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ABSTRACT. In order to examine the dynamics of the Omicron variant, this paper uses mathe-
matical modelling and analysis of a SQIRV model, taking into account the delay in the conver-
sion of susceptible individuals into infected individuals and infected individuals into recovered
individuals. The pandemic was eventually controlled as a result of the massive delays. To assure
the safety of the host population, this concept incorporates quarantine and the COVID-19 vac-
cine. Both local and global stability of the model are examined. It is found that the fundamental
reproduction number affects both local and global stability conditions. Our findings show that
asymptomatic cases caused by an affected population play an important role in increasing Omi-
cron infection in the general population. The most recent data on the pandemic Omicron variant
from Tamil Nadu, India, is verified.
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1. INTRODUCTION

The Omicron variant can infect people and cause symptoms similar to previous versions.
The Omicron variant, also known as B.1.1.5 29 SARS-Cov-2 Variant, was less contagious than
the original COVID-19 virus and the Delta variant. Omicron was widespread across several
countries and remained the dominant species as of November 24, 2021. COVID-19 vaccina-
tion remains the most effective public health measure for avoiding COVID-19 and lowering the
likelihood of new variants developing. This includes the initial course, booster injections, and
any additional dosages that may be required. To describe how diseases spread within groups of
subpopulations, mathematical models have been developed. It is clear that interpreting COVID-
19 transmission dynamics depends on a large part on the time periods. In order to improve the
SIqIRV model’s output in this paper, the Quarantined and Vaccinated compartments are con-
nected nonlinearly [9]. New SQIRV mathematical model is constructed after certain improve-
ments. Many mathematical models for COVID-19 with the vaccine and quarantine compart-
ments have been developed ([5], [7], [10], [23], [30]).

The goal of the current research is to explore the effects of the latency period by developing
two mathematical models. One is an integer model that includes a class of susceptible people
who have not been spreading ([1], [6], [19], [24], [25]). The second uses a delay differential
equations model, which gives newly afflicted people some time before they become infectious
([27], [28], [29]). With a nonlinear relationship between the quarantine and vaccination com-
partments, we created the SQIRV model. When delay factors are included in the system of
differential equations, the Omicron model can be mathematically modelled in a way that is
reasonably accurate to the observed occurrences. By referring to the articles ([2], [8], [13],
[14], [16], [21], [22], [26]), we have added the element of delay to this model. The causes
of the delays include vaccinations and quarantine. According to conventional epidemiological
models, the disease tends to converge on stable points if the infection rate is kept under con-
trol. With quarantine, vaccination, and the use of delaying compounds, the pandemic of the
Omicron variant may almost certainly be resisted in the current Omicron condition. The model-
ing’s delay factors and delaying strategies, however, stand alone and are unrelated to any other
kinds of transmission rates. This work also examines the stability analysis of the model and
the existence and uniqueness of solutions ([3], [12], [15], [18]). It is challenging to investigate
the global elements of a pestilence model framework since there are no recognised numerical
methods for establishing Lyapunov capabilities for epidemic models ([4], [32]). In order to val-
idate and confirm our theoretical findings for Omicron B.1.1.529 SARS-Cov-2, computational
simulations were run at the end of the inquiry.

2. MATHEMATICAL MODEL

An Omicron mathematical model based on a consistent, non linear first request construc-
tion of common differential conditions is examined (see Fig. 1). The whole population N(t)
is subdivided into state factor sub-populations of people who are Susceptible individuals S(t),
Infected individuals I(t), Quarantined individuals Q(t), Recovered individuals R(t) and Vac-
cinated individuals V (t). The notions that are used to denote the parameters in this research,
described in table 2.1. The corresponding values are collected from the source [35].

In the model development, there are associated concerns that: (i) Vaccines lose their ef-
fectiveness over time, causing people to lose their immunity. (ii) For Omicron, the Covid-19
vaccinations are indicated. (iii) Vaccine can be given to isolated people.
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Figure 1: Network of the Model

