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ABSTRACT. lItiswell-known that for sufficiently smooth integrands on an interval, numerical in-
tegration can be performed stably and efficiently via the classical (polynomial) Gauss quadrature
formulae. However, for many other sets of integrands these quadrature formulae do not perform
well. A very natural way of avoiding this problem is to include a wide class among arbitrary
functions (not necessary polynomials) to be integrated exactly. The spline functions are natural
candidates for such problems. In this paper, after studying Gaussian type quadrature formulae
which are exact fosplinefunctions and which contain boundary terms involving derivatives at
both end points, we present a fast algorithm for computing their nodes and weights. It is also
shown, taking advantage of the close connection with ordinary Gauss quadrature formula, that
the latter are computed, via eigenvalues and eigenvectors of real symmetric tridiagonal matrices.
Hence a new class of quadrature formulae can then be computed directly by standard software
for ordinary Gauss quadrature formula. Comparative results with classical Gauss quadrature
formulae are given to illustrate the numerical performance of the approach.
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2 ALLAL GUESSAB

1. INTRODUCTION AND MOTIVATIONS

Many commonly quadrature formulae consist of approximating the integrand by a polyno-
mial and then integrating this polynomial exactly. For integrand functions that are better ap-
proximated by polynomials, the classical (polynomial) Gaussian quadrature formulae (i. e.,
those which integrate polynomials of maximum possible degree) have traditionally been more
finding a stable, reliable and, more importantly, inexpensive procedure for their construction is
still open. Recently, Ma, Rokhlin and Wandzural[19] have presented a numerical algorithm for
the construction of Gaussian quadrature formulae for systems of arbitrary functions, but their
method, which requires the solution of large nonlinear systems, lacks the rapid convergence and
elegance of the polynomial case.

Spline functions are piecewise polynomials which satisfy certain continuity constraints at the
joints (called the ‘nodes’ of the spline). They can be represented in a compact way using the
so-called B-splines. An advantage of spline quadrature formulae over classical polynomials
methods is that they make it possible to use irregular (adaptively derived) refinement of the
mesh, which allows to branch more points in places where the integrand is not smooth and use
less points where it is. They often help to find a fast and accurate evaluation, differentiation or
integration, see [6] and [28].

This paper studies quadrature formulae which haweaaimum degree of exactngsbbr.

MDE) and that integrate many monomials and some spline functions exactly, it presents a rapid
algorithm for their computations. This approach does not seem to have beenmuwnsedcally

in the literature. An exception is [24], where the simplest cases of ordinary splines of degree
1 with arbitrary nodes and degré@efor the case of equidistant nodes are considered. For the
general case, surprisingly no efficient algorithm is known to compute such quadrature formulae.

Let n andr be positive integerdVl = (my, ..., m,.) a vector of integers with < m; < n,
i=1,..,r,andA = (¢, ..., () asequence of nodes with

—1=(1<( <...<( <(py =1L

LetS(P,._1; A; M) be the linear space of spline functions of degtee 1 (n > 1) with nodes
¢y, -+, ¢, having multiplicitiesm, ..., m, respectively. That is, ever§ € S(P,—1; A;M) is a
polynomial with real coefficients and of degree- 1 in each of intervals

(_007 CO) ) [CO? Cl) PRRES} [Cr+17 OO) )

and S belongs toC" ™! in a neighborhood of, but not inC"~™:. It follows that anyS €
S(P.-1; A; M) has a representation of the form

n—1 room;

St = at' + > byt -

=0 i=1 j=1

where all the coefficients; andb;; are real numbers and — ¢;)7 is the truncated power
defined agt — ¢,)" 7 if t > ¢,, and zero otherwise.
Letn, k,r, s,my, ma,...,m, be given such that > 1 and

(1.1) 2s ::n—i—Zmi,
i=1

it is well known that, for fixed(,, ..., (,, the linear spac&(P,_1; A; M) is of dimension2s
(see, for example, [16]).
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In this paper, we propose to compute the nodgs= z; ;(do; A; M), the weights\; ; =
Ais(do; A; M) andw; s = w; s(do; A; M) (provided they exist) of the general quadrature for-
mula

[Lf®)do = Qus(f;do; A; M) + Ry (f; do; A; M)

(1.2) ; !
— ; )\i,sf(xz;s) + ;mej(f) + Rk’,s(f; do: A: M)7

which integrates each element of the spline sg&(@®, . ,_1; A; M) exactly, that is,

1 S k
[ 1®do =3 nf@) + 3 winCir) V€ S(Passii AM),
-1 i=1 j=1

Here and subsequently;, [ = 1, ..., k, are given linear functionals of the form

q—1 qg*l
(1.3) Ci(f) =Y amf™ (=) + Y bpfP1), =1,k
m=0 p=0

In analogy with some well-known polynomial case |[11], we call these functioyeteral-

ized Gauss-Lobatto-Birkhoffjuadrature formulae for spline functions. Indeed, sidge=

n+ Y ._, m;, the MDE(Q ) is equal to the number of “free” parameters appearing)pn,

and that in the limit case = 0 (i. e. ordinary polynomial case) choosing appropriately the
functional C; we obtain the well-known Gauss quadrature formula, as well as the quadrature
formulae usually associated with the names of Radau, Lobatto and Birkhoff. For the general
polynomialcase, details of existence, uniqueness, and a more general discussion, including the-
oretical results, applications and numerical approximationg of (1.2), may be found in [9], and
in fact that work is the source of the present work.

The main contribution of this paper is a procedure for computing specifically the ngdes
and the weights,; , andw; , of (1.2) The great advantage of the new algorithm lies in the fact
that it offers an efficient way of reducing the computation[of](1.2) to the well-studied prob-
lem of computing ordinary Gaussian quadrature formulae from recurrence coefficients, and
can therefore be brought into the realm of stable modern methods of constructing orthogonal
polynomials; see Gautschi [11]. In fact, we shall show, under additional assumptions on the
functionalsC; which guarantee existence @i, ;, that allnodesandweightsof (1.2) can again
be computed as eigenvalues and first component of the orthonormalized eigenvectors of spe-
cific real symmetric tridiagonal matrices. Also, our approach is conceptually simple and more
amenable than the method given in][19] and leads to considerable savings in computational
time, since our construction makes no appeal to solving large nonlinear systems. Finally, com-
parisons of the new quadrature formulae with the ordinary Gauss quadrature formulae indicate
that the former are much better than the later.

The remainder of this paper is organized as follows. In the next section, we state and prove,
under certain assumptions about boundary conditions, existence and uniqueness of (1.2). We
also develop some of their properties. The main results given in section 3 show how such quad-
rature formulae can be constructed, and in section 4, examples of such quadrature formulae
are given. section 5 presents results of numerical experiments involving polyr@migpline
Gauss guadrature formulae. Finally, in section 6 we summarize this research and discuss possi-
ble future work.

Throughout this paper, we take the integration intefvdl, 1] as a matter of convenience and
we assume thaA, M and the measure are fixed. Therefore, for the sake of simplicity, we
shall freely omitA, M anddo from our notation.
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2. EXISTENCE OF THE QUADRATURES AND SOME OF THEIR PROPERTIES

In this section, with additional assumptions on the functioiglsve show that there exists
one and only one quadrature formula of type|(1.2). This result was originally proved by Mic-
chelli and Pinkus[21, Theorem 3.1] in their development of the general theory of the moment
theory; however the proof given there is nonconstructive and uses this theory as the primary
tool. In fact, we show that the existence and uniquenegs df (1.2) is an immediate consequence
of a recent result of Bojanov, Grozev and Zhensykbaev [4]. We also shov that (1.2) possesses
most of the desirable properties of the classical polynomial Gaussian quadrature formulae, for
example the free nodes are all located in the support of the measure, the interior nodes have the
interlacing property and importantly the weights; are all positive. These, as is known, are
important properties that numerical quadrature formulae required to have. We close this section
with a result concerning the remainder of the quadrature forrula (1.2).

