritl{see
Lanchester Attrition-Rate Coefficiebly Seth Bondej6] and followed up by C. Barfodg]).

The problem is multi-fold, the nature of combat being as it is, the collection of data is at best
incomplete and imprecise. Additionally, these coefficients vary through time and conditions in
a manner hard to quantify.

Throughout the evolution of the theory of combat, the analysis generated laws on the pro-
gression of combat such as th@ear Law the Square Law34] and theL.ogarithmic Law{39]
among others (see Taylar [45] for further details). The validity of this analysis in respect to the
coefficients as well as the laws of combat it introduced is often criticized [23],/1],[[6], [24],
[29], [32] to cite a few. Recently, Hembold [28] presented a very a propos paper on this issue
highlighting what he called th€onstant Fallacy Validation of the models have repeatedly
failed to prove the correctness of these laws of comBgt.our method presented in this pa-
per, and based on viability theory, it is not necessary to to use such laws as linear, square or
logarithmic.

The interest for Lanchester type models is ongoing. They have found applications in numer-
ous fields such as economy [38], biology and evolution theory [21]. There is some interesting
work carried out using the Nash equilibrium strategies [43] in the context of armament race and
control [35] [41] as well as some publications studying Lanchester models from a dynamical
systems angle [13]. There is now an increased interest in the application of Lanchester type
models not only to economy but also to problems dealing with competitive aspects.

In view of all that is presented above, in this article we are proposing some additions to the
Lanchester theory of combat and bring to bear the tools of non-classical analysis. As a first
step, we show how differential Lanchester type models can be studied frahilgty theory
point of view. We base our work on the theory presented by J.P. AdipiriTo this end, we
introduce the notion ofvinning coneand explore how this cone is viable for many models.

AJMAA Vol. 1, No. 2, Art. 5, pp. 1-33, 2004 AJMAA


http://ajmaa.org

VIABILITY AND LANCHESTER TYPE MODELS DIFFERENTIAL SYSTEMS 3

As a last step, we take the analysis of the Lanchester type differential models to its natural
progression into the domain of optimal control. In this last section, we will introduce the notion
of optimal control by viabilityand explore its application to the Lanchester theory of combat.

2. PRELIMINARIES

In this article we will denote by H, (- ,-)) an arbitrary Hilbert space and by a closed
convex cone ind. Unless otherwise stated, the Hilbert space under consideration will be the
Euclidean spaceR™, (- ,-)). We recall that a convex s&t C H is a subset off such that

r,ye Q= (1-Nz+ Iy eQ, forany A such that) < A\ < 1.

A closed convex con& C H is a closed subset having the following properties:
(1) K+ K CK,
(2) \K C K, A€eR,.
If in addition, K satisfies the property thaf N (—K) = 0 then we say thak” is apointed cone

The study of viability will require the application of the notion of contingent cone of which
we now give a definition.

Definition 2.1 (Contingent Cone)Let X be a Hilbert spacelf C X a non-empty subset and
B ={z € X|||z| <1}. We say that the subset

@ =N N U (%m_:ﬁ)ﬂfg)

e>0 a>00<h<a
is thecontingent conéor theBouligand’s contingent cor{g]) to K at the pointr € K.

In the case whelk is convex, we calll'x (z) thetangentcone toK atx. Since this article
studies the viability of dynamical systems using convex cones as the viable subset, we give the
following characterization of x (z).

Theorem 2.1. Given a convex con&’, a subset of a Hilbert space, € K and Tk(x) the
contingent cone at satisfying definition| (2]1) then

K+Rx=K—-R,x CTk(x)
furthermore
(2.1) K —Ryx =Tg(x).

Proof. Lets first prove that + Rx = K — R,x. As K isacone\x € K for A € R, and,
therefore

R,z CK
K+RizsCK+KCK, asK is acone
SO
(2.2) K+R,z CK.
By decomposin@ into its positive and negative pafs, and—R., respectively,
(2.3) K+Rz=(K+Riz)+ (K —-Ryx)

it is obvious that' — R,z C K + Rz. Substituting equation (2.2) in the above:
which concludes the proof of the first equality.
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To prove that’ — Rz C Tk (), lets consideSy (z) = [J,., (£5-%)and the fact that when

K is convex, it is known thabx (z) = Tk (z) (a proof can be found in Aubin and Frankowska
[3] or Isac [30]). Starting with the definition dfx () and remarking thai is a cone implies
& = K for h > 0, we observe that

SinceK — R,z = Sk(x) C Sk(x) = Tx(z), we can deduce that — R,z C Tk(x) and
K —R x =Tk(x). O

3. DIFFERENTIAL LANCHESTER TYPE MODELS

Since the publication of Lanchester’s book in 1916, numerous variations based on the original
ideas have been proposed, see for instance the list presented by James Taylor [45]. All these
models are based on a modeling that takes roots in defining the rates of variation in strength of
opposing forces. These rates can be separated in three different categories as follows:

(1) OLR. Operational loss rate;
(2) CLR. Combat loss rate; and
(3) RR. Reinforcements rate.

The OLR represents the losses caused by non combat activities present in any conflict. The loss
of a soldier to a driving accident is an example of such losses. The CLR are losses directly
related to combat while the RR is the rate at which forces are added or removed from the
theater of operations. The generic model of Courtney S. Coleman [15] is then represented by
the differential system:

% — OLR,, + CLR,, + RR,,
d
% — OLR,, + CLR,, + RR,,.

A conventional combat scenario is one where both forces are using conventional warfare
tactics and could be modelled with:

(CONCOM) % T
% = —cay(t) — da(t) + Q(t)

wherea, b, c andd are non negative loss rate constants wii(e) and(Q(t) are reinforcements
rates typically in numbers of combatant per day. In this model, the OLR; fistcste x x; while

its CLR iscste x z;. That is to say that the larger a force is the bigger its operational losses and,
the larger its enemy is, the bigger are its combat losses.
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The above models assumes that both forces are visible to its enemly [34] [36]. If, on the other
hand, both forces use guerilla type techniques, their elements are harder to detect and their
combat loss rates (comparable to random hits of blind gun fire through a wooded area) become
proportional to their own size as well as the enemy’s. A guerilla warfare model is

% — —a(pl(t) — bxl(t>$2(t> + P(t)
(GUERCOM)]
% = —drs(t) — ca1(t)z2(t) + Q(t)

where the terms im; (¢)z2(t) are the CLR.

If we take for example the Vietnam conflict, one side was using conventional tactics while
the other was taking its tactics out of guerilla warfare. Mixing both the above models where the
conventional side i$;, we obtain:

B (1) — bas(t) + P(1)
(VIETNAM){
% = —dy(t) — cexy (t)za(t) + Q(2).

We will know review the various models introduced since, and including the work done in 1916
by Frederick W. Lanchester.

3.1. Various Lanchester type models.

3.1.1. Aimed Fire. When F.W. Lanchester introduced his model, he remarked that as a direct
consequence of the greater range that recent advances in weaponry permitted, it was then possi-
ble for one force ta@woncentratats firepower in a battle. He considered two opponents, referred

to asx; andzs, and stipulated that each forces loss was directly proportional to the opponents
numbers and their ability to destroy. In this model, the coefficiemtsdb represent each oppo-
nentskilling ability. If the forces involved are homogeneous than the coefficients can be viewed

as the destructive ability of one individual. The model introduced in 1914 [33] is expressed
mathematically by

dz

d_tl = —azxe, x(0) =g
dz

&=

wherea, b > 0.

