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2 GEORGEISAC AND DUMITRU MOTREANU

1. I NTRODUCTION

The notion of monotone operator, introduced by R. I. Kachurovskii [11], [12] and G. Minty
[17]-[20], became very fast a fundamental concept in nonlinear analysis. Many papers and
books have been dedicated to it, as for example [1], [11], [12], [17]-[20], [23]. However,
notably in optimization and economics, it is important to proceed beyond monotonicity. We
refer to the papers [2]-[8], [13]-[15], [22] for generalizations of monotonicity. These extensions
are now currently used in complementarity problems [5]-[10], [13], variational inequalities [2],
[6], [8], [16], equilibrium of economical systems [7], different topics in nonlinear analysis [23].

In the present paper we deal with the notion of pseudomonotone operator which extends the
monotonicity. This concept has been introduced by S. Karamardian in [13] as a new tool in the
theory of complementarity problems. It is known that a monotone mapping is pseudomono-
tone, but the converse is not generally true. A natural question is under what conditions a
pseudomonotone operator is monotone. The paper addresses to this question.

Until now the problem has been studied in the Euclidean spaceRn for affine mappings (i.e.,
mappings of the formx 7→ Mx + q, whereM is a matrix andq is an element ofRn) by
M. S. Gowda [5], and J. P. Crouzeix and S. Schaible [4]. For instance, it is proved in [5]
that a matrixM is positive semidefinite if and only if, for everyq ∈ Rn, the mappingx 7→
Mx + q is pseudomonotone with respect to the convex coneRn

+. It is also worth to mention
that Y. He supposed in several results of [9] (e.g., Lemma 5.9, Proposition 5.3, conditions(A5),
(A6)) that, for a givenF : Rn → Rn, the mappingF (·) − u is pseudomonotone for anyu ∈
Rn. The facts presented above suggest to study when an operator possessing pseudomonotone
translations is monotone. Certainly, to have an optimal result, the set of such translations must
be required to be minimal in an appropriate sense. This is a significant mathematical question
with a potentially large applicability in optimization.

Here we give a positive answer to the problem for Gâteaux differentiable mappings defined
on an open convex subset of a Hilbert space. Namely, our main result establishes that the pseu-
domonotonicity for the translations of the operator that are defined by elements of a straight line
ensures the monotonicity of the operator. The essence of our result is that it suffices to check
for pseudomonotone translations of the operator only along a single straight line. Moreover, we
prove that this is true if the translations of the operator along a straight line are quasimonotone.
In our approach we point out a characterization of pseudomonotone operators, as well as of
quasimonotone operators, which are continuously differentiable mappings and whose differen-
tial is invertible at the points where the mapping vanishes. This type of nonlinear operators have
been studied in [21] on an Euclidean spaceRn. As a byproduct of our work we extend the basic
result in [21] from finite dimensional spaces to Hilbert spaces.

The rest of the paper is organized as follows. Section 2 presents some useful results on
the pseudomonotonicity and quasimonotonicity of differentiable mappings in Hilbert spaces.
Section 3 is devoted to our main results.

2. PSEUDOMONOTONICITY AND QUASIMONOTONICITY OF DIFFERENTIABLE

M APPINGS IN H ILBERT SPACES

Throughout the paper we denote by(H, 〈·, ·〉) an arbitrary real Hilbert space. Recall some
important definitions.

Definition 2.1. We say that a mappingF : U → H defined on a nonempty subsetU of H is
monotone if〈F (y) − F (x), y − x〉 ≥ 0, for anyx, y ∈ U . The mappingF is called pseu-
domonotone (in Karamardian’s sense) if wheneverx, y ∈ U , we have

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0.
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PSEUDOMONOTONICITY AND QUASIMONOTONICITY BY TRANSLATIONS 3

We say thatF is quasimonotone if wheneverx, y ∈ U ,

〈F (x), y − x〉 > 0 ⇒ 〈F (y), y − x〉 ≥ 0.