Table 2.1: Parameters and their descriptions

Parameters Descriptions Values
Γ Rate at which humans are recruited into the population 5
µ1 The natural death rate applicable to all compartments 0.065
µ2 Rate at which a certain fraction of susceptible individuals

receives vaccination 0.0109
µ3 Effective infectious contact rate between the susceptible

and infected individual 0.0012
µ4 The quarantine rate of the susceptible individuals 0.0107
µ5 The rate at which the recovered compartment loses its

immunities to treatment 0.0017
µ6 The rate at which the vaccinated compartment loses its

immunities to vaccination 0.0092
µ7 The treatment rate of the infected class 0.1087
µ8 The natural recovery rates due to quarantine 0.0146
µ9 The contact rate between Quarantined and Vaccinated people 0.0098
µ10 The death rate induced by infections of infected individuals 0.0006
µ11 The rate at which recovered individual moves to vaccinated

compartment 0.92
µ12 The natural recovery rates transfere from infected to recovered

individuals 0.045

By the assumptions made, the system of equations of the model and network is formulated
as

dS

dt
= Γ− (µ1 + µ2)S − µ3SI + µ4Q+ µ5R + µ6V

dQ

dt
= µ7I − (µ1 + µ4 + µ8)Q− µ9QV,

dI

dt
= µ3SI − (µ1 + µ7 + µ10)I + µ12I,

dR

dt
= µ12I + µ8Q− (µ1 + µ5 + µ11)R,

dV

dt
= µ11R + µ2S − (µ1 + µ6)V + µ9QV(2.1)
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Subject to initial conditions: S(0) = S0, Q(0) = Q0, I(0) = I0, R(0) = R0
0, V (0) = V0.

It is considered that the disease has an incubation time of the virus τ 1 > 0 transferred from
Susceptible period, an incubation period τ 2, and a recovered period τ 3 > 0. This section of the
paper is focused in constructing the dynamical model for our problem formulation. The incu-
bation period is the delay time that passes between being susceptible and showing symptoms
of the virus. The bilinear transmission incidence will be a function of (t − τ 1) and (t − τ 2).
The recovery period, which will depend on (t − τ 3), is the time it takes from contracting the
infection to becoming fully immune and switching to the recovered compartment. The written
form of the delay differential system is

dS

dt
= Γ− µ21S − µ3S(t− τ 1)I(t− τ 2) + µ4Q+ µ5R + µ6V

dQ

dt
= µ7I − µ22Q− µ9QV,

dI

dt
= µ3S(t− τ 1)I(t− τ 2)− (µ23)I − µ12I(t− τ 3),

dR

dt
= µ12I(t− τ 3) + µ8Q− µ24R,

dV

dt
= µ11R + µ2S − µ25V + µ9QV(2.2)

where µ21 = µ1 + µ2, µ22 = µ1 + µ4 + µ8, µ23 = µ1 + µ7 + µ10, µ24 = µ1 + µ5 + µ11, and
µ25 = µ1 + µ6

Subject to initial conditions: S(0) = S0, Q(0) = Q0, I(0) = I0, R(0) = R0
0, V (0) = V0.

In the system of equations, a susceptible individual is assumed to interact with an infective
individual and does not move to the infected compartment until after certain time "incubation
period" as of the case of Omicron. The incubation period τ 1 is only when moving from the
susceptible compartment to the infected compartment. τ 2 is the infective period of the infected
individual when moving from Susceptible individual to infected individual. τ 3 is the recovery
period for an infected individual moving from infected compartment to the recovery compart-
ment. Our modification of the SIqIRV model considers the delay constants, while a detailed
description can be obtained by using a system of cities connected by traffic streams.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE MODEL

Theorem 3.1. Let Ω denote a region |t − t0| ≤ y, |x − x0|≤z, x = (x1, x2, . . . , xn), x0 =
(x10, x12, . . . , xn0). Also, suppose the Lipschitzian condition |f(t, x1)−f(t, x2)| ≤ c|x1−x2| is
satisfied by f(t, x), whenever (t, x1) and (t, x2) is in Ω, where c is positive. A unique continuous
vector solution x(t) of the system in the interval t− t0 ≤ δ exists, such that δ > 0.

Proof. Let Ω denote the region 0 ≤α≤R, we want to show that the partial derivatives of are
continuous and bounded in Ω.

Let P1 = dS
dt
, P2 = dQ

dt
, P3 = dI

dt
, P4 = dR

dt
, P5 = dV

dt

Now |∂P1

∂S
| = | − µ1 + µ3I + µ2| <∞, |∂P1

∂Q
| = | − µ4| <∞, |∂P1

∂I
| = | − µ3S| <∞,

|∂P1

∂R
| = |µ5| <∞, |∂P1

∂V
| = |µ6| <∞,

Similarly the partial derivatives of (2.1) exist for all variables, which are finite and bounded.
Hence, (2.1) has a unique solution.