3.1.2. Area Fire. This model is also one of the first ones introduced by Lanchester [33]. As
can be extrapolated from its title, it is representative of the case when the exact position of
one opponent’s is unknown but a general idea of his location is available. For example, forces
hiding in a wooded area as seen from artillery. In such a case, the coefficients can be deemed
to be related to the ratio of the area of effectiveness of each round fired and the density of
enemy forces. As a result of the application of this model, the attrition rate of one force will be
proportional to both the number of assailants as well as its own (the more there is the higher the
density in the area). Mathematically,

dx

d_tl = —ar1r2, 2(0) =9
dx

& -t

wherea, b > 0.
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3.1.3. Brackney.In 1959, H. Brackney [9] introduced a model that is based on a combination
of the Aimed Firemodel in[3.1.1 and thé&rea Fire model of section_3.112. The intent is to
consider the case where asymmetric forces are at play such as when a conventian force
meets with a guerilla force,. Typically, the guerilla forces are somewhat aware of the location
and whereabouts of the conventional forces justifying the use of an aimed fire model for the
attrition of the conventional forces. On the other hand, the guerilla forces are small in numbers
and their location is often only known to be within a general region justifying in this case an
attrition rates modeled on area fire. Brackney’s model is expressed by

dIl

% = —aXy, l’(O) = 29
dx
d_t2 = —b$1$2

wherea, b > 0.

3.1.4. Peterson.At first glance, this model appears to be non applicable and only introduced for
the sake of completeness as the attrition rate of one force is independent of the other. However,
it has been noticed that at the onset of conflict, the casualty rates strangely appear to be more a
function of one’s size than of its opponent. In an attempt to explore this initial stage of battle,
R. Peterson [39] introduced this model:

dz

d_tl = —axry, I(O) = T
dz

T = b

wherea, b > 0.

3.1.5. Morse and Kimball.All the previous models attempted to provide a description of the
casualty rates within the context of an engagement. However, military operations are not com-
posed strictly of losses directly caused by the opponent. In fact, many losses are caused by the
operations themselves (i.e. vehicle accidents, etc...). P. Morse and G. Kimball [36] put forth
the hypothesis that losses from both combat and related operations contributed to the whole.
The model is based on the operational loss ratio being proportional to one’s numbers while the
combat loss ratio is proportional to the size of its enemy.

dx

d_tl = —axy — fr1, x(0) =1x0
dﬂ?g b

— = —bxr; — az

7 1 2

wherea, b, a, 5 > 0.

3.1.6. Coleman. This models introduces another aspect of battle: the reinforcements. In addi-
tion to losses related to combat and operations, the number of combatants involved in a battle
also varies when reinforcements are brought to bear or when elements are withdrawn. As such,
the model presented by Coleman|[14] has an additional component to the expression of the
variation of each forces.

d

i —axy —bra+ Ry, 2(0) = o
dt

dx

d_tQ = —CI1 — dflf2 + Rm2
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wherea, b, c¢,d > 0 andR,,, R,, can be either positive or negative and are generally considered
to be step functions .

3.1.7. Hembold. In 1964, R. Hembold [26] put forward the idea that when two forces meet, if
there is a sufficiently large difference in size, there is what he termetké#ficiency of scalelin

other words, attempting to kill a fly with a sledge hammer introduces some inefficiencies. To
compensate for this in the Aimed Fire model, he introduced two mappings that are a function
of the ratio of the opposing forces numbers. The resulting model is

dz x

d_tl = —ag(x—:)%, z(0) = zo
dIQ . )

E = _bh<$1)x1

wherea, b > 0 while g(.), h(.) > 0andg(1) = h(1) = 1.

3.1.8. Weiss.When H.K. Weiss introduced his models [48], he approached the issue of the

effect that scale has on the rates from a vulnerability point of view. He suggested that the
dominant element affecting losses when a unit’s size grows in proportion to the opponent is its
vulnerability. His model became

dx Tyq_

d_tl = —a(m—;)l W, z(0) = xg
deQ To\1_w

e Nt

dt (Il e

wherea, b > 0.

3.1.9. Schreiber.Col T.S. Schreiber [42] was interested in a model that looked at command
and control. He thus put forth a model where #ifciency of commancame to play through

the introduction of command efficiency constaats, e,, € [0,1]. These constants represent
the effectiveness of intelligence, command and control to bring to bear the power of their force
directly on its enemey. A value dfsignifies that fire power is never wasted and always aimed
directly at its enemy while a value Ofrepresents "blind" firing. With a command efficiency of

1 Schreiber’'s model becomes the same agiheed Fire model and with a command efficiency

of 0 it becomes thérea Fire model. His model can be represented by

dxy Y { 122 }  2(0) = 2o

E T1,0 — €xy ($1,0 - I1)

dxs { T1%2 }
— =)
dt 123'270 — 6$1 (IQ,O — $2)

wherea, b > 0 ande,,, e, € [0, 1].

3.1.10. Richardson’s model of Arms Rachk the first part of the 20th century, L.F. Richardson

[40] introduced the Lanchester type models to the arms race between nations where the variables
x1(t) andzo(t) represent their respective armament levels (often expressed in dollar value). His
model of the race between two nations is:

dx

d_tl = —axy — fr1+g, x(0) =1
dx

d_t2 = —bl’l—Oé.Z'Q—Fh

wherea andb are termedlefence coefficiensnd are an expression of one nation’s response
to threat from the other. On the other hand, thiggue or restraint coefficients,o and 3, are
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an expression of the restraining influences, internal or external, exerted on a nations towards
its disarmament. All four of these coefficients are considered to be positive. The remaining
constantsg andh, express the agressive tendency of the nations. A posive value is significant
of a nation that would tend to acquire weapons even when no threat is present.

All previous models are given with constant coefficiemts, o, 3, ¢, d, - - -. In all cases, re-
lated models are also considered by replacing these coefficients with variablgon&s), «(t), 3(t), - - -
wherea(t), b(t), a(t), 5(t),--- > 0, Vt.

4. VIABLE SOLUTIONS FOR A DIFFERENTIAL SYSTEM

In order to study the Lanchester models we must define wialde solution consists of.
In a nutshell, we will define a closed subset of state spac®f the system to represent be the
set ofacceptablestatus of our combat equations. That closed subset will be considietsd
under the differential system if for every initial, € K, there exists at least one solution to
the system starting at that point and remainingsirfor some time. More formely, using the
definitions given by J.P. Aubin[4]:

Definition 4.1 (Viable function) Let K be a subset of a finite dimensional vector spacaNe
shall say that a function(-) from [0, 7] to X is viable inK on [0, T] if Vt € [0,T], z(t) € K.

Consider the following differential equation fgr: 2 — X, Q C X.
4.2) d(z(t))/dt = f(x(t)), =(0) =z € U.

Definition 4.2 (Viability and Invariance) Let K be a subset d. We shall say thak is locally
viableunderf if for any initial statez, of K, there exist’ > 0 and a viable solution off), 7]
to differential equation (4]1) starting ag. It is said to be (globallyyiable under f if we can
always takel’ = oo.

The subsef{ is said to benvariantunder f if for any initial statex, of K, all solutions to
the differential equatior (4.1) are viable in.

