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2 GEORGEISAC AND DUMITRU MOTREANU

1. INTRODUCTION

The notion of monotone operator, introduced by R. I. Kachurovskii [11], [12] and G. Minty
[17]-[20], became very fast a fundamental concept in nonlinear analysis. Many papers and
books have been dedicated to it, as for example [1], [11], [12], [17]-[20], [23]. However,
notably in optimization and economics, it is important to proceed beyond monotonicity. We
refer to the papers[2]-[8], [13]-[15], [22] for generalizations of monotonicity. These extensions
are now currently used in complementarity problems|[5]-[10], [13], variational inequalities [2],
[6], [8], [16], equilibrium of economical systems [7], different topics in nonlinear analysis [23].

In the present paper we deal with the notion of pseudomonotone operator which extends the
monotonicity. This concept has been introduced by S. Karamardianlin [13] as a new tool in the
theory of complementarity problems. It is known that a monotone mapping is pseudomono-
tone, but the converse is not generally true. A natural question is under what conditions a
pseudomonotone operator is monotone. The paper addresses to this question.

Until now the problem has been studied in the Euclidean sRader affine mappings (i.e.,
mappings of the formx — Mx + ¢, whereM is a matrix andg is an element oiR™) by
M. S. Gowdal[5], and J. P. Crouzeix and S. Schaible [4]. For instance, it is proved in [5]
that a matrix)M is positive semidefinite if and only if, for every € R", the mappingr —

Mzx + q is pseudomonotone with respect to the convex difie It is also worth to mention

that Y. He supposed in several results of [9] (e.g., Lemma 5.9, Proposition 5.3, conditions

(Ag)) that, for a givenF' : R — R", the mappingF'(-) — u is pseudomonotone for any €

R"™. The facts presented above suggest to study when an operator possessing pseudomonotone
translations is monotone. Certainly, to have an optimal result, the set of such translations must
be required to be minimal in an appropriate sense. This is a significant mathematical question
with a potentially large applicability in optimization.

Here we give a positive answer to the problem for Gateaux differentiable mappings defined
on an open convex subset of a Hilbert space. Namely, our main result establishes that the pseu-
domonotonicity for the translations of the operator that are defined by elements of a straight line
ensures the monotonicity of the operator. The essence of our result is that it suffices to check
for pseudomonotone translations of the operator only along a single straight line. Moreover, we
prove that this is true if the translations of the operator along a straight line are quasimonotone.
In our approach we point out a characterization of pseudomonotone operators, as well as of
guasimonotone operators, which are continuously differentiable mappings and whose differen-
tial is invertible at the points where the mapping vanishes. This type of nonlinear operators have
been studied in[21] on an Euclidean sp&te As a byproduct of our work we extend the basic
result in [21] from finite dimensional spaces to Hilbert spaces.

The rest of the paper is organized as follows. Sedtion 2 presents some useful results on
the pseudomonotonicity and quasimonotonicity of differentiable mappings in Hilbert spaces.
Sectior 8 is devoted to our main results.

2. PSEUDOMONOTONICITY AND QUASIMONOTONICITY OF DIFFERENTIABLE
M APPINGS IN HILBERT SPACES

Throughout the paper we denote ¥, (-, -)) an arbitrary real Hilbert space. Recall some
important definitions.

Definition 2.1. We say that a mapping : U — H defined on a nonempty subdétof H is
monotone if(F(y) — F(x),y — z) > 0, for anyx,y € U. The mappingF’ is called pseu-
domonotone (in Karamardian’'s sense) if whenexer € U, we have

(F(x),y —x) >20= (F(y),y — ) > 0.
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We say thatF’ is quasimonotone if whenevery € U,
(F(z),y —x) > 0= (F(y),y —z) 2 0.

Any pseudomonotone operator is quasimonotone, but the converse is not frue [14].

In the sequel we suppose thatis an open subset df and the mappind” : U — H is
Gateaux differentiable. The notatidnF'(u) will stand for the Gateaux differential df at the
pointu € U. Denoting byL(H) the Banach space of linear bounded operators ffbto H,
one hasDF(u) € L(H).

The next two conditions are needed in the following.