Theorem 3.2. Positivity of the model. If S(0), Q(0), I(0), R(0), V(0) are nonnegative, then S(t),
Q(t), I(t), R(t), V(t) are also nonnegative for all t>0.
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Proof. The sum of all the equations of the system (2.1) yield

(3.1)
dN

dt
= Γ− (S +Q+ I +R + V )µ1 − µ10I,

such that in the absence of infections we have Ṅ = Γ−Nµ1. Integrating we get, Γ
µ1

+ Ce−µ1t

where C is constant.

N(t) = lim
t→∞

( Γ

µ1

+ Ce−µ1t
)

=
Γ

µ1

=⇒ lim
t→∞

supN(t) ≤ Γ

µ1

then it follows the nonnegativity for all time t>0.

The model under consideration in this paper has two steady-state solutions. The model sys-
tem (1) is made static, i.e. the time-independent solutions are obtained. The steady-state solu-
tion in the absence of infections i.e., I = 0 is given by

E0 = (S,Q, I, R, V )

=
( Γ(µ1 + µ6)

µ1(µ1 + µ2 + µ6)
, 0, 0, 0,

Γµ2

µ1(µ1 + µ2 + µ6)

)
(3.2)

Also, the steady-state solution when infection is persistent i.e., I 6= 0 is given by,

E∗ = (S∗, Q∗, I∗, R∗, V ∗)

=
(µ33

µ3

,
µ7I

∗

µ22 + µ9V
∗ ,

µ3Γ− µ21µ33 + µ6D

µ33 − µ4A− µ5B − µ6C
∗ ,

µ8Q
∗ + µ12I

∗

µ1 + µ5 + µ11

,
µ2µ11R

∗ + µ2µ23

µ2(µ1 + µ6 − µ9Q
∗)

)
(3.3)

where µ33 = µ1 + µ7 + µ10 + µ12, A = µ7
µ22+µ9V

∗ , B = µ12
µ1+µ5+µ11

+ µ7µ8
(µ22+µ9V

∗)(µ1+µ5+µ11)
,

C = µ11B
µ1+µ6−µ9Q∗ .

The fundamental reproduction number R0 is calculated by using the next generation oper-
ator matrix as follows ([11], [31]):

Theorem 3.3. Define Xs = {x = 0|xi, i = 1, 2, 3, . . . }. In order to compute for R0, we
distinguished new infections from all other changes in the population.Let Fi(x) be the rate of
new clinical manifestations of disease symptoms in compartment i, also, let V +

i be the rate at
which individuals move into compartment i through other means and V −i be the rate at which
individuals move out of the compartment i. Then ẋi = fi(x) = Fi(x) − Vi(x), i = 1, 2, 3, . . .
and Vi(x) = V −i − V +

i , such that F is a non negative matrix and V is a non singular matrix.

Proof.

F =


0 0 0 0 0
0 0 µ7 0 0
0 0 µ3S 0 0
0 0 µ12 0 0
0 0 0 0 0


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V =


µ1 + µ2 µ4 0 µ5 µ6

0 µ1 + µ4 + µ7 + µ8 0 0 0
0 0 µ1 + µ10 + µ12 + µ7 0 0
0 µ8 0 µ1 + µ5 + µ11 0
µ2 0 0 0 µ1 + µ6



V −1 =


V11 V12 0 V14 V15

0 V22 0 0 0
0 0 V33 0 0
0 V42 0 V44 0
V51 V52 0 V54 V55


where
V11 = µ1+µ6

µ1(µ1+µ2+µ6)
, V12 = − (µ1+µ6)(µ4µ1+µ4µ5+µ5µ8)

(µ1+µ4+µ7+µ8)(µ1+µ5+µ11)µ1(µ1+µ2+µ6)
,

V14 = − µ5(µ1+µ6)
µ1(µ1+µ2+µ6)(µ1+µ5+µ11)

, V15 = − µ6
µ1(µ1+µ2+µ6)

,

V22 = 1
(µ1+µ4+µ7+µ8)

, V33 = 1
(µ1+µ10+µ12+µ7)

,

V42 = µ2µ6µ8
(µ1+µ4+µ7+µ8)(µ1+µ5+µ11)µ1(µ1+µ2+µ6)

, V44 = 1
µ1+µ5+µ11

,

V51 = µ2
µ1(µ1+µ2+µ6)

, V52 = µ2(µ1µ4+µ4µ5+µ5µ8)
(µ7+µ4+µ8+µ1)(µ1+µ5+µ11)µ1(µ1+µ2+µ6)

,

V54 = µ5µ2
(µ1+µ5+µ11)µ1(µ1+µ2+µ6)

, V55 = µ1+µ2
µ1(µ1+µ2+µ6)

.