We first introduce some basis notations that will be used in the subsequent sections. Let
the functionf in (1.2) be differentiable ofi—1, 1] as many times as needed. For given linear
functionals

q-1 q—-1
G =3 a0+ Y b fP),  I=1,.k
m=0 p=0

we shall denote by (Py.ix—1; A; M) the subspace defined by
T.(Prnyk—1; A M) = {S € S(Pyyx-1;A; M), Ci(S) =0, I =1,...,k}.
We next state some hypotheses which we shall require to hold for the approximation subspace
T (Pnir—1; A; M). We assume that ( see [21])
(2.1) Tr(Pnix—1; A; M) is a weak Chebyshev system of dimensién- Z m;.

i=1

Let {u; }JZTELI ™ be a basis o, (Py.x_1; A; M). We also assume that for every integér

the set of the linear functiona{?ﬁl}f:1 is independent over, (P x_1; A; M), that is

(2.2) rank | Ci(uy) [0 15" = k,
Recall that a linear subspaég, ; of C'[—1,1] of dimensionm spanned by the functions
uy, ..., Uy, is called aChebyshev systeom [—1, 1] if
U1<t1) Ul(tm)
: : > 0
U (t1) oo U (ty

forall -1 <t <..<t, <Ll
The set4,,_, is called aweak Chebyshev system[—1, 1] if for all points —1 < t; < ... <
t < 1,

ur(ty) . wi(tm)
: > 0.

U (t1) oo U (ty
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We follow Micchelli and Pinkus[][21] by considering the convexity cone generated, by ;
thatis,f € K(U,, ,)if fis afunction defined ofi-1, 1] which satisfies the inequality

ur(th) oo wr(tmyr)

207

Um(tl) um(tm—i—l)
ft) o ftnga)
forall -1 <t < ... <ty <1
Let us suppos&/ + >~'_, m; = 2s. As in [4, Theorem 3], we shall next assume that, there
exist points—1 < z} < ... < z¥ < 1 such that the system of equations,

u(zy) = 0, i=1,..,s,

u(xzf) = 0 1=1,...,s,

(2.3)

has only the trivial solution if¥;,(Pxn.x_1; A; M). We also make the following restrictions on
the conelC(7 . (Pn+k—1; A; M)): for each points-1 < ¢; < ... < t, < 1 the set

(24) {(f<t1)7 f,(tl)v ) f(t8)7 f,<t5))7 f € K(Tk(PN+k—1; A; M))}

contains a basis fak?:.

These standing hypotheses, which are usedlin [4]land [21], will not be mentioned explicitly
in the results of this paper.

In order to illustrate assumptions (R.1) and [2.2), we list below a few known functionals
which satisfy these hypotheses. We refer the interested reader to [20] and [21, p. 216] where
these functionals have been studied in detail.

Example 2.1. Functionals with anti-symmetric boundary conditions

Example 2.2. Functionals with Birkhoff boundary conditions
— (1#) f— =

Culf) = f991), p=p+1,..k

where0 <i; < .. <i, < N+k—-1,0<j <..<j, < N+k—1l,andM, , +2s > v,

v =2s+1,.., N + k, whereM/ counts the number of integers {f,, ..., i, j1, ..., jq } 1€SS
than or equal tar. Another important class of functionals, which satisfy certain determinantal
conditions (sed21, p. 216, Example 3.}]is the set of functionals with separate boundary
conditions

Ci(f) = Xy ayfO(=1), I1=1,..,p,
Cf) = S bufO0),  I=p+1,.k
Also, for the general casg (1.3) examples are givg2@} and[21, p. 214]
We shall now discuss, under assumptigns]|(2[1),] (2[2)] (2.3) (2.4) the existence and
uniqueness results df (1.2). We show that the latter follow from a recent result of [4, Theo-

rem 3], which ensures that there exist unique nodes}:_, and unique coefficientg); . };_,
such that

2.9 [ £00d =3 Nt 010). V5 € TePrrcis A M),

i=1

2.7)

with z; , € (—1,1) and ;s > 0,47 = 1,...,s. This simplifies the proof considerably since
n+ Y., m; = 2s and then[[4, Theorem 3] representation theorem is applicable.

AJMAA Vol. 1, No. 2, Art. 1, pp. 1-27, 2004 AIJMAA


http://ajmaa.org

6 ALLAL GUESSAB

We first recall a lemma which will be useful in the proof of the existencg of (1.2). This result
is given in [4, Lemma 3].

Lemma2.1.1f z;,,i = 1, ..., s are the nodes of (2.8), then the interpolation problem,

u(x;s)
(2.9) W (z;s) = 0, i=1,..,s,

has only the trivial solution if7;, (P, x_1; A; M).

Remark 2.1. It is an elementary fact that the linear syst¢m]|(2.9) is equivalent to the homoge-
neous set of equations (P, 1; A; M)

u(z;s) = 0, i=1,..,s,
(2.10) u(zis) = 0, i=1,..,s,
C’l(u) = 0, lZl,...,/{Z.

Then [2.9) is equivalent to saying that the linear system [2.10) has only the zero solution in
S(Prik—1; A; M).

Theorem 2.2.Given a nonnegative measute and nonnegative integers k, r, s, my, ma, ..., m,
withn > 1 suchthatr + 3, m; = 2s, then there exists a unique quadrature formula of type
), which exactly integrates all spline functionsS¢®,, . ,—1; A; M). The nodes ,, ...,z

are all located in the open interval-1, 1), and their weights\; 5 , ..., A, s are all positive.

Proof. 1) Uniqueness result.In order to prove uniqueness we suppose that there is another
guadrature formula of the form

1 s k
/_1 f(t)do = Z Nisf (Tis) + Z@j,scj(f) + Ris(f),

having the desired property, and which also is exact for all splines SR, . ,_1; A; M).
On account of the uniqueness of the quadrature formula (2.8), it suffices to prove the equality
of quadrature weights; ; = @, j = 1,..., k. This fact follows fairly easily from the rank
property [(2.2).

II) Existence result. We require of a good quadrature formula that its nodes be in the support
of the measure. We show that, fpr (1.2), this holds true. To this end; Jet =1, ..., s, be the
nodes of the quadrature formufa (2.8). It follows from our previous remark that for all real data

[y} o and{c},_, , there exists only one spling € S(P,,1; A; M) such that

S(zis) = v, i=1,..,s,
(2.11) S'zis) = vyl i=1,..,s,
CI(S) = (, = 1,...,k.

Let 7, ,_1(f) be the interpolation operator 6{P,.+_1; A; M) based on the data
{f(miﬁ)? f,(xi,s)7 Z = 17 ceey S, Cj(f)? j = 17' . 7k}

Then, it is well-known that

Lt (£)(8) = D03 SO @ () + 3 Ci(Dls(1),
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Whereh(j and/; ; are the so-called fundamental spline functions. Sihge_,(f) = f for all
f € S(Pnyk_1; A; M), an integration of,, ., (f) leads to the following quadrature formula,

1 s

(2.12) /f Ydo =" A fu ww+2w]s f) + Ris(f),

7=0 =1
where

, r 1
A = / hY)(t) do, andw;,, = / L;.s(t) do.
-1 o

1

Note thath; , € 7y.(P,1x—1; A; M), foralli = 1, .., s, and vanishes at the nodes [of (2.8), then
applying ) toh;vs, we obtain)\fs) =0,i=1,...,s. This establishes existenge.

The proof shows in particular that the interior nodes|of](1.2) are those of the quadrature

formula [2.8).

Our next theorem shows, as it is known for the classical polynomial case, that the interior
nodes of[(1.R) have the interlacing property. To simplify the discussion, we first state and prove
a theorem which works for the case where the functionfials, j = 1, ..., k are given such that
Tk (Pryr—1; A; M) is a Chebyshev system ¢n1, 1], and then we mention how we can apply
this result to give a simple proof in the case wign(P,.,_1; A; M) is a weak Chebyshev
system.

Theorem 2.3.Letn, s, k,r,my, ma, ..., m, be given as in Theorem 2.2ssume that
Tr(Puik—1; A; M) is a Chebyshev system pnl, 1], and

1 s k
/1 f(t) do = Z )\i,sf(xi,s) + ij,scj(.f) + Rk,s(f)7
- i=1 j=1

s+1

f do-_z)\zs—i—lf xzs-l—l +ijs+10 f)+Rk,s+1(f)7
with Rk,S(S(PnJFk_l; A;M)) =0, Rk7s+1(8(73n+k+1; AM))=0,-1<z1, <...<x4, <
land—1 < 21441 < ... < 2541541 < 1. Then the following interlacing property holds:
—1 <1501 <T1s < Ty < T2 <o < T < Toyrspr < Lo
Proof. Arguing by contradiction, we suppose there exjstsith

Tps & [Tpsi1s Tpgr,si1)-

Define the spline functio§,, € S(P,+x—1; A; M) by the interpolation conditions

S(xls) = 0, i=1,.
C;(S,) =0, j7=1,. k,
(:Ejs-&-l) =0, j=1.,s+1, j#pandj#pu+1,
(

LI;LS—‘rl) = 1.