(SD*) For eachu € U, the linear operatoDF (u) : H — H is positive semidefinite on
F(u)t :=={we H : (F(u),w) =0}, i.e.,
(DF(u)v,v) > 0wheneven € H is such that F'(u), v) = 0.
(CF) For eachu € U satisfyingF'(u) = 0 and for eachy € H with (DF(u)v,v) = 0, there
are no\ > 0 so that

(F(u+v),v) <0, VA€]0,A.
Remark 2.1. Conditions(SD+) and(CF') have been introduced inl[3] fdi = RY.

The following result is an extension of|[3, Theorem 3 (ii)] orl[21, Theorem 1] from finite
dimensional spaces to Hilbert spaces.

Theorem 2.1.1f F' : U — H is a continuously differentiable mapping on an open convex subset
U of a Hilbert spacef such that condition$S D) and (C'F) are fulfilled, then the mapping
Fis pseudomonotone.

Proof. Arguing by contradiction, let us suppose tliats not pseudomonotone. Then there exist
x,y € U such that

(2.1) (F(z),y —x) >0 and (F(y),y — z) < 0.
We introduce the functiorf : [0, 1] — R by
f(t) = (F((1 =)z +ty),y —x), vt €[0,1].

It is clear thatf is continuously differentiable oft), 1], and by [(2.1) it is seerf(0) > 0 and
f(1) < 0. It follows that there ig, € [0, 1] such that

(2.2) f(to) =0andf(t) <0, Vt€lto, 1].
We claim
(2.3) F(z+ty(y —x)) # 0.

Let us admit on the contrar§f (x + t,(y — =)) = 0. Then one obtains from (3.2) that
(DF(z +to(y — 2))(y — ),y — z) = f'(to)

~ lim %(F(er (to+ )y — 2)),y — ) = lim %f(t0+t) <0.

t—0t

On the other hand, by conditigi$ D) and the first relation irf (2] 2) we have
(DE(z +to(y — x))(y —x),y — 2) 2 0.

So we conclude
(DF(x + to(y — 2))(y — x),y — z) = 0.
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This enables us to apply assumpti@h/’) with . = z + t,(y — z) andv = y — . Setting\ =
1 — to we get a contradiction betwe¢@'F') and the second relation in (2.2). This contradiction
justifies [2.3).

SinceF is continuous, we infer fronj (2.3) that
(Fz+ (to+ 1)y —2)), Fz +to(y — 2))) >0
for t > 0 close to0. Then from the second relation jn (R.2) we see
(Flz+ o+ )y — ),y — )

(Fla+ (to + t)(y — 2)), F(z + toly — 2)))
whenevel) < ¢t < t with ¢ > 0 near0. A direct computation yields
25) {y—z—a®)F(z+tly—x)), Flz+ (to+ )y —x))) =0, t €0,1],
and
(2.6)

(y—z—a@)F(z+t(y—2)), DF(z + (to +t)(y — 2))(y — v — a(t) F(z + to(y — 2)))

_ (y —2, DF(x + (to + 1)(y — 2))(y — x))

+a(t)(F(z+to(y — ), DF(x + (to + t)(y — 2)) F(z +to(y — 2)))

— (F(z+to(y —x)), DF(x + (to + 1) (y — 2))(y — )

— (=2, DF(z+ (to + t)(y — 2))F(z + toly — )))], t €[0,1].
Using the expressions of(t) and f (t) we derive
(y —a, DF(x+ (to + t)(y — 2))(y — 2))

(2.4) a(t) == <0

2.7) o
= “]}gj—:f))(F(m +to(y — ), F(z + (to + t)(y — x))), t € 0,1].
In view of (2.2) we haven | f(t)| — —oo ast — ;. Thus the function
d _ '@
Gnlr) = 25

is unbounded from above as- ¢ . Notice, by [2.7),[(2.3) and the above property, that
(y =, DF(x + (to +1)(y — x))(y — x))
a(t)
Then relation[(26), in conjunction with (2.4) and the continuity’af, implies
(y—z—alt)F(z+to(y —x)), DF(x+ (to+1)(y — 2))(y — 2 — o) F(z + to(y — z)))
< 0if t > 0is sufficiently small
Making use of ), the above inequality leads to a contradiction with assum(sion)
applied foru = = + (to + t)(y — ) andv = y — 2 — a(t)F(z + to(y — z)) whent > 0 is
small enough. The obtained contradiction ensures the situatipn in (2.1) is not possible. This
completes the proof

— 400 ast — 07,

The next result points out a useful necessary condition to have quasimonotonicity and a for-
tiori pseudomonotonocity.