Any pseudomonotone operator is quasimonotone, but the converse is not true [14].
In the sequel we suppose thatU is an open subset ofH and the mappingF : U → H is

Gâteaux differentiable. The notationDF (u) will stand for the Gâteaux differential ofF at the
point u ∈ U . Denoting byL(H) the Banach space of linear bounded operators fromH to H,
one hasDF (u) ∈ L(H).

The next two conditions are needed in the following.

(SD⊥) For eachu ∈ U , the linear operatorDF (u) : H → H is positive semidefinite on
F (u)⊥ := {w ∈ H : 〈F (u), w〉 = 0}, i.e.,

〈DF (u)v, v〉 ≥ 0 wheneverv ∈ H is such that〈F (u), v〉 = 0.

(CF ) For eachu ∈ U satisfyingF (u) = 0 and for eachv ∈ H with 〈DF (u)v, v〉 = 0, there
are noλ > 0 so that

〈F (u + λv), v〉 < 0, ∀λ ∈ ]0, λ].

Remark 2.1. Conditions(SD⊥) and(CF ) have been introduced in [3] forH = RN .

The following result is an extension of [3, Theorem 3 (ii)] or [21, Theorem 1] from finite
dimensional spaces to Hilbert spaces.

Theorem 2.1.If F : U → H is a continuously differentiable mapping on an open convex subset
U of a Hilbert spaceH such that conditions(SD⊥) and (CF ) are fulfilled, then the mapping
F is pseudomonotone.

Proof. Arguing by contradiction, let us suppose thatF is not pseudomonotone. Then there exist
x, y ∈ U such that

(2.1) 〈F (x), y − x〉 ≥ 0 and 〈F (y), y − x〉 < 0.

We introduce the functionf : [0, 1] → R by

f(t) = 〈F ((1− t)x + ty), y − x〉, ∀t ∈ [0, 1].

It is clear thatf is continuously differentiable on[0, 1], and by (2.1) it is seenf(0) ≥ 0 and
f(1) < 0. It follows that there ist0 ∈ [0, 1[ such that

(2.2) f(t0) = 0 andf(t) < 0, ∀t ∈ ]t0, 1].

We claim

(2.3) F (x + t0(y − x)) 6= 0.

Let us admit on the contraryF (x + t0(y − x)) = 0. Then one obtains from (2.2) that

〈DF (x + t0(y − x))(y − x), y − x〉 = f ′(t0)

= lim
t→0+

1

t
〈F (x + (t0 + t)(y − x)), y − x〉 = lim

t→0+

1

t
f(t0 + t) ≤ 0.

On the other hand, by condition(SD⊥) and the first relation in (2.2) we have

〈DF (x + t0(y − x))(y − x), y − x〉 ≥ 0.

So we conclude
〈DF (x + t0(y − x))(y − x), y − x〉 = 0.
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4 GEORGEISAC AND DUMITRU MOTREANU

This enables us to apply assumption(CF ) with u = x + t0(y − x) andv = y − x. Settingλ =
1− t0 we get a contradiction between(CF ) and the second relation in (2.2). This contradiction
justifies (2.3).

SinceF is continuous, we infer from (2.3) that

〈F (x + (t0 + t)(y − x)), F (x + t0(y − x))〉 > 0

for t > 0 close to0. Then from the second relation in (2.2) we see

(2.4) α(t) :=
〈F (x + (t0 + t)(y − x)), y − x〉

〈F (x + (t0 + t)(y − x)), F (x + t0(y − x))〉
< 0

whenever0 < t ≤ t with t > 0 near0. A direct computation yields

(2.5) 〈y − x− α(t)F (x + t0(y − x)), F (x + (t0 + t)(y − x))〉 = 0, t ∈ [0, t],

and

〈y − x− α(t)F (x + t0(y − x)), DF (x + (t0 + t)(y − x))(y − x− α(t)F (x + t0(y − x))〉

(2.6)

= α(t)[
〈y − x, DF (x + (t0 + t)(y − x))(y − x)〉

α(t)

+ α(t)〈F (x + t0(y − x)), DF (x + (t0 + t)(y − x))F (x + t0(y − x))〉
− 〈F (x + t0(y − x)), DF (x + (t0 + t)(y − x))(y − x)〉
− 〈y − x, DF (x + (t0 + t)(y − x))F (x + t0(y − x))〉], t ∈ [0, t].

