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2 H. PRIYA AND B. SRUTHA KEERTHI

1. INTRODUCTION

Let .4 indicate an analytic functions family , which is normalized under the condftion =
f/(0)—1=0inU={z:z e Cand|z| < 1} and given by the following Taylor-Maclaurin
series:

(1.1) f(z) = z+Zanz”

Further, byS we shall denote the class of all functionsdnwhich are univalent ifU. With
a view to recalling the principle of subordination between analytic functions, let the functions
f andg be analytic inU. Then we say that the functiohis subordinate tg if there exists a
Schwarz functionu(z), analytic inU with

w(0) =0, lw(z)| <1,(z€l)

such thatf(z) = g(w(z))
We denote this subordination by,

f=glor) f(z) <g(z)

In particular, if the functiory is univalent inU, the above subordination is equivalentft®) =

9(0), f(U) C ¢(U)
The Koebe-One Quarter theorem [11] asserts that imadé wider every univalent function
f € Acontains a disc of radiug, thus every univalent functiofi has an invers¢ ! satisfying

FHf(2) = zand f(f(w) =w, (jw] < ro(f),ro(f) > 3)
(1.2) fHw) = w— aw® + (2a3 — az)w® — (5a3 — bazas + ag)w* + . ..

A function f ¢ A is said to be bi-univalent functions i if both f and f~! are univalent

in U. A function f € S is said to be bi-univalent ify if there exist a functiory € S such

that g(z) is an univalent extension gf ' to U. Let A denote the class of bi-univalent func-
tions inU. The functions=, —log(1 — z), 3 log(1=2) are in the clasg (see details in[20]).
However, the familiar Koebe function is not bi-univalent . Lewin![17] investigated the class of
bi-univalent functions\ and obtained a bounjd,| < 1.51. Motivated by the work of Lewin

[17], Brannan and Clunie [9] conjectured thas| < /2. The coefficient estimate problem

for |a,| [(n € N),n > 3] is still open [20]. Brannan and Taha [10] also worked on certain sub-
classes of the bi-univalent function classnd obtained estimates for their initial co-efficients.
Various classes of bi-univalent functions were introduced and studied in recent times, the study
of bi-univalent functions gained momentum mainly due to the work of Srivastava letlal [20] ,
Motivates by this, many researchers [1]/[4, 8],/[13, 15],[20]) [21] and[[27, 29], also the refer-
ences cited there in recently investigated several interesting subclasses of tieatdfound
non-sharp estimates on the fisrt two Taylor-Maclaurin co-efficients. Recently, many researchers
have been exploring bi-univalent functions, few to mention Fibonacci polynomials, Lucas poly-
nomials, Chebyshev polynomials, Pell polynomials, Lucas-Lehmer polynomials, Orthogonal
polynomials and the other special polynomials and their generalizations are of great importance
in a variety of branches such as Physics, Engineering , Architecture, Nature, Art , Number the-
ory , Combinatorics and Numerical analysis. These polynomials have been studied in several
papers from a theoretical point view (see for example],[[2B, 30] also see references therein)

We recall the following results relevant for our study as statedlin [3].plLef andq(z) be
polynomials with real coefficients. The, ¢)-Lucas polynomialsC, ., (x) are defined by the
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recurrence relation.

Ly gn() =p@)Lpgn1(2) + q(x)Lpgn—2(r) (n > 2)
From which the first few Lucas polynomials can be found as

Lyqo(r) =2

Lyqi(z) =p(z)

ﬁqu( ) = 2(x)—|—2q(a:)
(1.3) Lygs(x) =p*(x) + 3p(x)q(z),- -
For the special cases pfz) andq(;z:) we can get the polynomials giveh, ; ,(z) = L,,(z) Lu-
cas polynomialsls, 1 ,(z) = D, (z) Pell -Lucas polynomials£; 2. »(z) = j.(z) Jacobsthal-

Lucas polynomialsLs, —2,(x) = F,(x) Fermate-Lucas polynomial&s, —1,(z) = T,(x)
Chebyshev polynomials first kind.

Lemma 1.1.[16] LetG.«.);(2) be the generating function of the, ¢)-Lucas polynomial se-
quenceLl, , .(z) Then,

2 —p(x)z
e ZEM" IR G

and
Gien(2) = Green () =1 =14 Lyga(x)z
n=1

B 1+ q(x)z?