The existence of, follows from the fact tha, (P,,+.—1; A; M) is a Chebyshev system of di-
mensior2s. SinceS,, has the maximal number of zeros allowed-i1, 1], we have necessarily

S, (ys1,541) > 0. Then,
1
/ S,(t)do =0
-1
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by the first quadrature formula, and

1
/ Su@) do = >\,u,s+1Su(xu,s+1) + )\u+1,s+15u(%+1,s+1) >0

1
by the second. This contradiction proves the interlacing property.

Remark 2.2. In the case wher¥, (P, x_1; A; M) is a weak Chebyshev system. It is not
difficult to see that this result remains valid, the basic idea of the proof is to “smooth”, by
convolution with the Gaussian kernel see, e. [g.] [21, pp. 221], the weak Chebyshev system
Tr(Prik—1; A; M) into a Chebyshev system and then apply the previous result for Chebyshev
systems. The very technical proof of this fact is simple and will be omitted.

We conclude this section with a remark about the remainder of the quadrature fgrmula (1.2).
We recall first of all that the monosplines and the polynomial quadrature formulae are closely
connected, as was shown by Schoenberg [28]. In fact, it is well known that the error, when
applying ordinary quadrature formula to differentiable functions, is given by an integral formula
whose kernel is a monospline.

This property has been extended to the case of quadrature formulae for splines; see the paper
by Micchelli and Pinkus [21, Section 4]. We also mention that the latter has been examined in
the case of a wide class of quadrature formulae including quadratures of Hermitian type, see [3,
Theorem 6.4]. For more details in the polynomial case, we refér to [15].

3. THE CHARACTERIZATION THEOREM

Our aim in this section is to show that the nodes, which are us€d By (1.2) in each subinterval
(¢;i-1.¢i) i =1,...,r + 1, are zeros of a certain quasi-orthogonal polynomial. Then, we estab-
lish that the latter can be represented as characteristic polynomial of a symmetric tridiagonal
matrix. As we will see such a representation is particular useful, since it offers an efficient way
of reducing the computation df (1.2) to the well-studied problem of computing a polynomial
Gaussian quadrature formula from recurrence coefficients, and can then be computed directly
by standard software for polynomial Gaussian quadrature formulae.

In order to formulate the problem precisely, we first give some formal definitions as well as
some known results. Lelo be a nonnegative measure with support in the interval 1], and
let {m;(.) = m(.;do)},_y, - b€ the unique sequence of (monic) orthogonal polynomials with
respect talo, o

m(t) = t! + lower-degreeterms, [ =0,1,2,...

[ m)m(tyde = 0, if i # .
It is well known that every sequence of monic orthogonal polynomials satisfies a three-term
recurrence relation
(31) 7Tl+1(t) = (t—Ozl)ﬂ'l(t) —ﬁlﬂ'l_l(t), [ :071,2,...

7T_1(t> = O, 7T0(t) = 1,

with coefficientso;, = «(do), 5, = (,(do) > 0, that are uniquely determined by the measure
do and by conventiow, = (3, (do) = f_ll do. These coefficients define a symmetric tridiagonal
matrix, J,, = J,(do), known as Jacobi matrix, with;, [ = 0,1, ..., » — 1, on the main diagonal
and \/E, l=1,2,...,n— 1, on the side diagonals. Golub and Welsch [12] have shown that for
all n > 1 the nodes of the polynomial Gaussian quadrature formula, which hasMRDE— 1,
are the eigenvalues, and the weights are proportional to the squares of the first components
of J,. In fact, we can express, as the characteristic polynomial of theth order Jacobi
matrix J,,, m,(t) = det(tl, — J,), where we have denotefl the n-th order identity matrix.
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This fact is an immediate consequence of the three-term recurrence relatjon (3.1) conveniently
rewritten in matrix notation. For numerical implementation of this method, several algorithms
have been proposed, the reader is referred to the definitive one which is given in the recent
software package of Gautschi [11]. A thorough survey of the history, theoretical properties
and important extensions of these results may be found in Gautsc¢hi [10]. See also the paper of
Watkins [29].

We shall say that a polynomial, . € P,, generates &n — r — 1, n, do) positive polynomial
quadrature formula (that is a quadrature formula which/hasdest, ,, < ... < ¢, ,,, positive
weights and MDE= 2n — r — 1) if all nodest, ,,, . .., t,, are zeros of, , and are all located
in the open interva(—1,1). Since MDE is2n — r — 1, it is easy to see that the underlying
polynomialg, , must be orthogonal t@,,_,_; with respect to the measure. Hence, apart
from a multiplicative constant, ., must be of the form

(3.2) Qnr =Tn + P11+ ...+ pTp_r,

wherep,, ..., p, are real constants. Such a polynomial is called a quasi-orthogonal polynomial
of degreen and order-. The quasi-orthogonal polynomials and the positive quadrature formulae
have been studied by many authors. For the historical development and a number of practical
applications and numerical approximations we refer to Askey [1], Guessab and Rahman [14]
and Ezzirani and Guessab [9]. A complete characterization has been done by Peherstorfer
[25,/26,27] and has produced some very interesting theoretical and computational results. For
an earlier paper on the subject, see Micchelli and Rivlin [22]. Recentlyl Xu [31] and Ezzirani
and Guessal [9] showed that a large class of quasi-orthogonal polynomials can be expressed as
characteristic polynomials of a symmetric tridiagonal matrix.

Now, we restrict our discussion by recalling how quasi-orthogonal polynomials of degree
and order- = 1,2, 3 or 4 can be expressed as characteristic polynomials of symmetric tridiag-
onal matrices. The following Theorem will be useful in section 4.

Theorem 3.1. Letg, 4 be a quasi-orthogonal polynomial of the form
Gna = Tp + P1Tp—1 + ... + PyTp—4.

Theng, 4+ has a symmetric tridiagonal matrix representation of the form

(3.3) Qna(t) = det(tl, — J7)

with
Qg \/ﬁ_l 0
VB ar /B
oV
\V/ ﬁan - bQ

57172 — by Qp_9 — A2 57171 — b

O \/ Bn—l - bl AOp—1 — Q1

if and only if

34 P4 < ﬂn73ﬁn727
( ) bl S ﬂn—l?
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and
ap = pPp— G2,
 py—balan s —an1) —bapy
Ay = 9
ﬁn—Q - b2

bi = py—by—as(ar — ap_1 + p_2),
bg - P4 .

ﬂn—S

For the details of computations that lead to the results above, see Ezzirani and Guessab [9,
Theorem 3.3]. The main results of Theorgm| 3.1 were given for the particular-cesé. Of
course, it could have been carried overte 5, but the problem is mainly computational. A
more general form of this result has already appeared in [31].

We now consider a polynomial quadrature formula of the form

(35) Gn,r(f) = Z /\i,nf(xi,n>a >\i,n € R, Tin € (_L ]-)

=1
with MDE(Q,,,) = 2n — r — 1. Using the symmetric tridiagonal matrix representation of
quasi-orthogonal polynomials, we recall the following characterization of positive quadrature
formulae, which is due to Xu[31, Theorem 4.1].

Theorem 3.2.Letq, . generate d2n —r — 1, n, do) quadrature formulaz,, , of the form ).
ThenG,, , is a positive quadrature formula if and onlygf .. is a quasi-orthogonal polynomial
of degreen and orderr that has a symmetric tridiagonal matrix representation.

To focus our discussion, we concentrate here only on the problem of determining the nodes
and weights of (1]2), which exactly integrates each element of the splineSpBge,_1; A; M)
and uses separate boundary conditions of the form

Ci(f) = Y% ayf9(-1), I=1,..,p,
’_q 3
Ci(f) = Y by f91), l=p+1,..k
This restriction is only done for convenience of presentation. It will be apparent how the state-
ment of theorems must be modified to encompass the more general case.