Therefore, R0 is the largest eigenvalue of the spectral radius given by

R0(FV −1) = µ3

( Γ(µ1 + µ6)

µ1(µ1 + µ2 + µ6)

)( 1

(µ1 + µ10 + µ12 + µ7)

)
(3.4)

4. LOCAL AND GLOBAL STABILITY ANALYSIS OF THE MODEL

Theorem 4.1. The infection free steady state E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. . The Jacobian matrix of (2.1) at infection free steady state solution is given by

J(E0) =


J11 µ4 −µ3S µ5 µ6

0 J22 µ7 0 0
0 0 J33 0 0
0 µ8 µ12 J44 0
µ2 µ9V 0 µ11 J55


where J11 = −µ1 − µ2, J22 = −µ1 − µ4 − µ8 − µ9V, J33 = µ3S − (µ1 + µ7 + µ10 + µ12),
J44 = −µ1 − µ5 − µ11, J55 = −µ1 − µ6.

Then from the Jacobian matrix, the eigen values are −(µ1 + µ4 + µ7 + µ8),

− (µ1 + µ4 + µ11), µ3S − (µ1 + µ7 + µ10 + µ12), and 1
2

(
− (µ1 + µ2)− (µ1 + µ6)

±
√

(µ1 + µ2)2 + 4µ2µ6 − µ1µ2(µ1 + µ6) + (µ1 + µ6)2
)

Now, the System (2.1) is stable iff µ3S − (µ1 + µ7 + µ10 + µ12) < 0, and
µ1(µ1 + µ2 + µ6) > 1.
⇐⇒ µ3S

µ1+µ7+µ10+µ12
< 1, and µ1(µ1 + µ2 + µ6) > 1

⇐⇒ µ3

( Γ(µ1+µ6)
µ1(µ1+µ2+µ6)

)(
1

(µ1+µ10+µ12+µ7)

)
< 1

Then clearly the infection free steady state E0 (3.2) is locally asymptotically stable ifR0 < 1.
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Theorem 4.2. The infection free steady state solutions E0 is globally asymptotically stable if
R0 < 1.

Proof. We consider the Lyapunov function candidate G(S,Q, I, R, V ) : R5 → R+ defined as
G(S,Q, I, R, V ) = τI .

Differentiating the above function with respect to time, we get

Ġ = τ İ(4.1)

= τ
(
µ3S − (µ1 + µ7 + µ10 + µ12)

)
I

≤ τ
(
µ3

( Γ(µ1 + µ6)

(µ1(µ1 + µ2 + µ6)

)( 1

(µ1 + µ10 + µ12 + µ7)

)
− 1
)
I

Taking τ = 1
µ1+µ10+µ12+µ7

, then Ġ = (R0 − 1)I =⇒ (R0 − 1)I ≤ 0

Ġ = 0, when I=0, then S → Γ(µ1+µ6)
µ1(µ1+µ2+µ6)

, N → Γ
µ1

as t→∞.

Therefore {(S,Q, I, R, V ) ∈ Ω|Ġ ≤ 0} is the singleton set E0. Hence from the La-Salle
invariance principle [20], when R0 < 1, the global stability of infection free steady state is
globally asymptotically stable.

Theorem 4.3. The infection persistent steady state solutionE∗ of (2.1) is locally asymptotically
stable if R0 > 1.

Proof. The Jacobian matrix of (2.1) at infection persistent steady state solutions is given by

J(E0) =


H11 µ4 −µ3S

∗ µ5 µ6

0 H22 µ7 0 −µ9Q
∗

µ3I
∗ 0 H33 0 0

0 µ8 µ12 H44 0
µ2 µ9V

∗ 0 µ11 H55


where H11 = −µ1 − µ2 − µ3I

∗, H22 = −µ1 − µ4 − µ7 − µ8 − µ9V
∗,

H33 = µ3S
∗ − (µ1 + µ7 + µ10 + µ12), H44 = −µ1 − µ5 − µ11, H55 = −µ1 − µ6 + µ9Q

∗.