Throughout the remainder of this article since we are concerned with Lanchester type combat
models, givenk’ € R™ and a mapping:(¢) : R, — R", we will say thatz(¢) is viable in K
whenever:(t) € K,Vt € R,.

The Nagumo theorem [37] provides an excellent tool to verify the existence of solutions that
are viable within a subséf of a Hilbert spaceX based ori;(z), the contingent cone df at
xZ.

Theorem 4.1(Nagumo) LetU be a closed subset of a Hilbert spalleand f be a continuous
map fromU to H, f : U — H, such that

4.2) Ve e U, f(z) € Ty(z).

Then for allzy € U, there exists" > 0 such that equatiorf (4.1) has a viable trajectory on
[0,T7.

5. WINNING CONES

As presented in sectigr) 4, the Nagumo theorem gives viability conditions in relation to the
contingent cone (or tangent cone in the case of a convex subset) at each viable point

As a usefull tool in viability analysis of Lanchester type models we will use the notion of
winning cone We give now the definition ofvinning conan the general case since this notion
can have other interesting applications in the theory of dynamical systems.

Let E be a real vector space arfd,, K3 C E be closed convex cones. Let" be the
ordering defined by the convex cohe. C E,i.e.x <y <y —x € K.
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Cone K1

Figure 1: Viability defined by,

Definition 5.1 (Winning cone) Consider the vector spaéex E. We say that the closed convex
poined conédy, is awinning condf it has the following properties:

(1) Ky C K, x Kﬁ; and

(2) (z,y) € Ky = = > y, where *<” is the ordering defined by <.

The above notion was terme@dnning coneas for all points within such a cone, one compo-
nentdominateghe other. In many practical problems we hdve- R" andK,,, K3, K< = R’}
In our case, the analysis of Lanchester type models of combat, we will have Kz = R,
K, = K< = R, such that whenevér,, z,) € K, we have that;; dominates his oponent.

As a first analytical step, we define the faminning cones where the first three are selected
on the basis that they provide a set in which combat power of one opponent always dominates
the other and a fourth cone that guarantees no loss of advantage. For each of thegéwenes
determine the tangent cofi& (=) associated with every = (z;,x2) € K, and the conditions
it imposes inR? on the dynamical system

% = fi(z), x(0)=xg
d
—2 = ha)

wheref(z) = (fi(z), f2(z)).

5.1. Winning cone K. The first cone selected, see fig{ife 1, is the most intuitive one. The
combat power (i.e. resources available to destroy the enemy) of those facing each other in a real
armed conflict cannot be negative. Furthermore, as we wish to select the viable solutions where
one, lets choose;, always dominates the other;, we obtain the following definition for the

first viable set:

(51) K, = {ZE S R2 | (ZL‘l > 1'2) and(fL'Q > O)} .

Prior to determining the tangent cone associated with each poiht ifet us first note the
well known fact that forz € int(K) the tangent coné’x(z) = X, see for instance Aubin

AJMAA Vol. 1, No. 2, Art. 5, pp. 1-33, 2004 AJMAA
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Cone K2

Figure 2: Viability defined byx»

and Celinal2]. As a consequence, the problem is reduced to fifditg) whenz is in the
boundary ofK;.

5.1.1. Case:z = 0. This is the rather trivial case whe¥é, (0) = K, since
(5.2) Tk, (0) = K; — R0 =K, = Kj.
5.1.2. Case: “Upper” boundary.By “Upper” boundary, it is meant the half-line, = z,,
wherez; > 0. To determine the séfx, (x) we consider

—R+x:{x€R2\$1:x2, x1§0}

—R,zx+ K = {xERZ\xl 2952} = R,z + K.

Therefore, in order foff (x) to be an element df, () it must respect the condition
(5.3) fi(z) > fao(x), 1 = T2, T1 > 0.

5.1.3. Case: “Lower” boundary. By “Lower” boundary, itis meant the half-line, = 0, where
x1 > 0. In a manner similar to the previous boundary,
—R+m:{x€R2|x2=O, m1§0}

-R,x+ K, = {xER2|x2 20} =—-R,x+ K;.
Therefore, in order fof (x) to be an element df, (x) it must respect the condition
(54) fQ(I) 2 07 To = 07 T > 0.
5.2. Winning cone K,. The second cone considered, see figyre 2, can be viewed a natural
extension to the first cone presented in sedtioh 5.1. Remember that these cones are meant to be
used with Lanchester type models and, for these models, solutions to the system that cross the

x1 axis on the positive side are not only acceptable but desirable. To relax the conditions and
allow these desired solutions as part of the viable set, consider the following cone:

(55) K2 = {l’ € R2 ’ T > ’$2‘} .

AJMAA Vol. 1, No. 2, Art. 5, pp. 1-33, 2004 AJMAA
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Cone K3

Figure 3: Viability defined byX3

As for K7, the tangent cone at € int(K>) is Tk, (z) = R?. All that then remains to examine
is the tangent cone at points on the boundarie& of

5.2.1. Case:z = 0. Again, this is trivial andl'x, (0) = K, since
(5.6) Tk,(0) = K —R,0 =K, = K>.
5.2.2. Case: “Upper” boundary. Here the “Upper” boundary is the same half-line used for the
previous conex; = xq, Wherezr; > 0. To determine the séfiy, (x) we consider
—R+x:{x€R2|x1:xg, x1§0}
—R.x+ Ky = {x€R2|$1 23:2} = R,z + K,.
Therefore, in order fof (x) to be an element dfk, (x) it must respect the condition
(5.7) fi(z) > fao(x), T, = X9, 11 > 0.

5.2.3. Case: “Lower” boundary. Here the “Lower” boundary differs from the previous cone.
It is the half-linez; = —xz5, wherez; > 0 and
R,z = {x ER?* |2y = —29, 11 < O}
R,z + Ky = {x€R2|x1 > —xz} = R,z + K,.
Therefore, in order fof (x) to be an element df, (x) it must respect the condition
(5.8) filz) > —fo(x), xry = —Ig, x1 > 0.

5.3. Winning cone Kj. This third cone, see figuig 3, is the least restrictive one where
exceeds:, without allowingz; to fall below0, effectively disallowing solutions that intersect
the axisz,. Furthermore, this is thiargestcone satisfying Definition 5|1 witlh’ = K3 = R,
K, = K< = R, and we can writedk, = {(z1,72) € K, X Kg|z > y}. The subset oR?
defining K5 is

(59) Kg = {fIf € R2 ‘ T 2 i) andflfl 2 O} .
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Cone K4

X0,

Figure 4: Viability defined by<,

As for both previous cones, the tangent cone atint(K3) is R?. Again, all that then remains
to examine is the tangent cone at points on the boundari&s.of

5.3.1. Case:z = 0. Itis clear thatl'k, (0) = K; since
(5.10) Tx,(0) = K3 — R0 = K3 = K.

5.3.2. Case: “Upper” boundary. Once more, the “Upper” boundary, is the same half-line used
in previous conest; = x5, Wherez; > 0. To determine the séfy, (x) we consider

—R+x:{x€R2|x1:x2, x1§0}
—R.x+ K3 = {£E€R2|£E1 23:2} = R z+ K.
In order for f(x) to be an element df ., (x) it must respect the condition
(5.11) fi(z) > fao(x), T, = Xo, 1 > 0.