Using the expressions ofα(t) andf(t) we derive

〈y − x, DF (x + (t0 + t)(y − x))(y − x)〉
α(t)

(2.7)

=
f ′(t0 + t)

f(t0 + t)
〈F (x + t0(y − x)), F (x + (t0 + t)(y − x))〉, t ∈ [0, t].

In view of (2.2) we haveln |f(t)| → −∞ ast → t+0 . Thus the function

d

dt
(ln |f(t)|) =

f ′(t)

f(t)

is unbounded from above ast → t+0 . Notice, by (2.7), (2.3) and the above property, that

〈y − x, DF (x + (t0 + t)(y − x))(y − x)〉
α(t)

→ +∞ ast → 0+.

Then relation (2.6), in conjunction with (2.4) and the continuity ofDF , implies

〈y − x− α(t)F (x + t0(y − x)), DF (x + (t0 + t)(y − x))(y − x− α(t)F (x + t0(y − x))〉
< 0 if t > 0 is sufficiently small.

Making use of (2.5), the above inequality leads to a contradiction with assumption(SD⊥)
applied foru = x + (t0 + t)(y − x) andv = y − x − α(t)F (x + t0(y − x)) whent > 0 is
small enough. The obtained contradiction ensures the situation in (2.1) is not possible. This
completes the proof.

The next result points out a useful necessary condition to have quasimonotonicity and a for-
tiori pseudomonotonocity.

Theorem 2.2. Assume thatF : U → H is a quasimonotone and Gâteaux differentiable map-
ping on an open subsetU of a Hilbert spaceH. ThenF verifies condition(SD⊥).
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Proof. Suppose by contradiction that existu ∈ U andv ∈ H such that

〈F (u), v〉 = 0 and〈DF (u)v, v〉 < 0.

It turns out
d

dt
〈F (u + tv), v〉|t=0 = lim

t→0

1

t
〈F (u + tv), v〉 = 〈DF (u)v, v〉 < 0.

As 〈F (u), v〉 = 0 and the differentiable functiont 7→ 〈F (u + tv), v〉 is decreasing around0,
there exist two numberst1 > 0 andt2 > 0 such that

(2.8) 〈F (u− t2v), v〉 > 0 and 〈F (u + t1v), v〉 < 0.

Knowing by the first inequality in (2.8) that〈F (u− t2v), (t1 + t2)v〉 > 0, the quasimonotonicity
of F guarantees〈F (u + t1v), (t1 + t2)v〉 ≥ 0. This contradicts the second inequality in (2.8).
The conclusion is achieved.

Corollary 2.3. Assume thatF : U → H is a pseudomonotone and Gâteaux differentiable
mapping on an open subsetU of a Hilbert spaceH. ThenF verifies condition(SD⊥).

Proof. Since a pseudomonotone operator is quasimonotone, the result follows readily from The-
orem 2.2.

The below theorem discusses an important class of pseudomonotone and continuously differ-
entiable mappings. In particular, Theorem 2 in [21] is extended from finite dimensional spaces
to Hilbert spaces.

Theorem 2.4. Assume thatF : U → H is a continuously differentiable mapping on an open
subsetU of a Hilbert spaceH such that the following regularity condition holds

(2.9) F (u) = 0 ⇒ DF (u) is invertible.

Then the following assertions are equivalent:

(i) F is pseudomonotone;
(ii) F is quasimonotone;

(iii) F verifies condition(SD⊥).