The characteristic polynomial is λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5

where

a1 = µ21 + µ3I
∗ − µ9Q

∗ + µ22 + µ9V
∗ + µ24 + µ25

a2 = (µ21 + µ3I
∗ − µ9Q

∗)(µ22 + µ9V
∗ + µ24) + (µ21 + µ3I

∗)(µ25 − µ9Q
∗)

−µ2µ6 + µ9Q
∗µ9V

∗

a3 = (µ21 + µ3I
∗ − µ9Q

∗)(µ22 + µ9V
∗)µ24 − µ3I

∗(µ4µ7 + µ3S
∗µ9Q

∗ + µ5µ12

+µ9Q
∗µ24)− [µ9Q

∗((µ21 + µ3I
∗)(µ22 + µ9V

∗) + µ21µ24) + µ2µ6((µ22 + µ9V
∗)

+µ24)] + (µ21 + µ3I
∗)((µ22 + µ9V

∗)µ25 + µ24µ25 + µ9Q
∗µ9V

∗) + µ3I
∗µ3S

∗

(µ22 + µ9V
∗ + µ24 + µ25) + µ9Q

∗(µ2µ4 + µ8µ11) + µ24((µ22 + µ9V
∗)µ25

+µ9Q
∗µ9V

∗)

a4 = (µ21 + µ3I
∗)(µ9Q

∗(µ8µ11 + µ24µ9V
∗) + (µ22 + µ9V

∗)µ24(µ25 − µ9Q
∗))

−µ3I
∗(µ3S

∗µ9Q
∗(µ22 + µ9V

∗ + µ24) + µ4µ7(µ24 + µ25) + µ5µ12(µ22

+µ9V
∗ + µ25) + µ5(µ7µ8 + µ6µ9V

∗) + µ6µ12µ11

)
+ µ4µ9Q

∗(µ5µ7 + µ2µ24)

+µ5µ9Q
∗(µ3I

∗µ12 + µ2µ8)
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a5 = µ3I
∗([µ5µ9Q

∗(µ7µ8 + µ12(µ22 + µ9V
∗)) + µ4µ9Q

∗µ12µ11] + (µ8µ9V
∗

+µ24µ9V
∗)(µ3S

∗µ9Q
∗ − µ6µ7) + µ24(µ9Q

∗ + µ25)(µ4µ7 − µ3S
∗(µ22

+µ9V
∗))− [µ12(µ22 + µ9V

∗)(µ6u+ µ5µ25) + µ5(µ7µ8µ25 + µ9Q
∗µ12µ11)]

Using the Descartes rule of sign [17] and Routh-Hurwitz method, the quartic polynomial has
unique positive real roots, if and only if a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a5 < 0. That is
µ21 + µ3I

∗ − µ9Q
∗ > 0. Then the infection persistent steady state (S∗, Q∗, I∗, R∗, V ∗) (3.3) is

locally asymptotically stable when R0 > 1.

Theorem 4.4. The infection persistent steady state solution of (2.1) is globally asymptotically
stable if R0 > 1.

Proof. We Consider a Volterra type Lyapunov function of the form Υ(S,Q, I, R, V ) :
{(S,Q, I, R, V ) ∈ Ω|S,Q, I, R, V > 0} → R+ defined as

Υ =
(
S − S∗ − S∗lnS

∗

S

)
+
(
Q−Q∗ −Q∗lnQ

∗

Q

)
+
(
I − I∗ − I∗lnI

∗

I

)
+
(
R−R∗ −R∗lnR

∗

R

)
+
(
V − V ∗ − V ∗lnV

∗

V

)
(4.2)

The derivative of Υ(S,Q,I,R,V) along the solutions of (4.2) is given by

(4.3) Υ̇ =
(S − S∗)

S∗
dS

dt
+

(Q−Q∗)
Q

dQ

dt
+

(I − I∗)
I

dI

dt
+

(R−R∗)
R

dR

dt
+

(V − V ∗)
V

dV

dt

From the first equation (2.1),

Γ = µ21S
∗ + µ3S

∗I∗ − µ4Q
∗ − µ5R

∗ − µ6V
∗

µ22 = µ7

I∗

Q∗
− µ9V

∗, µ23 = µ3S
∗ − µ12

R∗

I∗
,

µ24 = µ12

I∗

R∗
+ µ8

Q∗

R∗
, µ25 = µ11

R∗

V ∗
+ µ2

S∗

R∗
+ µ9

Q∗

V ∗
(4.4)