5.3.3. Case: “Lower” boundary. This “Lower” boundary is simply the half-line, = 0, where
T9 < 0 and
—R+x:{x€R2|x1:O, 1220}

—R+ZJZ+K3= {$€R2|I1 ZO} = —R+I+K3.
Therefore, in order fof (x) to be an element df, (x) it must respect the condition
(5.12) fi(x) >0, 21 =0, 29 <0.
5.4. Winning cone K,. This fourth and last cone, see figlife 4, is somewhat different then the
previous ones as its definition is dependant on the starting pgifithisgainingcone expresses

the desire to improve one’s position in reference to its opponent. The suddétdeffining K,
is

(5.13) Ky = {x cR? |z, > xl(o):@ andz; > O} .
2(0)

Again, the tangent cone ate int(K3) is R? while that at its boundaries is as follows.
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| Winning cone(K) | Points in & | Conditions on f(z) |
K1 x € mt(Kl) f(ZL') € R2
x = (0,0) f(x) € K4
Ty =Ty, 71 >0 fi(z) > folx)
1’2:(), 1 >0 fg(.T)ZO
Ky x € int(Ks) f(x) e R?
z = (0,0) f(z) € Ky
r1 = T9, T1 > 0 fl(l’> > fg(.f)
Ty =Ty, v1 >0 | fi(x) > —folw)
Kg T e Znt(Kg) f(l') S R2
z = (0,0) f(z) € K3
T, = T, T1 >0 fi(z) > fo(x)
11=0, 15 <0 fi(x) >0
K4 xr € mt(K4) f(ZL') € R2
x = (0,0) f(x) € Ky
T, = i;ég;xg, x1 > 0| fi(z) > 2583 fa(2)
1'1:0, To < 0 fl(.I')ZO

Table 5.1: Tangent cones ate K

5.4.1. Case:z = 0. As for the previousNinning ConesIk, (0) = K, since
(5.14) Tk, (0) = Ky — R0 =K, = K,.

5.4.2. Case: “Upper” boundary. In this case, the “Upper” boundary varies for each Cauchy
problem as it depends or,. Points on this boundary are those meeting the two conditions:

T = 2583 xo andz; > 0. To determine the séfiy, (x) we consider
21(0)

1'20

(0)
1'1(0)

—R+x:{x€R2|x1: To, x1§0}

—R+I+K4:{I€R2|I12 $2}:—R+I+K4.

2(0)
Therefore, in order foff (z) to be an element df, (=) it must respect the condition
x1(0) z1(0)
5.15 x) > ——=fa(x), r1 = ——=Ta, T1 > 0.
( ) fl( )— x2<0)f2< ) 1 1'2(0) 2 1

5.4.3. Case: “Lower” boundary. This “Lower” boundary is simply the half-line; = 0, where
x5 < 0 and the resulting tangent cone is the same a&for

—R+x:{x€R2|x1:O, xQZO}
—Riz+ K, = {:EER2|$1 20} = R r+ K,
Therefore, in order foff (z) to be an element df, (=) it must respect the condition
(5.16) filz) >0, a1 =0, 25 <O0.

5.5. Compilation of conditions — Winning cones. The results of this section are important in
the further study of viable solutions. For easy reference, the various conditions generated on all
cones are presented in taple|5.1.
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6. WINNING CONES FOR DIFFERENTIAL LANCHESTER TYPE MODELS

In the past, one of the biggest difficulty in the analysis of combat through the use of Lanchester
type mathematical models has been the determination of the coefficients in each of them. The
problem is further amplified by the lack of data available and its lack of precision that is caused
by the unclear collection or recollection of information during a conflict. This lack of clear per-
ception of the ongoing battle is often referred to asfttyeof war. To avoid this slippery ground,
our approach is based on the application of viability theory where we establish conditions on
the Lanchester coefficients that ensure viable solutions. Through careful definition, the viable
sets selected in sectiph 5 guarantee one’s victory against his opponent.

For each model presented, we will derive a set of conditions on the coefficients to satisfy
the viability requirements listed in tabJe 5.1 such that once a trajectory of a solution to the
differential equation enters the viable set, it never leaves it again .

6.1. Aimed Fire. As we recall, from section 3.1.1 the model introduced in 1914 is expressed
mathematically by

dx

d_tl = —axry, x(0) =1
dx

Fia

wherea,b > 0. To link the models with the differential equation given earlier, the right hand
side of equation (4]1) is defined by

o) ={

fi(z) = —ax,
fo(z) = —bxy

wherex = (x4, z5).

6.1.1. Winning cone is defined b,. From the tangent cones defined in tgblg 5.1, it is clear
that for points belonging to the interior of the cone,c int(K;), any values fora andb

are viable. Similarly, sincg(0) = 0 for anya,b > 0 we havef(z) € K, for any choice

of coefficients. It remains to examine the coefficients required to meet the conditions of the
Nagumo theorem at the cone’s boundaries. Fouggerboundary, we must have

fi(z) = fa(z)

—axy > —bxy
—ax, > —bxy, T = Ty
—a > —b, r1 >0
(6.1) a <b.
While the restrictions on the coefficients for tleever boundary become
foz) 20
—bx; >0
—b(1) >0, chooser = (1,0) on boundary
—b>0
(6.2) b<0

but since the model requirés> 0 it implies that there is no viable solution to equatipn[4.1)
that remain viable once it reaches the lower boundary of ¢6ne
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6.1.2. Winning cone is defined by,. As for conek in sectiorj 6.1.]1, there are no restrictions
for the choice ofu or b for x € int(K,) orz = 0. As the tangent cone for interior points is
the totality of the space independently of the model chosen, further analysis in this article will
be confined to the study of the behavior at the boundaries of cones. Appeeboundary of

K, yields the same condition of(x) as did K7, the conditions on the coefficients is given by
equation[(6.11). For the last region &%, thelower boundary, from tablg 5.1 we have

fi(z) > —fo(x)

—axe > bxy
—a(—x1) > bxy, Ty = —T
ar; > bxy
(6.3) a>b, x1 > 0.

To combine all the conditions on the regions of cdnig we are required to meet the inequal-
ities of equationg (6]1) and (6.3). For a solution to éivaed firemodel to remain viable once
it entersk,, its coefficients must be such that= b. We can see why usinff, as a viable set
for this particular model is too restrictive when we compare it to the results obtained in section
6.1.3.

6.1.3. Winning cone is defined bi;. It is obvious through the similarities with the previous
cones that the only restrictions additional to those imposed by the model are those generated
by theupperandlower boundaries. In the case of the former, the results are also identical and
given by equatiori (6]1) while for the latter, using tgblg 5.1 we have

filz) =0
—axy >0
—a <0, To <0
(6.4) a > 0.
The restrictions imposed by equatign (6.4) are more relaxed then that imposed by the model.
As a consequence only the additional inequality of equaliion (6.1) is required to consider. For a

solution to theaimed firemodel to remain viable once it enteks, its coefficients must be such
thata < b.

6.1.4. Winning cone is defined bi,. From the inspection of table 5.1 the only differences
between this cone anfl; are at the “Upper” boundary. From the corresponding entry in the
table we have

Ao = 40 fle)
131(0)
—ary > 2(0) (=b)zy
71(0) 71(0 ~71(0)
—axy > 2(0) (—b) 2(0) To, T = 2(0) To
—a n(0° — x
> (So) 270
(6.5) @< (2%) b.
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The restrictions on the coefficients imposed by the model are more restrictive then the boundary
conditions with the exception df (§.5). As such, to makeviable the coefficients must meet

2
a < (“@) anda, b > 0.

b — \ z2(0)

6.2. Area Fire. In sectior 3.1.2 we introduced the model

dx

d_tl = —ar1r2, 2(0) =9
dx

r

wherea, b > 0. Rewriting this model in the form of the differential equation given earlier, the
right hand side of equatioh (4.1) is defined by

B fi(x) = —axixs
fla) = {f2(x) = —bxy2,

wherex = (x4, z3).