In order to present some local properties of the quadrature fornjulge (1.2), we have to intro-
duce some more convenient notations. Let

= max ¢; and¢’ = max ¢
€= 25, e = e,

We denote the nodes .2) which are locateddn, ¢;) by z1,, ..., zs,.;, arranged in in-
creasing order. For the rest of this paper, it is convenient to consider the measures

do; = kido, on (—1,1), 1=1,...,r+1,

and N
d6; = kydo, on (=1,1),  i=1,..,r+1,
with
(gl_t)Jr If Zzlv
kl(t): (t_Cz—1>+<Cz_t)+ If 1= y ey Ty
(t—CT)+ |f i:T+1,
and

A (1+t)(—1+<§1_t)+ ?f =1,
kz(t) - (t - Ci—l)-ﬁ-((i - ;t)-i- if 7= 27 w1y
(t—C)(—0) i i=r+1.
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We will also need the foIIowing guadrature formulae:

(36) f( )dal: lSi(f>:Qk,S(kif)7 Z.:17"'7T+17
Cica
and
Cs A A
(37) f(t)daz_ 1,8; (f) Qk’s( zf) 221,...,T—|—1.
Ci—l
It is an elementary fact that MOE; ;,) = n + k — u; — 1, with
1, if i=1,
(3.8) w =14 2, if i=2, ..

1 if i=r+1,
and it is easily seen that, if we defingby

g+1, if i=1,
(3.9) v, =< 2, if 1=2,..,r,
g+1 if i=r+1,

then, forj =0,...,n + k —v; — 1, we have

A

Gis((t=Cn)) = @ralk z()( Cim1)h),

A

= J'(t— ¢ ) ki(tdo,

- i
- fCi_l t - Cz—l)deZ
Where we have used the fact th@j, , integrates exactly each element of the spline space

A
S(Prtk-1; A;M). Consequently, foi = 1,....7+ 1, G, isa(2s;, — 1 — ri,si,d&-) posi-
tive quadrature formula, with

Hence, forall = 1,...,r + 1, thes; nodes in), which are located @Gi—l,Ci) , are those of
the positive quadrature formula (B.7). Note that the latter are also the “interior” nodes]of (3.6).
Then, by theorern 3|2, they are the zeros of a quasi orthogonal polynomial of degnekorder
i, wherer; is given by [3.1ID). Again by Theoreim 3.2, this polynomial must have a symmetric
tridiagonal matrix representation. Note that, if one can compute the quadrature formpla (3.6)
(or (3.7)), one is able to determine the quadrature formjula (1.2). Thus, the remainder of this
section is devoted to the details of computing the quasi-orthogonal polynomial whose zeros are
the quadrature nodes.

Letd;,i=1,...,r+1,ande;, i = 1,...,r + 1, be the integers given by

(3.11)
q—Dp, if =1, D, if =1,
di=1< 0, if i=2,..,r, and e; =< 0, if i=2,..,r,
g —k+p if i=r+1, k—p if i=r+1.

We shall denote respectively fore= 1,7 = 2,...,r andi = r + 1 by E; 5, the spaces defined
by

{P c ,Psﬁ_q_l,Cj(P) = P(:UM,S) = O, j = 1, ey Py l = 1, ...,Si},
Ei,difl == {P c Psi—lyp(xl,i,s) = 0, l = 1, e Sigy
{PE€Psyy1,05(P)=Pla1;s) =0, j=p+ 1,k I =1,.,s}.
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It can be easily seen that ;,_; is a space of dimensiaf). Thus, foralli = 1,...,r + 1, there
exists a set of polynomialgV; o, ..., ¥; 4.1} C E; 4,1 such that

(3.12) U, () = 5t + R (1), j=0,..,d —1,
with R; ; belonging toP;, .., and
(3.13) Eig—1=span{V;p,..., V4 1}.

A
Bearing in mind the definitions aofr; ;, and G, 5,, we are now ready to formulate our main
theorem of this section which plays a crucial role in the subsequent development.

Theorem 3.3. Suppose.;, r;, d;, e;, © = 1, ..., + 1, and the set of functions
{\I/z‘,o, ey ‘I’z‘,di—1}

are given respectively as in (3.8), (3110), (3.11) and (3.12). Suppose further that for=all
Ly + 1, 1,4, ..., Ts,is @re s; points on the interva(¢,_;, ¢;) , such thate;; , # ., for
all j # j'. Then thes; nodesz ;, ..., z,,; s are the interior nodes belonging t@,_,,¢;) of
the quadrature formuld (3]6) if and only if , that for all= 1,...,r + 1, they are zeros of a

A
quasi-orthogonal polynomial; , ., of degrees, and orderr; with respect toj& = k;do and,
for all \I/i,j c Ei,di—l N ,Pn—i-k—l—uiy

(3.14) J& w(t)de; = 0, G=0,..d— 1.

Proof. NecessityAssume that forall =1,...,r + 1, the nodes;; ,, j = 1, ..., s;; are those of
the quadrature formul@ (3.6). We define

84

Tiysiri (8) = H(t — Tjis)-

j=1
Now letp be an arbitrary polynomial of degrees; — r; — 1; then the polynomial

f(t) = (i,s;,7; (t)p(t)

A AN
is a polynomial of degre& 2s; — r; — 1 such that; ;,(f) = 0. Thus, since7, ;, is a(2s; —
1—ry,8, déi) quadrature formula, we have for alle P, _,. 4

. A A
JE s D) doi = Gio (i (D)),
= 0.

This means thag; ,, ., is orthogonal to all polynomials dP;,_,,_; with respect toiéi. There-
fore, ¢; s, », IS @ quasi-orthogonal polynomial of degreeand order; with respect torl&-.

For the second result, note that, since forial 1,...,7 + 1, andj = 0,...,d; — 1, such
that the polynomialsl; ; € E; 4,1 N Pyik—1—u,, We haveG, ;. (V, ;) = 0, whereG, ,, is the
quadrature formula defined in (8.6), then the exactness ofon P, ,_1_., gives

fcz dO’Z = Gi,si(qji,j> =0.

Thus, the necessity of the condition is proved.
Sufficiency Assume tha{ (3.14) holds and , for ak= 1, ..., 7+ 1, there exist; real constants,
P1i»- -+ Pr.i> SUCh that the polynomial

AN N A
Qi,s;r; = Tsyi + P1,:iTs;—1,i +.o+ PriiTsi—rii
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hasn distinct zerose ; 5, ..., s, ;s ON (gi_l, Ci) . Here, and subsequently,
AN

{%ml() = Tl déi) }mzo,l,Q,...

is the sequence of (monic) orthogonal polynomials with respah/t\rltn (Ci_l, gi) .

Foragiveninteger = 1, ...,r+1 and a functiory on (¢,_y, ¢;), we denote by, ... _1.:(f;.),
{hjis, L5} respectively thés;+e;—1)-th degree interpolating polynomial and the set of nodal
basis functions with respect to the data

{f(xj,i,s)a j = 1,...,Si; C](f), j: 1,...,61'}.

Then, we have

Lsitei—14(f5t) = Zf s ) +ZO Lo (), 0N (Cimr, ) -

SinceZs, ,—1.:(f;t) = f(t) for all f € Ps,+e,—1, we get the following quadrature formula

(3.15) / F(t)do; = kaf , +Zwm f)+ Risr(f),

’L

with R; s 5 (Ps;4e,-1) = 0, and where

Ci Ci
A:/ h(t)dazv w71>:/ lns(t)dO'Z

i—1 i—1

Now, let P be an arbitrary polynomial &P, ;_.,_1. We define the polynomials
D, (t) =t/ g L (Dhi(t), =i+ e+ di ..
where
14+t if =1,
hi(t)=< 0 if i=2..r
(1—t)7 if i=r+1.
Le m! be the integer defined by
m; =sup{m: ®;,, € Ppitk—u;—1}-
It can be easily proved that the collection of the polynomials
{ti, 1= 0, vy 8§+ €5 — 1, \Ifi’j, j = 0, ceey di—h (bi,ja ] = 8; +¢€ + di, ,mf} X

form a basis fofP,_,,_1, hereV, ;, 7 = 0, ...,d; — 1, are the polynomials defined i@lZ).
Then P can be represented uniquely in the form

*

di—1 m;
(3.16) P(t)=> ai;Uij(t)+ Y ai;Pi;(t) + Ri(t),
J=0 J=siteitd;
whereR; is a polynomial ofP;, +e,—1. From this, it follows
iy KL PO = i [ W) do
+Zg siteitd; awfgl dUﬂLfgl t) do;.

