GENERALIZATIONS OF TWO THEOREMS ON ABSOLUTE SUMMABILITY METHODS

H. S. ÖZARSLAN AND H. N. ÖGDÜK

DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, 38039 KAYSERI, TURKEY

neyhan@erciyes.edu.tr
nogduk@erciyes.edu.tr

URL: http://fef.erciyes.edu.tr/math/hikmet.htm

ABSTRACT. In this paper two theorems on $|A, p_n; \delta|_k$ summability methods, which generalize two theorems of Bor [2] on $|N, p_n|_k$ summability methods, have been proved.

Key words and phrases: Absolute summability, summability factors, infinite series.

2000 Mathematics Subject Classification 40D15, 40F05, 40G99.

ISSN (electronic): 1449-5910
© 2004 Austral Internet Publishing. All rights reserved.
1. INTRODUCTION

Let \(\sum a_n \) be a given infinite series with the partial sums \((s_n) \), and let \(A = (a_{nv}) \) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then \(A \) defines the sequence-to-sequence transformation, mapping the sequence \(s = (s_n) \) to \(As = (A_n(s)) \), where

\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v, \quad n = 0, 1, \ldots
\]

The series \(\sum a_n \) is said to be summable \(|A|_k, k \geq 1 \), if (see [5])

\[
\sum_{n=1}^{\infty} n^{k-1} |\Delta A_n(s)|^k < \infty
\]

where

\[
\Delta A_n(s) = A_n(s) - A_{n-1}(s).
\]

Let \((p_n) \) be a sequence of positive numbers such that

\[
P_n = \sum_{v=0}^{n} p_v \rightarrow \infty \quad \text{as} \quad n \rightarrow \infty, \quad (P_{-i} = p_{-i} = 0, i \geq 1).
\]

The sequence-to-sequence transformation

\[
t_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v
\]

defines the sequence \((t_n) \) of the \((\bar{N}, p_n) \) mean of the sequence \((s_n) \), generated by the sequence of coefficients \((p_n) \) (see [3]). The series \(\sum a_n \) is said to be summable \(|\bar{N}, p_n|_k, k \geq 1 \), if (see [1])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |t_n - t_{n-1}|^k < \infty,
\]

and it is said to be summable \(|A, p_n|_k, k \geq 1 \), if (see [14])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |\Delta A_n(s)|^k < \infty.
\]

We say that the series \(\sum a_n \) is summable \(|A, p_n; \delta|_k, k \geq 1 \) and \(\delta \geq 0 \), if

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |\Delta A_n(s)|^k < \infty.
\]

In the special case when \(\delta = 0 \), \(|A, p_n; \delta|_k \) summability is the same as \(|A, p_n|_k \) summability. Also if we take \(\delta = 0 \) and \(a_{nv} = \frac{P_v}{P_n} \), then \(|A, p_n; \delta|_k \) summability is the same as \(|\bar{N}, p_n|_k \) summability.

Let \(f(t) \) be a periodic function with period \(2\pi \) and integrable \((L) \) over \((-\pi, \pi)\). Without any loss of generality we may assume that the constant term in the Fourier series of \(f \) is zero, so that

\[
\int_{-\pi}^{\pi} f(t) dt = 0
\]
and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{n=1}^{\infty} A_n(t).$$

It is well known that the convergence of the Fourier series at \(t = x \) is a local property of \(f \)
(i.e., depends only on the behaviour of \(f \) in an arbitrarily small neighbourhood of \(x \)), and so the
summability of the Fourier series at \(t = x \) by any regular linear summability method is also a
local property of \(f \).

Bor [2] has proved the following theorems for \(|\bar{N}, p_n|_k \) summability methods.

Theorem 1.1. Let \(k \geq 1 \). If the sequence \((s_n) \) is bounded and \((\lambda_n) \) is a sequence such that

\[
(1.8) \quad \sum_{n=1}^{m} \frac{p_n}{P_n} |\lambda_n|^k = O(1) \quad \text{as} \quad m \to \infty
\]

and

\[
(1.9) \quad \sum_{n=1}^{m} |\Delta \lambda_n| = O(1) \quad \text{as} \quad m \to \infty,
\]

then the series \(\sum a_n \lambda_n \) is summable \(|\bar{N}, p_n|_k \).