Proof. The implication(i) ⇒ (ii) is obvious, while Theorem 2.2 shows(ii) ⇒ (iii).
We prove(iii) ⇒ (i). According to Theorem 2.1 it is sufficient to check that condition(CF )

holds true. Towards this letu ∈ U andv ∈ H satisfy

(2.10) F (u) = 0 and〈DF (u)v, v〉 = 0.

Fix anyλ > 0. Hypothesis (2.9), the first equality in (2.10) and the inverse function theorem
yield the existence of an open convex neighborhoodU0 of u, with U0 ⊂ U , such that

(2.11) F (x) 6= 0, ∀x ∈ U0 \ {u}.

Consider a numberλ0 ∈ ]0, λ] for which one hasu + λv ∈ U0 wheneverλ ∈ [0, λ0]. We claim
that one can findλ0 ∈ ]0, λ0] with

(2.12) 〈F (u + tv), v〉 ≥ 0, ∀t ∈ [0, λ0].

On the contrary there would exist a sequenceλn ∈]0, λ0[ converging to0 that satisfies

(2.13) 〈F (u + λnv), v〉 < 0.

We show that the property in (2.13) along a sequenceλn → 0+ implies

(2.14) 〈DF (u)w, v〉 ≤ 0, ∀w ∈ H.
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6 GEORGEISAC AND DUMITRU MOTREANU

Let w ∈ H. By the second equality in (2.10) it is sufficient to assume thatw is not collinear
with v (in particular,w 6= 0). For anyλn in (2.13) there is a constantc = c(λn) > 0 small
enough which verifies

(2.15) 〈F (u + λnv), µw − λnv〉 > 0, ∀µ ∈ [0, c],

andu + µw ∈ U0 for all µ ∈ [0, c]. We note that, ifn is sufficiently large and for any small
enoughµ > 0, the segment[u + λnv, u + µw] is contained inU0 \ {u}. Here we use essentially
the fact that, due to the linear independence ofv andw, the segment[u + λnv, u + µw] does
not include the pointu. Choose an open convex subsetU1 ⊂ U0 \ {u} containing the segment
[u+λnv, u+µw]. Then relation (2.11) assures thatF fulfills condition (CF ) onU1. Thanks to
condition(SD⊥) which holds forF on U ⊃ U1, we may invoke Theorem 2.1 to obtain thatF
is pseudomonotone onU1. Taking into account (2.15), this yields〈F (u + µw), µw−λnv〉 ≥ 0.
Then, asµ > 0 is arbitrarily small and using the first relation in (2.10), we get

0 ≤ lim
µ→0+

1

µ
〈F (u + µw), µw − λnv〉

= −λn lim
µ→0+

1

µ
〈F (u + µw), v〉 = −λn〈DF (u)w, v〉.

Sinceλn is positive, the claim in (2.14) is proved.
We know by (2.9) and the first equality in (2.10) thatDF (u) is an isomorphism ofH. Then

we deduce from (2.14) thatv = 0. This is impossible because we supposed that (2.13) holds
true. Thus property (2.12) is valid, which ensures that condition(CF ) is verified. Now it
suffices to apply Theorem 2.1 for completing the proof.

3. M AIN RESULTS

Our first main result concerns the monotonicity via quasimonotonicity by translations, so
pseudomonotonicity by translations.

Theorem 3.1. Let U be an open convex subset of a Hilbert spaceH and F : U → H a
Gâteaux differentiable mapping. Assume there exists a straight lineS ⊂ H such that the
mappingF (·)− u is quasimonotone onH for anyu ∈ S. Then the mappingF is monotone.