Since, forallj = s; +¢; + d;, ...,

i?

G
/ (I)Z‘J(t) dO’Z‘ = Gi,si(q)i,j) == O,

Ci—1

AIJMAA Vol. 1, No. 2, Art. 1, pp. 1-27, 2004 AJMAA


http://ajmaa.org

14 ALLAL GUESSAB

therefore, from[(3.14) and (3.]17) we have

/ C P(t) dos = / C Ri(t) do.

i—1 i—1

Consequently, fromj (3.15)
Gi €i
/ dJZ—Z)\ Ri(z, )+ > w  Ci(Ry).
Cic1 " j=1 o
From (3.16), however we have for aII: 1,..,nandj =1,...k
Pz, ) =Ri(z ), C;(P)=C;(R);
hence we have the following quadrature formula

(3.18) /C t) do; = Z)\ Pz, +Zw,s P) + R; . 1(P),

Czl

Jri,s

with B, s 1 (Prsk—u,—1) = 0, WhICh shows tha-8) is a quadrature formula of the fgrr (3.6).
This completes the proof of Theor¢gm318.

Remark 3.1. Theoren] 3B characterizes all quadrature formylag (3.6). Moreover, it assures
that the nodes used by ([L.2), which are located in each intéyal, ¢;) , i = 1,...,r + 1, are
zeros of a quasi-orthogonal polynomial of the form

A A A
Qisiry = Tsyi + P1,iTs;—1,i +...+ Pr;iTsi—rii-

This polynomial satisfies the orthogonality relations (B.14) (via the form[ilae|(3.14); recall that
the polynomialsV; ; are of the form¥, ; = ¢, ;,,,Q;; With Q;,; belonging toP.,,4,_1). TO

make the procedure described in Theofem 3.3 computationally feasible, we must compute the
coefficientsp, ;, ..., p,;. These coefficients are solutions of a linear system;caquations

and r; unknowns. This result can be obtained by choosing appropriate splines. To clarify
this fact, we will discuss this more fully in section 4, in the case of spline Gauss quadrature
formulae. In addition, a detailed analysis of the location and nature of the nodes relative to
each subinterval will also appear in the next section. As we have previously pointed out, the
underlying polynomial; ;, ., must have a symmetric tridiagonal matrix representation. Hence,
we can use the existing routine [11] for determining the weights and nodgs jn (1.2). These
observations play a central role in the constructiorj of| (1.2).

We close this section with a result concerning the distribution of the nodés of (1.2). In the
case of separate boundary conditidns|(2.7), the following result, which has been praved in [20]
( see also[21, pp. 221]), gives some additional information about the distribution of the node
of (1.2) in(—1,1). As usual with splines, here and in the sequel, we use the extended nodes
sequences correspondingd M, andz; 4,7 = 1, ..., s , which are defined by

* _— * f— . S
Toj1,6 = Toj5 = Liys) 1=1,...,8,
CZ; 1m]+1 e = CZZ = Cw 1 = 1, ey T

Theorem 3.4.The nodes; ;. =1, ..., s of the quadrature formuld (1.2) satisfy the interlacing
condition

T, <G < T z:l,...,g m;.
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4. COMPUTATION OF SPLINE GAUSS QUADRATURES

In this section, we turn our attention to the numerical problem of computing a class of quadra-
ture formulae of typg (1]2). We will illustrate, by means of a simple example, how our character-
ization of the “interior” nodes of (I]2) can be used to evaluate the free nodes as the eigenvalues
of symmetric tridiagonal matrices. We also establish that the weights are proportional to the
squares of the first components of the orthonormal eigenvectors.

To focus our discussion, we concentrate here only on the problem of determining the nodes
and weights of (1]2), which do not use boundary conditions and which is ex&¢fn_i; A; M).
Hence, we seek a quadrature formula of the form,

/ F(t)do = Qons () + RUP).

where,

(4.1) Qan-1(f) = ijmf(xj,s)
j=1

such that,

/ F(1)do = Quua (1),

for each element of the spline spaSéP,,,_1; A; M), with M = (my,...,m,) is a vector of
integers of the form

m; =2n — 1, 1=1,...,r

Note, in this case, that from equati¢n (1.1) we have

4.2) 2s =2n+r(2n —1),

therefore the number of the nodés: = 1,...,r, must be even. We also observe that every
element ofS(P,,,_1; A; M) is continuous on—1, 1]. Thus, the important point to note here is
the fact that[(4]1) is necessary basedcontinuougiecewise polynomials interpolation.

From the fundamental theorem of determinants for polynomial splines [17], one can infer
that the assumptions (2.1)), (.2), (2.3) gnd](2.4) are trivially fulfilled for eac®onsequently,
Theoren| 2.2 guarantees the existence of a unique quadrature formula of th¢ farm (4.1), with
respect talo on the interval—1, 1] . In order to show how[ (4]1) can be obtained numerically,

we adopt the following notations. Foral= 1,....r + 1, let {%l,i(.) = 7Arl,,»(.; chfi)} be
1=0,1,2,...

A
the unique sequence of (monic) orthogonal polynomials with respel@tit@ kido, where

(Cl - t>+ if = 17

N
kl(t) = (t - Ci—l)Jr(Ci - t)Jr If 1= 27 T
(t_gr)-i- |f i:T+1,
and let
&z,i = géz(f/}i), 0<I<s;—1,
A A A
Bii = By(a4), 1<i<si—1,

wheres; denotes the number of the node4.1) which are locatégin ¢,) .
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Note that, in this particular case, we have (using the notations introduced in the previous
section)k =g =¢ =0, and

1, if i=1,
(4.3) w=v,=< 2, If 1=2,...,r
1 if ¢=r+1.
The basic difficulty that we face here is how to assess the exact vakyeRiit before consid-

ering the computational details of determining this value, let us point out the following obvious
lower bounds

s; >, if 1=1,
(4.4) s;>n—1, if i=2..r
;i >n if i=r+1.

A
These bounds follow easily from the fact thigd,, 1 (k;f) isa(2s; — 1 —r;, s;, déi) quadrature
formula and thafs, — 1 — r; = 2n — v; — 1.
Now upon applying theorem 3.4 tb (#.1) we obtain that the nadgsj = 1, ..., s of the
quadrature formuld (4.1) satisfy the interlacing condition

(4.5) Ti s < (< Tiyons i=1,..,r(2n—1).
We are now ready to establish that
I if ¢isodd,
ST - 1, if 7iseven.

First we prove that; = n. Sinces, > n and by [4.5) fori = 1, (7 = ¢; < 25,1 = Tntis,
we conclude that the first intervé],, ¢,| contains exactly: nodes. Therefore; = n. If we
apply now ) fori = 2n,...,4n — 3, then we obtair; < x,41s < ... < Tap_1,5 < {5 Which,
combined with(, = (3, < },, = 2, Obtained from[(4]5) foi = 2n, impliess, = n — 1.
By an analogous argument and by induction the exact number of the nodes in each interval is
similarly proven.

On the basis of this result, we conclude that

1 if 1=1

0 if ¢=2,...,randiiseven
2 if ¢=2,...,randiis odd
1 if 1=1r+1.

It is convenient at this stage to rewrite the quadrature formula (4.1) as

T

QQn 1 Zzwjzsf x]zs

=1 j=1

herex;,,,7 =1, ..., s;, denote the nodes i | 4.1) which are Iocatetﬂ@ip 1 ) According the
Theorenj 3.3, we also know that, for al= 1, ...,r, the nodes;; ;.7 = 1, ..., s;, are the zeros
of a certain quasi-orthogonal polynomd@,Lm of degrees and order;. Thereforeqlvsm takes
also the form

N AN AN
Giysiri = Topi + E A i T s;—ji

We next show how the quadrature formyla [4.1) can be constructed by means suitable modi-
fications of classical Gauss quadrature formulae with modified weight functions. For this, we
consider separately three cases.