6.2.1. Winning cone is defined by;. Let us consider the tangent cones defined in fable 5.1 in
conjunction with theArea Fire model. At the origin, sincg(0) = 0 for anya, b > 0 we have

f(z) € K for any choice of coefficients. To meet the requirements of the Nagumo theorem,
the coefficients at thepperboundary must be such that

fi(z) > fo(x)
—ax1To > —bxrixs
—a > —b, T1,2o >0
(6.6) a <b.

While the restrictions on the coefficients for tloever boundary become

fo(z) =20
—bLUlQZQ Z 0
(67) beR, 1, T2 >0
and of course, there is no further restrictionsacorAs a result, combining the results 6f (6.6)

and [6.7) with the initial conditions imposed by the model, for a solution entéfing remain
viable, the coefficients must be such that a < b.

6.2.2. Winning cone is defined by,. As for K, the origin does not impose restrictions on the
coefficients and the behavior at tobpperboundary is identical. Focusing our attention to the
remaining frontier,

fi(x) > — fa(x)
—ax1Ty > bxrixe
(6.8) —a <b, To = —x1, X129 < 0.
Sincea, b > 0 from the model’s initial conditions, this last inequality does not further restrict

the viable values for the coefficients. Consequently the conditions of the Nagumo theorem are
met for K, when0 < a < b.
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6.2.3. Winning cone is defined bi;. Again, the only analysis remaining to be carried out is
that of the behavior at tHewer boundary. From table §.1

fi(z) =0
—ax1xe > 0
0> 0, z1 =0
(6.9) a,beR.
Combining this result with the conditions of equation [6.6) we are again left with the viability
conditions) < a < b for K.

6.2.4. Winning cone is defined bi,. As above, we only need to inspect the behavior of the
system at the “Upper” boundary since this is the only difference withFrom the correspond-
ing entry in tabl¢ 5]1 we have

fi(z) >

—ariry =

—a >

<_b>7 T1,To > 0

(6.10) a < (0)

When examining the conditions at all the boundaries and including the limitations on the
coefficients imposed by the model, we obtain that for to be viable, it is required that

0<ac< i;gggb In this case, the limiting factor is from equatign (8.10).

6.3. Brackney. To model the case where asymmetric forces are at play, such as when a con-
vention forcer; meets with a guerilla force,, we introduced the following in sectipn 3.1..3.

dx

d_tl = —axy, x(0) =x
dx

o = o

wherea, b > 0. To fit the original differential equation form as before, the right hand side of
equation[(4.]l) becomes
fi(x) = —axsy
ro={
fg(l’) = —bxll'g

wherez = (x1, z5).

6.3.1. Winning cone is defined bl;. A quick analysis of the system at the origin finds that
f(z) € K, for any choice of coefficientsf(0) = 0). Applying the conditions of table 5.1 to
explore the first boundary:

fi(x) > fo(x)

—Qaxsy Z —b[Ell‘Q

—a > —bxy, 29 >0
a < by
(6.11) <o, b> 0.
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Unfortunately, the model allows (for this boundaxy)< (0, co) which results for, = inf, ¢ (o) bx1 =
0 which is impossible as > 0 from the initial coefficients definition. However, the reality being
modelled does not typically allow far;, 2, < 1 so we could modify the model to become

(6.12) f(z) = {fl(x) = —axy, x =1 0 otherwise

fo(x) = =bx1x9, 29 >1; 0 o0therwise
resulting in the restrictior§ < 1 to obtainf(xz) viable in /. At thelowerboundary

fo(z) 20
—bxix9 > 0
0>0, x9 =10
(6.13) a,beR,

which does not further restrict the coefficients. If the model being considered is the modified
version provided at equation (6]12) then obviousli) > 0 sincef,(x) = 0 along this bound-

ary. As a consequence, no conditions on the coefficients allow this model (in it’s original form)
to remain viable ink;. However the modified version expressed at equafion|(6.12) remains
viable if 0 < a < b.

6.3.2. Winning cone is defined by,. The problems identified in sectipn 6.3.1 are again present
for this cone at theipperboundary. Exploring the behavior at timver end based on tabje 5.1,

filz) = = fa(x)
—axy > brixs
—a < bxy, T9 < 0
(6.14) —% <
and sincez, b, z; > 0 at this boundary, it does not further restrict the values of the coefficients.

However, as theipperboundary required the introduction of a modified version, the behavior
at this side of the cone is affected and becomes

fi(z) > —fa(x)
—axy >0
—a <0, To < 0
(6.15) a>0

which is less restrictive than the original conditionssand does not impose any constraints
onb. To discuss a possible viability of Brackney’s modelin the modified version presented
at equation[(6.12) should be considered resulting on the condiraint < b.

6.3.3. Winning cone is defined bi(;. If we were to analyse the original model, tlmver
boundary would not yield any additional restrictions on the coefficients however, the problems
cited in sectior} 6.3]1 are still present. The modified model yi¢ids = 0 for all z on the

lower boundary which guaranteg$z) € Tk, (x). Again, as with the other cones, the Nagumo
conditions are satisfied whenevkek a < b.
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6.3.4. Winning cone is defined bi,. The inspection of the behavior of the system at the
“Upper” boundary yields:

) 2 20
—azy > 2&8; (—b)z122
o> 2%8; (—b)ay, 23> 0
(6.16) ‘< igg;x b<o.

Again, as for equation (6.11) of section 6/3.1 this is impossible fer0. However, in a similar
fashion, modifying the model to become

filx) = —axy, x> 1; 0 otherwise
6.17 =
( ) /(@) fo(z) = —=bxri29, 9 > xQ(O); 0 otherwise
21(0)
allows K to be viable for) < a < 248 b (from equation[(6.16) withr; = 1).

6.4. Peterson. We recall that R. Peterson [39] introduced this model:

dx

d_tl = —azy, x(0) =1
dx

_dt2 = —bl'g

wherea, b > 0. This model yields for the right hand side of equation](4.1)

B fi(z) = —ax;
fle) = { fo(x) = —bxy

wherex = (x4, z5).

6.4.1. Winning cone is defined by;. Concentrating our observations to the boundaries, let us
first remark thatf(0) = 0 € Tk, (0). At the boundary:; = x5 Nagumo’s conditions require

filz) > fo(x)

—ax, > —bxy
ar; < bxsy
axry < bxq, T =x+2
(6.18) a <b, 1 >0

which is the same type of conditions as that obtained on the previous models. Examining the
frontier o = 0 yields
fo(z) =0
—bxy >0
0>0, x9 =10
(6.19) a,beR.
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Since the initial restrictions on the coefficients is more restrictive, we remainayith> 0
at this boundary. As such, the conditions of Nagumo’s theorem are met throughauten
0<a<hb.

6.4.2. Winning cone is defined bi,. The only subset remaining to investigate for this cone
and this model is thiower boundary. From table 5.1 we have

fi(z) > —fo(w)

—axy > brs
—axy > b(—x1), Ty = —X
(6.20) a<b, —x1 <0

which together with equatiof (6.]18) once more sets the Nagumo conditibs to < b.