Theorem 2.2. Assume that’ : U — H is a quasimonotone and Gateaux differentiable map-
ping on an open subsét of a Hilbert spaceld. ThenF verifies conditior(SD+).
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Proof. Suppose by contradiction that existE U andv € H such that
(F(u),v) =0and(DF(u)v,v) <0.
It turns out

d .1
E(F(u + tv),v)|i=0 = 11}5 ¥<F(u+tv),v> = (DF(u)v,v) <0.

As (F(u),v) = 0 and the differentiable functioh— (F'(u + tv),v) is decreasing aroune
there exist two numbers > 0 and¢, > 0 such that

(2.8) (F(u —tyv),v) >0 and (F(u + t1v),v) < 0.

Knowing by the first inequality irf (2]8) thaf (u — t2v), (t; +t2)v) > 0, the quasimonotonicity
of F guarantee$F (u + t1v), (t1 + t2)v) > 0. This contradicts the second inequality[in {2.8).
The conclusion is achieved.

Corollary 2.3. Assume that' : U — H is a pseudomonotone and Gateaux differentiable
mapping on an open subsétof a Hilbert spacel. ThenF verifies conditior(S D).

Proof. Since a pseudomonotone operator is quasimonotone, the result follows readily from The-
oremZ2.2.1

The below theorem discusses an important class of pseudomonotone and continuously differ-
entiable mappings. In particular, Theorem 2[in/[21] is extended from finite dimensional spaces
to Hilbert spaces.

Theorem 2.4. Assume that’ : U — H is a continuously differentiable mapping on an open
subset of a Hilbert spaceff such that the following regularity condition holds

(2.9) F(u) = 0= DF(u) is invertible.
Then the following assertions are equivalent:

(1) F'is pseudomonotone;
(77) F'is quasimonotone;
(4ii) F verifies condition(SD™).

Proof. The implication(i) = (i7) is obvious, while Theorein 2.2 showis) = (ii).
We prove(iii) = (i). According to Theorerh 21 it is sufficient to check that conditiotF)
holds true. Towards this let € U andv € H satisfy

(2.10) F(u) =0and(DF(u)v,v) = 0.

Fix any X > 0. Hypothesis[(2]9), the first equality ih (2]10) and the inverse function theorem
yield the existence of an open convex neighborhbgdf «, with U, C U, such that

(2.12) F(z) #0, Yo € Uy \ {u}.

Consider a numbeX, € ]0, \] for which one has: + \v € Uy whenever\ € [0, \o]. We claim
that one can find, €10, \o] with

(2.12) (F(u+tv),v) >0, Vte|0, .
On the contrary there would exist a sequeigec]0, \o[ converging td) that satisfies
(2.13) (F(u+ \yv),v) < 0.
We show that the property ifi (2]13) along a sequence- 0F implies
(2.14) (DF(u)w,v) <0, Yw € H.

AJMAA Vol. 1, No. 1, Art. 2, pp. 1-8, 2004 AJMAA


http://ajmaa.org

6 GEORGEISAC AND DUMITRU MOTREANU

Letw € H. By the second equality ifi (2.]10) it is sufficient to assume thag not collinear
with v (in particular,w # 0). For any), in (2.13) there is a constant= ¢(\,,) > 0 small
enough which verifies

(2.15) (F(u+ A\), pw — Ayv) >0, Vu € 0,¢,

andu + pw € U, for all 4 € [0, ¢]. We note that, ifz is sufficiently large and for any small
enoughu > 0, the segment. + \,v, v + pw] is contained iy \ {u}. Here we use essentially
the fact that, due to the linear independence ahdw, the segmenfu + \,v, u + pw| does
not include the point.. Choose an open convex subBgtC U, \ {u} containing the segment
[u+ Ay, u+ pw]. Then relation[(2.11) assures thafulfills condition (C'F) onU;. Thanks to
condition(SD*) which holds forF on U > U,, we may invoke Theoref 2.1 to obtain thfat
is pseudomonotone dry. Taking into accounf (2.15), this yield$'(u + pw), pw — A,v) > 0.
Then, as: > 0 is arbitrarily small and using the first relation [n (2.10), we get

1
0< lim —(F — A
_Ngonw< (u + pw), pw — Ayv)

= o, lim (P ), v) = —A(DF(w)w, v).
u—0t [t
Since)\, is positive, the claim in(2.14) is proved.
We know by [(2.9) and the first equality in (2|10) thaf"(u) is an isomorphism off. Then
we deduce from (2.14) that = 0. This is impossible because we supposed fhat(2.13) holds
true. Thus property (2.12) is valid, which ensures that condit@#’) is verified. Now it
suffices to apply Theorem 2.1 for completing the prapf.