AJMAA Vol. 1, No. 2, Art. 1, pp. 1-27, 2004 AIJMAA


http://ajmaa.org

GAUSSIAN QUADRATURES FOR SPLINES 17

4.1. Case l:i = 2,...,r and 7 is even. This is the simplest case, since, using the fact that
s;i = n— 1andr; = 0, we have, therefore, the quasi-orthogonal polynomjal,, is the

classical orthogonal polynomiﬁh_u. This means that the nodes .1), which are located in
the interval(gi_l’ci) , are precisely those of the classical polynomial Gauss quadrature formula

G n—l
(4.7) ; f@)# = (1) — t)do = Zw]stf(x]lS) + R,S’(f), RS(P%%S) =0,

and the weightsu; ; , corresponding tay;; , in (4.1) are simply obtained from (4.7) in term of
the Christoffel numbers ¢, . by

78,8

G
Wyi,s

(5 = Cio) (G — Tj46)

4.2.Case ll:v = 1ori = r+ 1. We are now in the case whegg;, ,, is a quasi-orthogonal
polynomial of degree; = n and order; = 1. Therefore, we have

Wii,s =

N A AN
(4.8) Giysiri = Qin, 1l = Ty + QniTp_1-

To compute@n,i, fori = 1 andi = r + 1, we consider respectively two splings and S,
defined by

Q10 (1), if —1<t<(,
Sl <t> = ((272,)7;21,:’132(41)(g2 - t)q2782,7"2 (t)v If Cl <t < <27
0, if ¢, <t<1,
and
0, if —1<t<¢,,
Sr—i—l (t) = (Cr—z:i%:,(ir),(cr) (t - CT*l)qT,ST'J’T' <t)7 If Crfl S t S Cra
G411 (1), if ¢, <t<l

Evidently such functions belong 8 P,,,_1; A; M) and they satisf¥),,, 1(51) = Q2,-1(Sr4+1) =
0. Consequently, if we apply (4.1) t& and.S,.; then we obtain

/11 Sit) do = /11 Spy1(t) do = 0.

Hence, for example for the case- 1, the coefﬁcienﬁn,l defined in ) must be a solution of

G ¢a
q1,5,1(C1)
(4.9) / Qi (t)dor = ——— L / (Ca — D)taap ()i,
—1 (€2 = €1)G2,50,7(C1) ¢ 2 o
then by an elementary calculation one can show that
C A 7/'}n 1 C
(4 10) é\L 1 — f_zll 7Tn71(t)d0- + (C2 Cl)QQ 521 T <1) f q2 $2,72 (t)do-
' " G Rno1.1(C1) Gy '
JoA Tam1a(O)do + e e e 12 LR

Recall from Case I that, we know that,, ,, = wn_m then the parameteArn,l can easily be
calculated by an explicit formula or at least numerically. We shall indicate how such formula
may be obtained in the case of Jacobi weights.

Now by Theoren 3]1, the polynomial admits the following matrix representation

G (t) = det(tL, — Jo (1)),
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where
A /A
Qo,1 51,1
[ A
51,1 Q11
A A
(4.11) Jn(01) 671—2,1
N A AN
Bpoo1  Qn-21 Bn_11
A A A
0 6,1_171 Qp_1,1 — Qp1

Thus, then nodes of the quadrature formu{gs,_,, which are located in the first interval

(—1¢,), are the eigenvalues 011(91).
We now consider the following quadrature formula based on the zergs,qfand of the
form

¢y n
(4.12) / (¢ = O f (o =D (¢ — zja)winsf (T516)-

-1 =1

Since [(4.1R) is positive and exactly integrates every polynomial of degree2 , then as a
direct consequence of [80, Theorem 6.1], the weigbfs- =, s)w, 1 s are given by

(4.13) Ci— Tj1s)Wj,s = forallj=1,...,n
( ! Pt ) ! Kn(xj71,saxj,1,s)
where
n—2
K, (z,y) = Wk,l(gﬁ)ﬁk,l(y) + 7Tn—1,1($)77n—1,1(y)
k=0

with {F1() = Fra(:01) }
do.
We now suppose that the eigenvectorsfmél) are calculated such that

being the set obrthonormalpolynomials with respect to
k=0,1,2,...

Ju(G1)Vja

with Vjﬁvﬂ = 1 and Vj’ﬁ = (v141,--,Unj1). Then, as in the ordinary Gauss quadrature for-
mula, it follows from @) that the coefficients; ; ; are expressible in terms of the first com-
ponentsy, ;; of V;, by

:xj,l,sx/},la J = 1,...,71

2

(%
= TG pay )

It is clear that a virtually identical argument works in the caser + 1 and gives the following
result. Let@n,rﬂand Jn(QTH) be defined respectively by

W1, Jj=1..,n

1A 7Arn,r+1(Cr) Cr _
(4 14) é\L — fCr ﬂ-n,rJ,»l (t)dg + (CT_CT 1)qT Sr,Tr (C'r) Cr 1 (t Cr—l)qT,ST,T'T (t)do-
. n,r+1 — 7 A ’
1 A Tn—1,r T
fgr Tp—1,r+1 (t)dO' + C—C, 11 qtls(frr () fCr 1 r 1 QT \SraTr (t)dO’
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and
— /\ T
A
Qo,r+1 \/ 51,r+1 !
A
/ A
61,7‘—&-1 06177«+1
A A
(415) Jn(ar+1) = ﬁn72,7“+1 ’
A A A
ﬂn_27r+1 Ap—2r+1 6n—1,r+1
A AX
I 0 6n—1,r+1 Qp1r+1

L A A A . .
with o, ;1 = @y 1,41 — Anry1. Then, then nodese;, 15, 7 = 1,...,n, which are located

in the last interval¢,, 1), are then distinct real eigenvalues ofn(cArTH) and the respective
weights in[(4.1) are given by

1jrt1 A .
Wjr+1,s = 60,r+1<dar+1>7 J= 17 w1,

(xjﬂdrl,s - Cr)

with vy ; 41 being the first components of the normalized eigenvectoﬁg((ﬁrﬂ) correspond-
ing to the eigenvalues; ;. ;.

4.3.Case lll: ¢ = 3,...,r — 1 and 7 is odd. Hereg, ,, ,, is a quasi-orthogonal polynomial of
degrees; = n and order. Thusg; ,,,, has the form
AN
(4.16) Qi,sir; = Gin,2 = 7ATm + é\Ln,i%\-n—l,i + bn,z'7ATn—2,z'-
N
Asin Caselll, to computén,i andb,, ;, we consider respectively two splingg; andS, ; defined
by

EE - Cci—2))q¢—178i—1,ri—%<(t)7) if Ci—? <t< Ci—l
i—176i—2)4i—1,s; _1,7;_ i— .
Sl’i(t) - 1((«;—571)q;si,rz(giflﬁ : (C’ - t)%’,si,m (t)’ If Cifl S t S Ci’
0 otherwise
and
(t —(CCiEl)gasi,n ((i)), if ¢, <t<(
i 6i—1)9i,s;,7; (64 .
527i<t> - (Ci+1_(:i)qi-ll—l,si+1,rr+1(gi) (Ci+1 a t)Qi+1’5i+1’rT+1 (t)7 i C’ sts Ci+1’
0 otherwise.