Proof. In view of [17, Theorem 6] it is sufficient to show thatDF (x) is positive semidefinite
for everyx ∈ U . Let x0 ∈ U . Using the straight lineS given in the statement we introduce the
set

S(x0) = {x ∈ H : there existsw ∈ S such that〈F (x0)− w, x〉 = 0}.
Recall that, by hypothesis, the mappingF (·) − w is quasimonotone for everyw ∈ S. It

is thus permitted to apply Theorem 2.2 ensuring that the operatorF (·) − w satisfies condition
(SD⊥) for everyw ∈ S. It turns out

(3.1) 〈DF (x0)v, v〉 ≥ 0, ∀v ∈ S(x0).

We show the setS(x0) is dense inH. Towards this we notice, becauseF (x0)−S is a straight
line, there existα, β ∈ H, with β 6= 0, such that

F (x0)− S = {α− tβ ∈ H : t ∈ R}.
In view of the definition ofS(x0), this leads to

(3.2) S(x0) =
⋃
t∈R

{x ∈ H : 〈α− tβ, x〉 = 0}.

In order to prove the density ofS(x0) in H let an arbitraryx ∈ H. If 〈β, x〉 6= 0, then
〈α − tβ, x〉 = 0 for t = 〈α, x〉/〈β, x〉, which implies by (3.2) thatx ∈ S(x0). If 〈β, x〉 = 0,
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then for anyλ 6= 0 we have〈β, x + λβ〉 = λ‖β‖2 6= 0. According to the previous situation it
resultsx + λβ ∈ S(x0) wheneverλ 6= 0. Letting λ → 0 it follows thatx is in the closure of
S(x0). This proves the density ofS(x0) in H.

Combining relation (3.1) with the density ofS(x0) in H, we obtain thatDF (x0) is positive
semidefinite at any pointx0 ∈ U . By [17, Theorem 6], the proof is complete.

Since a pseudomonotone operator is quasimonotone, the next statement follows directly from
Theorem 3.1.

Corollary 3.2. Let U be an open convex subset of a Hilbert spaceH and F : U → H a
Gâteaux differentiable mapping. Assume there exists a straight lineS ⊂ H such that the
mappingF (·)− u is pseudomonotone onH for anyu ∈ S. Then the mappingF is monotone.

As another consequence of Theorem 3.1 we have the following result.

Corollary 3.3. Let V be a convex closed subset with non-empty interiorint(V ) of a Hilbert
spaceH andF : V → H a continuous mapping which is Gâteaux differentiable onint(V ).
Then the following assertions are equivalent:

(a) there exists a straight lineS ⊂ H such that the mappingF (·) − u is pseudomonotone
on int(V ) for anyu ∈ S;

(b) there exists a straight lineS ⊂ H such that the mappingF (·)− u is quasimonotone on
int(V ) for anyu ∈ S;

(c) F is monotone onV .

Proof. (a) ⇒ (b) is obvious.
(b) ⇒ (c). Theorem 3.1 can be applied to the restriction ofF to int(V ). We obtain that for

everyx, y ∈ int(V ), the inequality〈F (x) − F (y), x − y〉 ≥ 0 is satisfied. BecauseV is equal
to the closure ofint(V ) in H, the continuity ofF implies thatF is monotone onV .

(c) ⇒ (a). This is a straightforward consequence of Definition 2.1.

We now show that the quasimonotonicity (or pseudomonotonicity) of the translations in The-
orem 3.1 can be replaced by condition(SD⊥) provided a regularity assumption holds.

Theorem 3.4. Let U be an open convex subset of a Hilbert spaceH and F : U → H a
continuously differentiable mapping. Assume there exists a straight lineS ⊂ H such that

F (x) ∈ S ⇒ DF (x) is invertible

and the mappingF satisfies condition(SD⊥). ThenF is monotone onU .

Proof. Notice that the imposed regularity assumption ensures that property (2.9) is verified for
F (·)− u in place ofF wheneveru ∈ S. Consequently, Theorem 2.4 may be applied replacing
F by anyF (·) − u with u ∈ S. We thus derive that for allu ∈ S the mappingF (·) − u is
quasimonotone onH. Then Theorem 3.1 implies the monotonicity ofF onU , which completes
the proof.
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