6.4.3. Winning cone is defined kiy;. Analysis of the boundary at; = 0 can easily be seen to
always satisfyf; (z) > 0 and therefore provides no addition conditions to equafion|6.18). The
restrictions on the coefficients are therefore the same as that ahd .

6.4.4. Winning cone is defined bi(,. The inspection of the behavior of the system at the
“Upper” boundary yields:

fi(z) >

—axr; >

ar; <

(6.21) “< 0

Here againf,(0) = 0 at the lower boundary anfl (6]21) is the only additional restriction for the
viability of the model.

b7 x1:x2>0.

6.5. Morse and Kimball. With the introduction of operational losses, secfion 3.1.5 presented
the following model by Morse and Kimball.

dx

d_tl = —axy — fry, x(0) =x0
de‘Q - —b _

di = X1 AT

wherea, b, «, 5 > 0. This model yields for the right hand side of equation](4.1)
fi(x) = —azy — B,

fa(x) = =bxy — auy

) ={

wherex = (x4, z3).
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6.5.1. Winning cone is defined biy;. The first point to consider is the behavior at the origin.
As f(0) = 0 € Tk(0), the condition’s of Nagumo’s theorem are met for all values of coef-
ficients @, b, o, 5). Again, using the results compiled in sectfon]5.5 exploration ofuihyeer
boundary reveals
fi(z) > fa(w)

—axry — fr1 > —br1 — axs

—(a+ B)x1 > —(b+ a)xy, T = Iy
(6.22) a+p<b+a.

At the remaining frontier of<;, the requirement is
fa(x) >0
—bxry —azy >0
—bx, > 0, T9 =0
—b >0, x>0
(6.23) b<0

which is impossible since the model stipulaties; 0. There is therefore no conditions on the
coefficients that would makg(z) viable onK; for the model of Morse and Kimball.

6.5.2. Winning cone is defined bly,. As for the previous models, the only variation between
cones is at théower boundary. Starting with the general condition

fi(z) = = falx)

—axy — Br1 > by + axs

—a(—my) — Py > by + a(—x1), Ty = —X;
(a—B)xy > (b—a)x;
(6.24) a—pF>b—a, xp > 0.
Combining the conditions imposed by all the boundaries,
a—b<a—p, from (6.22)
a—b>p3—a, from (6.24)
(6.25) la — bl < a—p.

As a direct consequence, it is clear that 5 > 0. As a conclusionf(z) will be viable in K,
if |a — b] < o —  which is equivalent to sayin@x — 3,a — b) € K.

6.5.3. Winning cone is defined by;. By increasing the viable set 193, the viability condition
becomes

fi(z) =0
—axy — fry >0
—axy > 0, r1 =0
—a <0, To <0
(6.26) a>0

which does not further restrain the range of viable coefficients. The only remaining requirement
to Nagumo'’s theorem is therefore stated by equation 6.22.
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6.5.4. Winning cone is defined bi,. The inspection of the behavior of the system at the
“Upper” boundary yields:

1'1(0)

e 2 2 o
(—azz — Ba1) > 2(8; (—bwy — azzs)
—(a+B)1y > —228; (b+ a)z1, vy = 1
(6.27) atp< 2%8; (b+a), 71> 0,

The lower boundary yields the same result asA@rand as such, the viability conditions are
those expressed by (6]27).

6.6. Coleman. This model, from sectiop 3.1.6, introduced another aspect of battle: the rein-
forcements.

d

o —axry — bry + Ry, x(0) =z
dt

dx

d_t2 = —CI1 — dIQ + R;BQ

wherea, b, ¢,d > 0 andR,,, R,, can be either positive or negative and are generally considered
to be step functions . This model yields for the right hand side of equétign (4.1)
fi(z) = —ax; — brs + Ry,
flz) = _
fo(x) = —cxy — drs + Ry,

wherex = (x4, z3).

6.6.1. Winning cone is defined by,. To begin the analysis considgf0). SinceT, (0) = K;

this implies that viability requires that reinforcements when both forces are at the brink of
annihilation be such that < R,, < R,,. Let us turn our attention to thegpperboundary of

K;.

filz) = fo(x)
—axy — bry + R, > —cxy —dxs + Ry,
—(a+b)r1 + Ry > —(c+ d)x1 + Ry, T = T

(a+b)xy < (c+d)z1+ Ry, — Ry,
(a+b—c—d)r; < R, — Ry,
R, — R,,
(6.28) (a+b—c—d) < ————=2, x> 0.
I
To continue the analysis, first consider the situation where < R,,. Sincex; € (0,00)
it would be required that + b — ¢ — d < —oo which means that no value af b, ¢, d could
guarantee Nagumo's condition in this case. The model must than be restridied to R,.,

which has for consequence that,, . R"%ﬁ” = 0. Applying this to equatior (6.28) results
in

(a+b—c—d) <0
(6.29) a+b<c+d.
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We have yet to examine the behavior of the system alotiver boundary where we require

fa(z) =20
—cry —dro+ Ry, >0
—cx1 + Ry, >0, To =10
(6.30) R, > cx;

although mathematically possible, in practice, such a condition could require the opponent to
commit and have an astronomical amount of forces in reserve.

6.6.2. Winning cone is defined biy,. The results stated at equatijn (§.29) are obviously still
valid. Turning our attention to the boundary whete= —x,:

fi(z) > —fo(w)
—ax; —bre + R, > cxy +dry — Ry,
—azy + bry + Ry, > cvy — dxy — Ry, To = —2X1
(b—a+d—c)xy > —R,, — Ry,
(a—b+c—d)xy <R, + Ry,
Ryy + Ry,

T

(6.31) a—b+c—d< xp > 0.

We must again consider two casesRHlf, + R,, < 0 then, using the same reasoning as that of
sectior] 6.6 ]1, it is impossible to determine satisfactory coefficients. We must therefore impose
the restrictionR,, + R,, > Oresultingina —b+c¢—d < 0.

Putting all this together fok,; we conclude that fof (x) to be viable, it is also required that
R,, > R,,, R, + R,, > 0 which is equivalent taR,,| < R,, (i.e. (R.,, R.,) € K3). In
addition, the coefficients must satigty— ¢| < d — a (i.e. (d — a,b — ¢) € K5).

6.6.3. Winning cone is defined bys. As for the previous models, itis only required to examine
the behavior of the system at the boundary where- 0. As per tabl¢ 5]1

filz) =0
—ary —bre+ R,y >0
—bxry + R,, >0, 1 =0

bry < Ry,

R.,

T2

(6.32) b>

£U2<O.

To remain viable inK3 the system must be such that whenever= 0 thenb >

Ray
Additionally from equation[(6.29) it is required th&f,, > R,,. "
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6.6.4. Winning cone is defined bi,. The inspection of the behavior of the system at the
“Upper” boundary yields:

v

fi()

—ax; — by + Ry >

—(a+b)x1+ Ry, > — —R T, = To

21(0) _ z1(0)
2(0) (c+d))x1 < Ry, 2(0)

z1(0

ZL’1(O) RfBl - z2(0
- c+d) <

LIZ‘Q(O)( ) T

((a+b)xy —

—

=

(6.33) (a +b)

Again, in this case, the denominator of the right hand side must be positive. Considering the
lim,, .., we obtain:

21(0)
1'2(0)

(6.34) (a+0b) < (c+d)

to guarantee viability.