Recall that since — 1 and: + 1 are even then from the case |, we haye,;, ., , =

7Arn_17i_1 andqit1 6,000 = 7Arn_17i+1. It is staightforward to cheek thaf; ; and .S;; belong
t0 S(Pa2n—1; A; M) and thatQ)s,—1(S1,;) = Q2,-1(52;) = 0. PuttingS; ; respectivelyS, ; in

(4.7) we get
1 1
/ Sl’l(t) do = / Sgyl(t) do = 0.
-1 -1
Then, with the help of a simple computation, we can show that these equations give rise to a

A
2 x 2 linear system with unknowrtAs,m , b, ; of the form

(4 17) {alx—i_bly = (i,

asx + by = co.
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A
Once we have determineAx;Li andb, ; by solving (4.1Y), we can rewrite, using Theor 3.1,
the polynomialy; ,, ., in matrix notation

Giosini () = det(tT, — Jo(5,))

where
A A
Qo 4 BM 0
N A
5171' A
A A
(4.18) In(0;) = B o :
A A A*
Bn2i On-2; Br1;
A* A*
i 0 ﬂn—l,i Q1
A A* A
wherean 1i = Qno1i— am, andﬂn 1= ﬁn 1: — bn,i- Thus, then nodes of the quadrature

formula@,,,—1, which are located iff¢; ¢, ) , are the eigenvalues o, ().
We now consider the following quadrature formula based on the zergs of and of the
form

n

Cit1
(4.19) /C (t = C)(Ciy — 8)f(t)do = Z(xj,Ls = Ci)(Cigr = T )Wy f (.5

i 7=1

Since [(4.1P) exactly integrates every polynomial of de@ree 3, then as a direct consequence
of [30, Theorem 6.1], the weights;;; s — (;)((ip1 — xj,.5)w;,s @re given by

An,i

Kn,i(%‘,z‘,s, lEj,i,s)

(420) (xj,i,s — CZ)(<1+1 — J]j’i75)w]"i75 = for a"j = 1, o n

where

an .CE Z/ AnzZTrkz 7rk’z +7’\%n—1,i(x)7wrn—l,i(y)

with A,; =1 —
B i

nomials with respect tdgi.
We now suppose that the eigenvectorsﬂo(féi) are calculated such that

and{?rk,i(.) = i Qi)}k_o . being the set obrthonormalpoly-

TG0V =255V, j=1,.0m
with Vj?;vﬂ =1 andVT (v1,44,---»Un,ji)- Then, as in the ordinary Gauss quadrature formula,
it follows from (4.20) thatwmS are expressible in terms of the first components; of V;; by

2

Ve
Wjis = L ﬁo’i(dc/},-), ji=1,..n.
(%06 — C)(Ci1 — Tjis)

We summarize this construction process in the following theorem.
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Theorem 4.1. GivenA = (¢, ..., (,,,) a sequence of nodes with

_]‘:§0<C1<"'<§T<CT+1:17

andM = (my, ..., m,.) a vector of integers of the form

m; =2n — 1, 1=1,..,7
Define
n, if 7isodd,
n—1, if 7iseven.

Let: be an odd integer such that < i < r + 1 and let Jn({}l), Jn(gi) and Jn(QTH) be
the matrices defined, respectively, as[in (4.11), (4.15) pnd](4.18). Then, there exists a unique
guadrature formula of the form,

r+1 s;

(4.21) Qan—1(f) = Z Z wj,i,sf(xj,i,s);

i=1 j=1

which exactly integrates all spline functions &fP,,,_1; A; M). With, ifi is even and®2 <
i <r, thenodes;;,, j = 1,...,n — 1, in (4.21) are those of the classical polynomial Gauss
quadrature formulg2n —3,n—1, (t —(;_;)(¢; —t)do) and the weights; ; ; corresponding to
x;; .. are given in term of the Christoffel number§; , of (2n —3,n — 1, (t — ¢;,_,)(¢; — t)do)
by

wfi,s
(g5 =€) (Ciw1 — Tjis)
If i is odd andl < i < r + 1, the nodese;;,, j = 1,...,n, in (4.21) are the eigenvalues of
Jn(cArZ-) and the respective weights are given by

Wii,s =

2
vy A ‘
w‘j%s — = 2, 50’7;((10—1')7 7= 1’ ey M

ki)

with vy ;; being the first components of the normalized eigenvectof§(8§) corresponding to
the eigenvalues; ; ;.

There are several important corollaries of Thedrer 4.1 that are of interest in applications, the
most important one relates to thegendre weight functiom(¢) = 1 on[—1, 1]; the correspond-
ing quadrature rule will be referred to as the spl®&uss-Legendrguadrature formula (SGL).
In this particular case, we can prove results that contain more information about the coefficients
of the quasi-orthogonal polynomia(s (#.8) and (4.16). In fact, the latter can be determined ex-
plicitly and obtained from the known relations of the Jacobi orthogonal polynomials and the
following formula [2, Formula 4, p. 263],

/1 204 T (p+ V(B +n+ DI (a — p+n)

w, (1) 9 (1)dt =

) <a7
e (o —p)T(B+p+n+2) P

wherew, 5(t) = (1 —t)*(1 + t)? (a, 8 > —1), andp{™” being the Jacobi polynomial on
[—1, 1] with parametersy, § andI’ the Gamma function. We leave the details to the reader.
Theorem 4.2.Let A, M,ands;,i = 1, ..., + 1, be defined as in Theorgm }.1. Define
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Let: be an odd integer such that< i < r + 1, and IetJn(Ql-) be the(n)-th order tridiagonal
matrix defined byy, ; on the main diagonal and/ 3, ; on the side diagonals, where

ag; = 0, k=0,...n—2,
k(k+4)
Ori = Grya)k+5) TS
e (n =10 +3)
n—1)(n+
n—1,0 — “Ungy, Mp—1; — _bni7
i = i Pt = B T op g g) O
with
n+1 nhy+ (n+1)hy 0
Qp1 = — ) n,1 — U,
5 2n+1(n+1)hy + nhy .
n(n+2)  c1bs — bics (n+2)(n—1)
Anp,; = 3 n,g — ) t=1L..,7
’ (n + 1)(271 + 1) b263 — Cgbg ' (271 — 1)(2” + 1)
~ n+1nhy+ (n+1)h, b _0
Apr41 = om+ 1 (TL T 1)hr+1 T nhr’ n,r+1 — Y,
and
~hoy o hoi ~ (hai + hoiga) ~(n = 1)hg; + (n+ 1) Dy
cp=—-+ y G =———————, (3= ;
n  n+2 n+1 n(n+ 1)
_ haiva | hoi ~ (haig2 + haigr) ~(n=Dhoio + (n+ 1)haip
bl = —+ ) b2 - ) b3 - .
n n+2 n+1 n(n —1)
Then, there exists a unique quadrature formula of the form,
r+1 s;
(4.22) Qan—1(f) = Z Z Wi, [ (Tji,s)

i=1 j=1
which exactly integrates all spline functionsS{fP.,,_1; A; M). With, ifiisevenan@ < i <,
the nodes;; ;, 7 = 1, ...,n—1, are those of the classical polynomial Gauss quadrature formula
(2n —3,n—1,(t — ¢,_1)(¢; — t)dt) and the weightsv; ; ; corresponding ta;; ; are given in
term of the Christoffel numbers{; , of (2n —3,n — 1, (t — ;_,)(¢; — t)dt)by
wfi,s
(205 — Ci)(Cir — Tjis)

If i is odd andl < i < r + 1, the nodes located if¢,_, ¢;)are of the form
(hix:,j,s + G + &)

Wji,s =

Tjis = 5 ,j=1,...n
withz7, ., j =1, ..., s; are the eigenvalues df(éi) and the respective weights are given by
4v%j-
/42,5 o 9 = 17 (AES)
s TR — 2 ) J "

with vy ;; being the first components of the normalized eigenvectof§(8§) corresponding to
the eigenvalues; ; ;.

The construction of quadrature formulae of tyjpe (#.22), with Jacobi weight functions, presents
no extra difficulties; a detailed discussion on such quadrature formulae can be folnd in [8].
The latter can be done in precisely the same way that these results were established for the
Gauss-Legendre case. We therefore omit this development here. For reasons of clarity we
have considered only on the problem of determining the nodes and weigpts|of (1.2), which do
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not use boundary. We mention that the concepts are generalized to include Gauss-Radau and
Gauss-Lobatto quadrature type formulae for splines. The construction becomes somewhat more
complicated in the presence of boundaries. Space limitation prevents us from presenting this
generalization here.