Theorem 1.2. Let \(k \geq 1 \). The summability \(|\bar{N}, p_n|_k \) of the series \(\sum A_n(t) \lambda_n \) at a point is a
local property of the generating function if the conditions \((1.8) \) and \((1.9) \) are satisfied.

2. The main results.

The aim of this paper is to generalize above theorems for \(|A, p_n; \delta|_k \) summability methods,
where \(k \geq 1 \) and \(\delta \geq 0 \). Before stating the main theorem we must first introduce some further
notation.

Given a normal matrix \(A = (a_{nv}) \), we associate two lower semimatrices \(\bar{A} = (\bar{a}_{nv}) \) and
\(\hat{A} = (\hat{a}_{nv}) \) as follows:

\[
(2.1) \quad \bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \ldots
\]

and

\[
(2.2) \quad \hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \ldots
\]

It may be noted that \(\bar{A} \) and \(\hat{A} \) are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

\[
(2.3) \quad A_n(s) = \sum_{v=0}^{n} a_{nv}s^v = \sum_{v=0}^{n} \bar{a}_{nv}\bar{a}_{v}
\]

and

\[
(2.4) \quad \Delta A_n(s) = \sum_{v=0}^{n} \hat{a}_{nv}\bar{a}_{v}.
\]

Now, we shall prove the following theorems.
Theorem 2.1. Let $k \geq 1$ and $0 \leq \delta < 1/k$. Let (s_n) be a bounded sequence and suppose that $A = (a_{nv})$ is a positive normal matrix such that

\begin{align*}
(2.5) & \quad a_{n-1,v} \geq a_{nv}, \text{ for } n \geq v + 1, \\
(2.6) & \quad \bar{a}_{no} = 1, \text{ for } n = 0, 1, \\
(2.7) & \quad a_{nn} = O\left(\frac{p_n}{p_v}\right),
\end{align*}

and

\begin{align*}
(2.8) & \quad \sum_{n=v+1}^{\infty} \frac{P_n}{p_n} \delta^k |\Delta_v(\hat{a}_{nv})| = O\left\{ \frac{(P_v)}{p_v} \delta^{k-1} \right\} \\
(2.9) & \quad \sum_{n=v+1}^{\infty} \frac{P_n}{p_n} \delta^k |\hat{a}_{n,v+1}| = O\left\{ \frac{(P_v)}{p_v} \delta^k \right\}.
\end{align*}

If a sequence (λ_n) holds the following conditions,

\begin{align*}
(2.10) & \quad \sum_{n=1}^{\infty} \frac{P_n}{p_n} \delta^{k-1} |\lambda_n|^k < \infty \\
(2.11) & \quad \sum_{n=1}^{\infty} \frac{P_n}{p_n} \delta^k |\Delta \lambda_n| < \infty,
\end{align*}

then the series $\sum a_{n}\lambda_n$ is summable $|A, p_n; \delta|_k$.

Theorem 2.2. Let $k \geq 1$ and $0 \leq \delta < 1/k$. The summability $|A, p_n; \delta|_k$ of the series $\sum A_n(t)\lambda_n$ at a point is a local property of the generating function if the conditions (2.5)-(2.11) are satisfied.

It may be remarked that, if we take $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$ in Theorem 2.1 and Theorem 2.2, then we get Theorem [1.1] and Theorem [1.2] respectively.

3. PROOF OF THEOREM 2.1

Let (T_n) denotes A-transform of the series $\sum a_{n}\lambda_n$. Then we have, by (2.3) and (2.4),

$$\Delta T_n = \sum_{v=0}^{n} \hat{a}_{nv} a_{v}\lambda_v.$$

Applying Abel’s transformation to this sum, we get that

$$\Delta T_n = \sum_{v=0}^{n-1} \Delta_v(\hat{a}_{nv})\lambda_v s_v + \sum_{v=0}^{n-1} \hat{a}_{n,v+1} \Delta \lambda_v s_v + a_{nn} \lambda_n s_n = T_n(1) + T_n(2) + T_n(3), \text{ say.}$$