3. MAIN RESULTS

Our first main result concerns the monotonicity via quasimonotonicity by translations, so
pseudomonotonicity by translations.

Theorem 3.1.Let U be an open convex subset of a Hilbert spdteand FF : U — H a
Gateaux differentiable mapping. Assume there exists a straightSline H such that the
mappingF'(-) — u is quasimonotone of for anyu € S. Then the mapping’ is monotone.

Proof. In view of [17, Theorem 6] it is sufficient to show th&tF'(x) is positive semidefinite
for everyx € U. Letz, € U. Using the straight lin& given in the statement we introduce the
set

S(x¢) = {x € H : there existsv € S such that F'(z) — w, z) = 0}.
Recall that, by hypothesis, the mappifAg-) — w is quasimonotone for every € S. It

is thus permitted to apply Theorém .2 ensuring that the opefgtgr— w satisfies condition
(SD+) for everyw € S. It turns out

(3.1) (DF(z9)v,v) >0, Yv € S(xp).

We show the sef(x) is dense inH. Towards this we notice, becauBéz,) — S is a straight
line, there existy, 5 € H, with 3 # 0, such that

F(zg) —S={a—-tfe H:teR}.
In view of the definition ofS(z), this leads to

(3.2) S(zo) = | J{z € H: (a—1tB,2) = 0}.

teR
In order to prove the density of(xy) in H let an arbitraryx € H. If (3,z) # 0, then
(a —tB,x) = 0fort = (o, z)/(3,z), which implies by |[(3.R) that € S(xzo). If (3,z) =0,
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then for any\ # 0 we have(3,z + \3) = A||3]|* # 0. According to the previous situation it
resultsz + \G € S(z() whenever\ # 0. Letting A — 0 it follows thatx is in the closure of
S(zo). This proves the density ¢f(z¢) in H.

Combining relation[(3]1) with the density 6fz,) in H, we obtain thatD F'(z) is positive
semidefinite at any point, € U. By [17, Theorem 6], the proof is completg.

Since a pseudomonotone operator is quasimonotone, the next statement follows directly from
Theoren311.

Corollary 3.2. Let U be an open convex subset of a Hilbert spdteand ' : U — H a
Gateaux differentiable mapping. Assume there exists a straightSline H such that the
mappingF(-) — u is pseudomonotone di for anyu € S. Then the mapping’ is monotone.

As another consequence of Theofenj 3.1 we have the following result.

Corollary 3.3. Let V' be a convex closed subset with non-empty inteiiofl”) of a Hilbert
spaceH and F' : V — H a continuous mapping which is Gateaux differentiableianl”).
Then the following assertions are equivalent:

(a) there exists a straight lin€ C H such that the mapping'(-) — u is pseudomonotone
onint(V') for anyu € S;

(b) there exists a straight lin§ C H such that the mapping(-) — u is quasimonotone on
int(V') for anyu € S;

(¢) F'is monotone ofy.

Proof. (a) = (b) is obvious.

(b) = (c). Theorenj 3]1 can be applied to the restrictiorfofo int(1). We obtain that for
everyz,y € int(V), the inequality( F'(z) — F(y),z — y) > 0 is satisfied. Because is equal
to the closure ofut (V') in H, the continuity ofF" implies thatF' is monotone oV,

(¢) = (a). This is a straightforward consequence of Definifion) 3.1.

We now show that the quasimonotonicity (or pseudomonotonicity) of the translations in The-
orem 3.1 can be replaced by conditighD+) provided a regularity assumption holds.

Theorem 3.4. Let U be an open convex subset of a Hilbert spdteand F* : U — H a
continuously differentiable mapping. Assume there exists a straight lineff such that

F(z) € S = DF(x)is invertible
and the mappingd" satisfies conditiotS D). ThenF is monotone oi/.

Proof. Notice that the imposed regularity assumption ensures that properity (2.9) is verified for
F(-) — uin place of ' wheneven: € S. Consequently, Theorem 2.4 may be applied replacing
F by any F(-) — u with w € S. We thus derive that for all € S the mappingF'(-) — u is
quasimonotone off. Then Theorerp 3|1 implies the monotonicity/obn U, which completes

the proof.x
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