5. COMPARATIVE NUMERICAL RESULTS

As expressed by Christoffel (cf._[10, p. 86]), the use of preassigned nodes in quadrature for-
mulae, chosen judiciously at locations where the integrand function is predominant, should be
advantageous. In order to demonstrate that the use of preassigned nodes can indeed be helpful,
we compare the spline quadrature form{la (#.22) developed in Théorem 4.2 and the polynomial
Gauss-Legendre quadrature formula, that uses the same number of evaluations of integrand.
For illustration, we experiment with numerical examples which involve three different kinds of
integration problems. They differ mostly in the specific properties of the integrand functions.
The first one is a parametrized family of functions which have a peak at a pgint.iri] with
a severity that is controlled by two parameters. In the second example, in another context, we
will choose a whole family of integrands where the oscillations increase. We conclude with
one final numerical example in which the integrand has a logarithmic endpoint singularity. The
three examples are as follows:

L(uov) = [1 =0 da

(z—v)2410—2u
= arctan(10%(1 —v)) — arctan(10%(—1 — v)),
2m 2
Iy(m) = /0 x cos(50z) sin(mz)dx :ﬁ, (m # 50),
1
log x
L= 2% gz = _log2.
o= |, Tt =8

All the computations described in this paper were carried out on a personal IBM computer in a
double precision.

Example 5.1. In the first example, we take the following test functfgn(z) = (H;gﬁ

The parametew is equal to the location of the peak, while the parametatetermines the
height10* of the peak at: = v. One would expect that the difficulty of the integrghdepends
heavily on the location of the peak, i. e. on the selection of the paramet@nd on the
height of the peak, i. e. on the size of the paramatelt is natural, then, to employ our
quadrature formula SGL given ifi (4]22), choosing the preassigned nodes of splines judiciously
at the location where the integrand function is predominant. This suggests to choose the nodes
¢, in the neighborhood of the peak The integral off, , was approximated numerically by
using the new quadrature formulae S{gl.and the ordinary Gauss quadrature formula having
the same number of the nod@sl0). The results of SGL in this case have been obtained by
usingr = 6 and(;,7 = 1, ..., 6, chosen in a neighborhood 0f

In Table[5.1, the results of SGL are showndior 1.5,2,2.5 andv = 0,0.5,0.9. Also shown
in the last two columns are the respective integration errors. As we can see from Tgble 5.1,
for this family of functions, the new quadrature formulae compare favorably with the ordinary
Gaussian quadrature formulae and in all cases give better results by several orders of magni-
tude. It is worth noting that the integration error of the ordinary quadrature formulafior
depends heavily on the location of the peak. This weakness is accentuated when the peak is
moderately high. We also have observed that the numerical results of GL, as the peak becomes
relatively important, converge rather slowly. It is interesting to note the catastrophic loss in ac-
curacy produced by GL in this case, particularly when the peakvery close td. The latter
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u \' GL140 SGL140
0 [8.7(-4) 1.5(-11)
15/ 05| 1.7(-3)| 2.7(-9)
0.9 6.1(-9) | 4.8(-15)
0 [3.5(-1)]2.6(8)
2 105/|1.6(-1)| 1.2(-6)
0.9]9.4(-3)| 4.1(-9)
0 (1.8 |1.3(5)
25/05[22 |1.5(5)
0.9/ 6.6(-1)| 1.2(-6)

Table 5.1: Numerical results df (u, v) and comparison with Gauss quadrature. (Numbers in parentheses denote
decimal exponents.)

failure is easily explained: it is due to the closing of the nodes of GL towards the boundary. This
fact is also confirmed by the “good” results of GL in the “corner peak” case. This emphasizes
that when a polynomial Gauss quadrature formula is employed for integrand with a moderate
peak, care must taken. In contrast, SGL does not suffer from any numerical instability and gives
best accuracy.

Example 5.2. Here f(z) = x cos(50z) sin(mz) is highly oscillatory. In Table 5|2 we compare

the performance of our quadrature formula SGL with Gauss quadrature formula. The results
for SGL have been obtained by using- 10, with {, = —1 + 2i/11,7 = 1, ..., 10. We tabulate

the results form = 20, 30,40; N = 66, 110, 165, 220, 275, 330. It is interesting to note the poor
quality and the unreliability of7 L as the oscillations become important. However, for small

the GL seems to be competitive, as is seen in Table 5.2. The convergence of GL for large is very
slow, and the comparison with SGL is striking. We also have observed that the numerical results
of SGL is extremely sensitive with respect to the correct choice of the(node expected, the

best results of SGL were achieved by choosing the ngdgsse to the zeros gf.

Example 5.3. The integrand here is a function having a logarithmic endpoint singularity of the
type f(z) = (i‘fwﬁg. Our approach to deal with the singularity and retain the high accuracy of
our quadrature formula SGL is to impose a relatively fine mesh subdivision in a neighborhood
of 0. In Table[5.8, we compare the results of SGL with those obtained, at the same number of
the nodes, by the GL quadrature formula. We did our computationa’fer 50, 100, 150 and

r = 4. A reasonable choice a@f,: = 1, ..., 4 would be¢, = 0.00005, {, = 0.0005, (5 = 0.005

and(, = 0.05, since this choice makes a great possible use of nodes closdit wan be seen

that the new quadrature formula produces results which are in several orders of magnitude

larger that those furnished by the ordinary Gauss quadrature formula.

6. CONCLUDING REMARKS

In this paper, we have shown how to modify the Jacobi matrix to obtain an efficient algorithm
to compute a new class of Gaussian type quadrature formulae for splines. An important practical
aspect of these quadratures is, as in polynomial case, that the latter are computed via eigenvalues
and eigenvectors of real symmetric tridiagonal matrices. Therefore this algorithm is simple from
an implementation standpoint.

The results of this paper can be improved upon and extended in several directions:
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m | N err. GL | err. SGL
66 |9.0(-1) | 2.3(-1)
110| 3.2(-1) | 1.9(-1)
20| 165|5.9(-2) | 1.4(-4)
2201 5.9(-2) | 1.2(-9)
275]15.9(-2) | 1.4(-14)
330 5.9(-2) | 3.4(-17)
66 |5.7(-1) | 9.4(-1)
110 1.8(-1) | 1.6(-2)
30| 165|1.1(-1) | 1.1(-3)
2201 1.1(-1) | 5.1(-8)
275 1.1(-1) | 1.2(-13)
330 1.1(-1) | 3.9(-15)
66 |6.5(-1) | 9.9(-1)
110|9.0(-1) | 2.1(-2)
40| 165 2.7(-1) | 7.4(-3)
220 2.7(-1) | 1.5(-6)
2751 2.7(-1) | 1.3(-11)
330| 2.7(-1) | 7.7(-15)

Table 5.2: Numerical results dh(m) and comparison with Gauss quadrature.

N err. GL | err. SGL
50 | 2.4(-4) | 3.8(-6)
100| 6.2(-5) | 2.7(-9)
150| 2.7(-5) | 2.6(-10)

Table 5.3: Numerical results d§ and comparison with Gauss quadrature.

(1) The characterizations presented in this paper have also been applied to the computation
of a new family of quadrature formulae (IL.2) that use end conditions common in applications.
We remark that the difficulty in extending the method used in this paper to the general boundary
conditions lies primarily in determination of the exact number of points required by the quad-
rature formula between two nodes of splines. This difficulty can be, in general, overcome on
some boundary conditions by using theoienj 3.4. We refer to some recent results which were
found together with Ezzirani, see the thesis Ezzirani (1997) for more information in this subject.
We also have done construction (not published YJb¢spline Gaussian quadrature formulae
with d = 1. It is tempting to go further than this, for example to consider the dase2, but
we believe that the calculation of such quadrature formulae is really a difficult task.

(2) Many integrands of practical interest are characterized by small regions in which they
have complex and varying peaks surrounded by regions where they are relatively smooth. Ef-
ficient quadrature formulae for such integrands required an adaptive mesh refinement. In our
approach, we have some freedom in choosing the mesh which defines the spline spaces. The
main advantage of using the class of new quadrature formulae lies in its great flexibility which
offers the user various selection of the latter. As we note with the examples presented in section
5, the results are extremely sensitive with respect to such choice and good results can often
be obtained by carefully adjusting the mesh. Hence, the construction of adaptive nonuniform
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meshes is a crucial part of these quadrature formulae, we did not use this approach here. Thus
the next logical step in this work is to develop an algorithm for refinement strategies that is
necessary to perform efficiently such quadrature formulae. For a numerical point of view, this
technique is much more efficient than the use of uniform meshes when the integrand is chang-
ing much more rapidly. Such methods have been examined by many researchers in the case of
polynomial quadrature formulae, see, for example, [18] for more information in this subject.
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