6.7. Hembold. To deal with inefficiency of scale, Hembold (see secfion 3.1.7) introduced the
model:

dx x

d_tl = —ag(x—;)xz, z(0) = o
dl’g . To

% = —bh(xl )371

wherea,b > 0 while g(.),h(.) > 0 andg(1) = h(1) = 1. Accordingly, the right hand side of
equation|(4.1) is defined by

fil@) = —ag(T)r,
f@) =
fala) = ~bh(3?

Il)xl
wherex = (x4, 23).
Although in general the model does not require so, most attempt at applying it consider
g = h. Hembold himself focused his interest o) = h(;) = (1)°.

6.7.1. Winning cone is defined bi;. In a first step, considef(0). As it currently stands,
the value is undefined. To overcome this, we will consider a modificatiof{:tp such that
f(0) = 0 and consequently(0) € Tk (0). At the upperboundary, the conditions are such that
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we must have

—ag(—~)ay 2 —bh(x—l)ﬂfl
ag(i—; Ty < bh(i—j)xl
x x
ag(x—i):cl < bh(x_i)xl’ T = Tg
ag(1)zy < bh(1)z
ary < bry, g(l)="h(1)=1
(6.35) a<b, x1 >0

which, not surprisingly, is similar to the results in secfiorj 6.1. At the remaining boundary set,

fo(z) >0

_bh(ﬁ)fl >0

T
X
bh(x—Q)a;1 <0

1
(6.36) bh(22) <0, 21 > 0,
g

We must therefore have that eithier= 0 or £(32) = 0 and sinceb > 0 we conclude that
we must have:(72) = 0 wheneverz, = 0 (i.e 2(0) = 0). Combining this with the results
expressed at equatidn (635) we have that the system is viahlewhena < b andh(0) = 0.

6.7.2. Winning cone is defined by,. To verify viability in K5, we need to verify the behavior
of f(z) at the cone’dower boundary where we need

—ag(m—)xg > bh(ﬁ x
X2 x
—
—ag(_—;l)(—xl) > bh(x_11>x1’ Ty = —T1
ag(—1) > bh(-1), x1 >0
a _ h(-1)
6.37 - > , b>0,g(—1 0.

However, in most applicatiop = h and we have! > 1 which, when combined with equation
(6-33) yieldsl < ¢ < 1 which restricts viability to the case= b.

6.7.3. Winning cone is defined kiy;. The interest in this cone is that its lower boundary rarely
generates additional constraints for viability. This the case for this model as we can see by
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verifying that the last condition in tabfe $.1 is met:

(6.38) ag(—) >0, xe <0

and since we have from the model definition> 0 andg(.) > 0 we can remark that no
additional restrictions are generated. Therefore for the system to remain vidblatiauffices
to have) < a < b.

6.7.4. Winning cone is defined bi,. The inspection of the behavior of the system at the
“Upper” boundary yields:

(6.39) a<

As the lower boundary does not bring about any additional conditions, viability is dependant
on:

ZE1<O)

6.40 0<a< b.
(6.40) = 50
6.8. Weiss. This section’s model is expressed by:
dx T
d_tl = —a(x—;)l_WxQ, z(0) = xg
d(L’g To\1-w
TE— p(=22
dt (Il) o

wherea, b > 0. Accordingly, the right hand side of equati¢n (4.1) is defined by

file) = —a()' Wy
f(z) = T2 1o
fo(z) = —b(x—l)l 1

wherez = (x1, z5).
We will not carry any further analysis of this model except to say that if we {etl — W,
Weiss’ model can be viewed as a specialization of Hembold's presented in secfion 6.7.
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6.9. Schreiber. The Schreiber model deals with the efficiency of command and is expressed
mathematically by:

de‘l { 1T } (0)
— = —Q 5 xr =T
dt 1'170 — 61,2 (xl,O — Il) 0

dxo { T1T2 }
2y
dt To0 — €z, (T20 — T2)

wherea, b > 0 ande,,, e, € [0, 1]. Accordingly, the right hand side of equati¢n (4.1) is defined

by
_ 1T
f1(517) - {xl,o — €, (551,0 - 331) }

_ T1T2
fg(x) =0 {1’2,0 - €x1($2,0 - $2) }

6.9.1. Winning cone is defined bf,. It is clear thatf(0) = 0 and thereforef (0) € Tx(0).
Applying again the results presented in tgblg 5.1, atghgerboundary

{ }
:C2,0 6331 (‘1.2,0 x2)

—b(x1,0 — €y (10 — 1)), T =29 >0
b(fl,o - 6952(961,0 - $1))
T1,0 — €ay (131,0 - 551)
T2.0 — €x1($2,0 - «751)7
(1 —ey,)x10+ €271
(1 —ey,)T20+ €221

It can be verified that the right hand side of the last inequality in a monotone functien of

fz) =

wherez = (x, z5).

—
Y

{ T1T2
—a
T1,0 — 612(371,0 - lUl)
—&(5132,0 - exl(l’z,o - 1‘2)
)

a(T20 — €y (T20 — T2

IN IV

IN

b>0,r; =29

2 oIS

N

(6.41)

S§
|

Sincelim,, ... = = and thaflim,, o = % we obtain for a restriction on the coeffi-
] T1 )
cients:
x 1_ x
(6.42) @ (e_w)
b~ @i>0\ ey (1—e)T20

It is interesting to note that the conditions on the coefficients are dependant on the value of
Let us now consider what is happening at the boundary whete 0:

fo(z) >0

—b{ 112 } >0
T2,0 — €x4 ($2,0 - 962)
(6.43) 0>0, e =10

which of course is always true. A consequence of this and considering the symmetrical problem
by interchanging:; andz,, we can conclude that any solution to the Cauchy problem whgre

is in the first quadrant never leaves the quadrant. Since all applications of combat models start
within the first quadrant (reality has it that negative forces are hard to come by) it is unnecessary
to pursue any cones extending outside for purpose of viability and are only left with the analysis
at K, “Upper” boundary.
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6.9.2. Winning cone is defined bi,. The inspection of the behavior of the system at the
“Upper” boundary yields:

>
fl(x) - ZEQ(O)fQ(x)
—a { T1T2 } > _Il(O) b { 1% }
L1,0 — Cay (951,0 - 371) 1'2(0) T2.0 — €x1(iﬂ2,o - 9132)
z1(0
—a(xa — €z, (T20 — T2)) > — i >b($1,0 — ez, (T10 — 1)), Ty =29 >0
1'2(0)
z1(0
a(T2,0 — €4y (20 — x2)) < xl(o)b(xl,o — €4, (210 — 1))

2

a
2 < '
b ™ x2(0) (1 — ey, )xa0 + €4,21

(6.44)

(6.45) @ 0 5 (_ M) |
b e (1— eml)x2,0

6.10. Variable coefficients. The previous analysis provided some insights on the use of vi-
ability with Lanchester type models. We now consider the “less restrictive” case where the
coefficients involved are variable in time. These systems are considered less restrictive as the
conditions imposed on the coefficients need only be met when the boundaries are reached. As
these models represent war scenarios, we will only inspect their behavior at the “Upper” bound-
ary. The work is presented for a few examples and the compiled results are then given in table
format.