By using (2.1), (4.4) in (4.2) and simplifying we get

Υ̇ =
(S − S∗)

S

[
µ21(S∗ − S) + µ3S(I∗ − I) + µ3I(S∗ − S) + µ4(Q−Q∗)

+µ5(R−R∗) + µ6(V − V ∗)
]

+ µ7(Q−Q∗)
[ I
I∗
− Q

Q∗
− Q∗I

QI∗
+ 1
]

+µ3(I − I∗)(S − S∗) + µ12(I − I∗)
[ R
R∗
− I

I∗
− I∗R

IR∗
+ 1
]

+µ12(R−R∗)
[ I
I∗
− R

R∗
− R∗I

RI∗
+ 1
]

+µ8(R−R∗)
[ Q
Q∗
− R

R∗
− R∗Q

RQ∗
+ 1
]

+µ11(V − V ∗)
[ R
R∗
− V

V ∗
− V ∗R

V R∗
+ 1
]

+µ2(V − V ∗)
[ S
S∗
− V

V ∗
− V ∗S

SR∗
+ 1
]

(4.5)

Hence, for all S,Q, I, R, V > 0, Υ̇(S,Q, I, R, V ) ≤ 0 holds when S = S∗, Q = Q∗, I =
I∗, R = R∗ and V = V ∗. Therefore {(S∗, Q∗, I∗, R∗, V ∗) ∈ Ω|Υ̇ ≤ 0} is the singleton set E∗.
Hence from the La-Salle invariance principle [20], the infection persistent steady state solutions
of (2.1) is globally asymptotically stable when R0 > 1.
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5. NUMERICAL ANALYSIS

On December 15th, Tamil Nadu reported the first case of the Omicron strain of SARS-
CoV-2 by a visitor from another country. For this paper, we used data from Tamilnadu, India
([33]). Just three weeks after the first confirmed Omicron case was recorded, Tamil Nadu was
infected with the extremely infectious and quickly spreading variant of SARS-CoV-2. The
number of daily cases started to increase on December 29, when 739 people tested positive.
They rapidly grew to over 10,000 on January 8. After another 38 days, there were 36,000 cases.
The daily cases, on the other hand, went from 1,000 to 7,000 in just 7 days. According to
a statement made public by the Tamil Nadu public health department, 18.4% of the samples
sequenced in the state from January to March 2022 included the Omicron BA.2 subvariation.
Tamilnadu achieves a death rate of zero on March 11. The state of Tamilnadu obtains a safe sit-
uation against the spread of Omicron viruses on March 31st without any fatalities.Total number
of positive cases, recovered cases and deaths as on 31st march 2022 are 3452825, 3414494 and
38025 respectively in Tamilnadu ([34],[35],[36]). The initial conditions are S(0) = 30095, Q(0)
= 322, I(0) = 35, R(0) = 51, V(0) = 42846. Mathematica and Matlab are used to calculate the
numerical solution. The values of the parameters are listed in the Table 2.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time t

S
(t

)

Susceptible people with Delay

 

 

τ
1
=τ

2
=τ

3
=0.01

τ
1
=τ

2
=τ

3
=0.03

τ
1
=τ

2
=τ

3
=0.05

τ
1
=τ

2
=τ

3
=0.07

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Time t

S
(t

)

Susceptible People with Delay

 

 

τ
1
=0.01,τ

2
=0.01,τ

3
=0.2

τ
1
=0.03,τ

2
=0.03,τ

3
=0.4

τ
1
=0.05,τ

2
=0.05,τ

3
=0.6

τ
1
=0.07,τ

2
=0.07,τ

3
=0.8

Susceptible People with Delay

--- 1 = 0.01, 2 = 0.2, 3 = 0.3 

 1 = 0.03, 2 = 0.4, 3 = 0.5 

--- 1 = 0.05, 2 = 0.6, 3 = 0.7 

--- 1 = 0.07, 2 = 0.8, 3 = 0.9 

0 1 2 3 4 5

0

5000

10000

15000

20000

25000

30000

time t

S
u
s
c
e
p
ti
b
le

P
e
o
p
le

Figure 2: Susceptible people S(t) against time t

Remark 5.1. Figure 2 depicts the Susceptible individual against time t with different delays
(τ 1, τ 2, τ 3) among them and without delay in the overall condition of Tamilnadu. The number
of susceptible people varies over time with varied time lags and approaches stability at a specific
moment.