Since

$$|T_n(1) + T_n(2) + T_n(3)|^k \leq 3^k([T_n(1)]^k + [T_n(2)]^k + [T_n(3)]^k),$$

to complete the proof of Theorem 2.1 it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{P_n}{p_n} \delta^{k+1} |T_n(r)|^k < \infty \text{ for } r = 1, 2, 3.$$
Since \((s_n)\) is bounded, when \(k > 1\), applying Hölder’s inequality with indices \(k\) and \(k'\), where \(\frac{1}{k} + \frac{1}{k'} = 1\), we have that

\[
\sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |T_n(1)|^k \leq \sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v||s_v| \right\}^k
\]

\[
= O(1) \sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k \right\} \times \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})| \right\}^{k-1}.
\]

Since

\[
\Delta_v(\hat{a}_{nv}) = \hat{a}_{nv} - \hat{a}_{n,v+1}
\]

\[
= a_{nv} - a_{n-1,v} - a_{n,v+1} + a_{n-1,v+1}
\]

\[
= a_{nv} - a_{n-1,v},
\]

by using (2.5) and (2.6)

\[
\sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})| = \sum_{v=0}^{n-1} (a_{n-1,v} - a_{nv}) = 1 - 1 + a_{nn} = a_{nn},
\]

we get

\[
\sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |T_n(1)|^k = O(1) \sum_{v=0}^{m} |\lambda_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} |\Delta_v(\hat{a}_{nv})|
\]

\[
= O(1) \sum_{v=0}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k - 1} |\lambda_v|^k
\]

\[
= O(1) \text{ as } m \to \infty,
\]

by virtue of the hypothesis of Theorem 2.1.

Again using Hölder’s inequality,

\[
\sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |T_n(2)|^k \leq \sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v||s_v| \right\}^k
\]

\[
= O(1) \sum_{n=1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})||\Delta \lambda_v| \right\} \times \left\{ \sum_{v=0}^{n-1} |\Delta_v(\hat{a}_{nv})| \right\}^{k-1}.
\]
Taking account of (2.5) and (2.6) we have, for \(1 \leq v \leq n - 1\),
\[
\hat{a}_{n,v+1} = a_{n,v+1} - a_{n-1,v+1} = \sum_{i=v+1}^{n} a_{ni} - \sum_{i=v+1}^{n-1} a_{n-1,i}
\]
\[
= 1 - \sum_{i=0}^{v} a_{ni} - 1 + \sum_{i=0}^{v} a_{n-1,i}
\]
\[
= \sum_{i=0}^{v} (a_{n-1,i} - a_{ni}) \leq \sum_{i=0}^{n-1} (a_{n-1,i} - a_{ni}) = 1 - 1 + a_{nn} = a_{nn},
\]
where
\[
\sum_{i=0}^{v} (a_{n-1,i} - a_{ni}) \geq 0.
\]

Thus,
\[
\sum_{n=1}^{m+1} \left(\frac{P_{n}}{p_{n}} \right)^{\delta k+k-1} |T_{n}(2)|^{k} = O(1) \sum_{v=0}^{m} |\Delta \lambda_{v}| \sum_{n=v+1}^{m+1} \left(\frac{P_{n}}{p_{n}} \right)^{\delta k} |\hat{a}_{n,v+1}|
\]
\[
= O(1) \sum_{v=0}^{m} \left(\frac{P_{v}}{p_{v}} \right)^{\delta k} |\Delta \lambda_{v}| = O(1) \quad \text{as} \quad m \to \infty,
\]
by virtue of the hypothesis of Theorem 2.1.

Finally, we have that
\[
\sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}} \right)^{\delta k+k-1} |T_{n}(3)|^{k} = O(1) \sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}} \right)^{\delta k-1} |\lambda_{n}|^{k} = O(1) \quad \text{as} \quad m \to \infty,
\]
by virtue of the hypothesis of Theorem 2.1.

Therefore, we get that
\[
\sum_{n=1}^{m} \left(\frac{P_{n}}{p_{n}} \right)^{\delta k+k-1} |T_{n}(r)|^{k} = O(1) \quad \text{as} \quad m \to \infty, \quad \text{for} \quad r = 1, 2, 3.
\]
This completes the proof of Theorem 2.1.

4. Proof of Theorem 2.2

Since the behaviour of the Fourier series for a particular value of \(x\), as far as convergence is concerned, depends on the behaviour of the function in the immediate neighbourhood of this point only, Theorem 2.2 is a necessary consequence of Theorem 2.1.
REFERENCES