6.10.1. Aimed fire. Considering the model presented in secfion 8.1.1 and replacing the coeffi-
cients by variable ones we get

dx

d_tl = —a(t)re, x(0)=xg
dx

o = hm

In the case of{;, the conditions at the “Upper” boundary become

=R
B
S—

fi(z)
—a(t)xe > —

b(t).’l?l
b(t),
(t)-

Here, as we are not dealing with constant coefficients, there is no reason to require that this
condition be met for alt € R.. It is therefore only necessary to han&) < b(t) when

~

~— ~— N

r1 =x9 >0

Q

I
—~
~+

IN IV IV IV
=

(6.46)
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| Model | K110 K3 | Gaining cone
Aimed Fire | a(t) < b(t) a(t) < ZB(t)
Area Fire | a(t) < b(t) a(t) < ‘”;Egb(t)
Brackney | a(t) < b(t) a(t) < 2B(t)
(Modified)
Peterson | a(t) < b(t) a(t) < 28b(t)
Morse a(t) + B(t) <b(t) +alt) | alt)+ (1) < ZF () + alt)
and Kimball
Coleman | (a(t) + b(2)) — (c(t) + d(8)) | (a(t) + b(2)) — (c(t) + d(?))
Ray (t)+Ray (1) < 2Ot OFFa, (1)
— xl(t) xz(o)zl(t)
Hembold | a(t) < b(t) a(t) < 2Op(¢)
Schreiber a(t) < (I—ezy)r1(0)+ex,z1(f) a(t) < 552(((;)(1 ezy)r1(0)+ez,x1(7)
(t) — (1—ezy)z2(0)+ex z1(t) b(t) — x2(0) (1—exy)x2(0)+es; x1(t)

Table 6.1: Viability conditions for variable coefficients models

x1(t) = z2(t) > 0. In the case of{,, we obtain

b(t), Ty =29 >0

(6.47) a(t) <

And once more, this condition only has to be met wheft) = z»(t) > 0.

6.10.2. Hembold. Modifying the model of section 3.7.7 with variable coefficients, it becomes
d$1

X1

= a9y 2(0) = g
d$2 X2
o - R )m

and considerindy, viability conditions become

filz) = fo(x)

—wm%mz¢mm>
—a(t)g(1) > —b(t)A(1), t =15 > 0
—a(t) > —b(1), g(1) = h(1) =
(6.48) alt) < b(t).

It is interesting to note that again, with this choicenohning conethe system'’s viability con-
ditions are exactly those of the Aimed fire model at this boundary.
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6.10.3. Compiled results for variable coefficient¥he work for the determination of the vi-
ability conditions for the remaining variable coefficients models and cones in omitted but the
results for each of them is given in table]6.1.

6.11. Comments. In this section, we have looked at various Lanchester type models to exam-
ine the restrictions on the coefficients tigalaranteevictory for one side. Thiguaranteewvas
established through the verification of viability using the notiowofning cone This analysis
method provided us with conditions to meet on the Lanchester coefficients to lead one side to
victory. We will now proceed to the study of those models through optimal control by viability.

7. OPTIMAL CONTROL BY VIABILITY

In combat situations, as for many others, the control over variables is of a discrete nature. For
example, the decision as to whether or not artillery should be brought to bear, reinforcements
committed to battle or simply to rest the troops in order for them to recuperate.

These decisions have an impact either on their effectiveness in combat or in their number,
resulting in changes in the variables at play in the models used. Optimal Control in such cases
shouldn’t be about minimizing/optimizing a function but should rather reflect the reality being
modelled. That is wher®ptimal Control by Viabilityprovides us with interesting tools.

With the application of viability concepts, the set of desired states can be defined, such as our
winning conesand the conditions for viability determined. Once these conditions are known,
the evolution of the dynamical system can be studied andtbraentsvhen they will become
unsatisfied can be established. This identifies the situations/states at which control must be
applied to ensure continued viability. This process is what welatiimal Control by Viability

Given the reality to which models such as Lanchester types are applied, it is more appropriate
to consider this type of optimal control then that commonly defined.

7.1. Optimal control by viability of Lanchester type models. In the previous work presented
in this article, conditions have been developed to make the systems viable for the respective
cones. However, for optimal control by viability, we are interested in using these conditions to
determine the momefit at which the system will cease to be viable.

Let us consider, for example, the Aimed Fire model. In the case of fixed coefficients, it is a
somewhat simple process.df< b, the model is forever viable while if > b, then we need to
find T" such thate, (T") = z5(T).

The variable coefficients case is more interesting. As the coefficients vary over time, we need
to identify the timeT” such that(7") > b(7) andx(T) = z»(T). It no longer suffices to look
at the coefficients to determife

From an optimal control by viability point of view we are interested in

(7.1) inf{{t € Ry |a(t)>bt)} N{t € Ry |a1(t) =x2(t)} } .

This represents the moment when a new control scheme must be employed. For the Lanchester
type models, it may represent a moment when engagement should be broken to allow troops
to rest, or a time to change the type of forces employed, or a time to apply other tactical tools
available to the commander. In either case, this represents a moment of decision taking. For the
various models presented herein, the decisions tifhean be determined from taljle 5.1 and
are given in tablg 7]1 for the “Upper” boundaries of the winning cones.

It is clear thatOptimal Control by Viabilitycloser models the real system and how effects
are generated by the participants. Models using such a concept provide and excellent decision
making assistance tool as well as a mean of studying the various effects of command decisions.
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| Model | Decision time

Aimed Fire |inf {{t e Ry |a(t) > b(t)} N {t € Ry [1(t) = 22(})
AreaFire |inf{{t € Ry |a(t) >b(t)} N{t € Ry |zi(t) = 25(t)
Brackney |inf{{t € Ry |a(t) >b(t)} N{t € Ry|zi(t) = 22(t)

~

N1 [ N S
N1 [N N W

(Modified)

Peterson [inf{{t € Ry[a(t) >b(t)} N {t € Ry |z1(t) = 22(t)
Morse inf {{t € Ry |alt) + B(t) > b(t) + a(t)}

and Kimball N{t e Ry |z1(t) = 22(t) } }

Coleman |inf {{t e R, | (a(t) +b(t)) — (c(t) +d(t)) > Rzl(t)+Rzg(t)}

z1(t)
N{t e Ry [z1(t) = 22(t) } }
Hembold |inf{{t e Ry [a(t) >b®)}N{t e Ry [z (t) = a5(t)}}

Schreiber | inf {{t €R, | % > (1_6”72)“(0”8‘”2"”1“)}

(1—ezq)x2(0)+esq z1(t)

N{t e Ry [z1(t) = z2(t)} }

Table 7.1: Viability conditions for variable coefficients models

8. CONLUSION

In this article we have introduced the new concepWéhning Coneand have seen how it
can be applied to dynamical systems such as the Lanchester type models for combat. Noting
that these models are used in other areas (such as economy, biology ...) and that other dy-
namical systems can also employ the notion of winning cone, this concept has a wide range of
application.

Following the above analysis, we have introduced the idegapiimal Control by Viability
We have seen how combining this notion with thaMdihning Conegenerated a very useful
tool in Command and Control. We will develop this idea in a next paper.

To this point, we have not addressed the issue of the difficulty in determining the Lanchester
coefficients raised in the introduction (see [6],[5]). This is the subject of our next article. In this
second part we will show homterval Analysis, Differential Inclusions, ViabiligndOptimal
Control can be used together to resolve this issue.
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