Remark 5.2. The Quarantined People of the Host of Human Population against the Time t in
the State of Tamilnadu are shown in Figure 3. The Omicron virus spreads less when infected
people are quarantined. The number of isolates in this instance varies with the time lag and
reaches equilibrium at a specific point.
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Figure 3: Quarantined people Q(t) against time t
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Figure 4: Infected People I(t) against time t

Remark 5.3. The various victim stages are illustrated in relation to the various time delays in
Figure 4. Some districts experience a significant incidence of disease among the population
from December 25 to March 11 of 2022, which is known as the Omicron period.
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Figure 5: Recovered people R(t) against time t

Remark 5.4. According to Figure 5, the number of recoveries increases exponentially as the
government increases the number of people receiving quarantine and vaccine, until stabilising
at some point. It discusses the frequency of infected, quarantined, and vaccinated individuals
during Omicron’s recovery period in the Tamil Nadu state.
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Figure 6: Vaccinated People V(t) against time t
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Remark 5.5. Vaccination is the single most significant factor in preventing the spread of viruses.
Figure 6 shows that as the population of vaccination recipients increases, the spread of the virus
is stopped, and over time, the connection between the two becomes stable.

Figure 7: S(t),Q(t),I(t),R(t),V(t) against time t without delay

Remark 5.6. Figure 7 represents the stability of the model SQIRV without delay. When peo-
ple received their vaccinations in accordance with government instructions, the infection rate
gradually dropped to a low level.
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Figure 8: Stability condition of the Tamilnadu against time t with the delay relation τ1 = τ2 = τ3

Remark 5.7. The stability of the model with different delays can be seen in Figure 8, where
τ 1 = τ 2 = τ 3. The system demonstrates the correspondence of stability of this model without
delay for the small values of equal time delays (0.01, 0.03).
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Figure 9: Stability condition of the Tamilnadu against time t with the delay relation τ1 = τ2 6= τ3

Remark 5.8. According to Figure 9, the system reaches stability much like the integer model
does for small delays of τ 1 = τ 2 6= τ 3. The system deviates from the integer model and
achieves model stability for larger values, such as τ 1 = τ 2 = 0.05, 0.07 and τ 3 = 0.6, 0.8.
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Figure 10: Stability condition of the Tamilnadu against time t with the delay relation τ1 6= τ2 6= τ3
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Remark 5.9. The stability for varied delays τ 1 6= τ 2 6= τ 3 is shown in Figure 10. As with
the integer model, the system stabilises. The delay system described in (3.1) provides the best
prediction for all lag values for the various delay values.

All Figures show how persons in Tamilnadu were infected and confirmed with the Omicron
variant in the beginning and recovered by the end of March 31st, 2022. It is obvious from
Figure 3 that once the infected population increases, all other compartments increase as well.
The figures show that when the Omicron variant was first discovered, its spread was rapid,
and when the government implemented quarantine and vaccination at a high rate, the variant’s
spread was reduced to a safe level.

6. CONCLUSIONS

We arrive at the conclusion from the data that the host community will be protected from
the Omicron variation if the number of separated, recovered, and vaccinated individuals rises.
We also discovered that the second wave of SARS Cov-2 Omicron variant is less likely to
spread if the intercessions are properly adhered to. According to Table 2.1, as of March 31,
the number of infected people in Tamilnadu districts has decreased to low level with no death
based on RT PCR sample tests. Covid-19 vaccinations helped people avoid infection with the
SARS CoV-2 Omicron variant. The data acquired from Tamil Nadu together with our SQIRV
mathematical model, suggest that the Omicron variant infection has stabilised after few months.
This model outperforms other mathematical models by taking into account the nonlinear force
of quarantine, vaccine, infection, and care, as well as the right inclusion of valuable parameters.
The principles of reproduction number calculated with this model are an outbreak threshold
that determined whether or not the disease would go further in Tamilnadu where R0 < 1.
These model’s fundamentals of positivity and boundedness have been examined and validated.
There are infection-free steady-state solutions that are asymptotically stable locally and globally
when R0 < 1. Also When R0 > 1 is present, infection-present steady-state solutions that
are stable locally and globally are discovered. The delay model, which is discussed in this
research provided better recommendations for how to prevent the host population in the event
of a pandemic. Finally, the SQIRV Model is used to validate the most recent Omicron variant
pandemic data from the Indian state of Tamilnadu.
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