1 —pla)z — q(x)2?
Definition 1.1. A function f(z) = z+ > -, a,2" is said to be in the clag¥(t, \) if it satisfies
the subordination conditions which are as follows

(=) A2f"(2) + (1 +2X)22f"(2) + 2f'(2)]

&9 NE[f7(z) — )] + 2 [ (2) — ()] Greay(2) (2 € D)
and
as P LU ERNSS ) Ferlo)] Gieey (W) (wel)

M? [g"(w) — tg"(tw)] +w g’ ( ) — tg'(tw)]
whereG. . 1(2) € ¢ and the functiory is described ag(w) = f~'(w)

Definition 1.2. For the case = 0 the clasC(¢, \) reduces to the clas¥0, \) satisfying the
following conditions,

A F7(2) + (L4 20)27(2) + 2f(2)]
X2[7(2) + 2f'(2)

< Gl (?)

and
Pw’g” (w) + (1 + 2)\)w?g" (w) + wg' (w)]
Aw?g”(w) +wg'(w)

Definition 1.3. For the case\ = 0 the clas<(¢, \) reduces to the clag¥t, 0) satisfying the
following conditions,

= Gy (W)

(1 - [z°f"(2) + 2f'(2)]
2[f'(z) — tf'(t2)]

= G (2)
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(1) [w2g" (@) + wg' ()]
wlg' (w) — tg' (tw)]
2. COEFFICIENT BOUNDS FOR THE FUNCTION OF THE CLASS C(t, \)
Theorem 2.1. Let the functionf(z) given by[(1.]L) be in the clag¥t, A). Then
as] < ()| VIp()]

o= VI{AT =2 {Top?(2) — (p*(2))(T2 = 2)(1 + A) — 29(2)(T2 — 2)(1 + N)} = 3(Ts — 3)p? ()}

p'(z)] N [p* ()]
S 314203 Ty 41+ V22— Ty)2

Proof. Let f € C(t, \) there exists two analytic functionsv : U — U with «(0) = v(0) such
that|u(z)| < 1, [v(w)| < 1, we can write from[(1}4) andl (1.5), we have

(1 =) A2 f"(2) + (142322 f"(2) + 2f'(2)]

= G (W)

las| <

(21) A\ 22 [f”(Z> _ tf”(tz)] Y [f/(Z) _ tf’(tz)] = g{ﬁ(a:)}(Z) (Z c [U)
and
(1—1) Pw’g”(w) + (1 +20)w?g" (W) + wg'(w)]
(2.2) N2 g7 (W) — tg" (k)] + w g (@) — tg'(tw)] Gy (w) (wel)
It is fairly well known that if
lu(2)] = |urz +upz® +---[ <1
and [v(w)| = |ow+ oW’ + -] <1

then |ux| <1 and|vy| <1 (keN)
It follows that,

Grewy(u(z)) = 1+ Lypg1(@)u(2) + Lpgo(z)u?(z) + - -
(2.3) = 1+ Lygr(@)ur(z) + [Lpgi(@)us + Lygo(z)ui] 2° + -

g{g(x)}(v(w)) 1+ Lpga(z)v(w) +£pq2($)v2<w) +-e
(2.4) = 1+ qu 1( )Ul(w) + [*Cpq 1( )U2 + ﬁp,qﬂ(x)vﬂ w® + -
From the equalltleﬂ’g 1) and (2.2), we obtain that
(1) A2 f"(2) + (1 +2X)2°f"(2) + 2 ()]
A2 [f"(z) = tf"(t2)] + 2 [f'(z) — tf"(t2)]
(2.5) + [£p7q71(l')U2 + Ep,q,g(q:)uﬂ 224

=1+ L, ,1(x)ui(2)

(1 —1) [P’y (W) + (1 + 20 w?g" (w) + wg' (W)]
Aw? [g"(w) — tg" (tw)] + w [¢'(w) — tg'(tw)]

=14 Ly g1 () (w)

(2.6) + [[,p’q,l(x)vg + Ep,q,g(x)vﬂ w4
It is follows that, from [(2.5) and (2]6), we obtain,
(27) 2@2(1 + )\) (2 — TQ) = £p7q71(x)u1

(28) 3@3(1 + 2/\) (3 - Tg) + 4G§T2(1 + )\)2(T2 - 2) == Ep,q’l(x)m + Ep’qg(l’)uf
and
(29) —2a2(1 + )\)(2 — T2> = Ep,q,l(ac)vl
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(2.10) 3(1+2)\)(2a5 — a3)(3 — T3) + 4a5To(1 + A\)(Ty — 2) = L, g1(2)v2 + L, g2(7) 07
From (2.7) and[(2]9), we get,

(2.11) Uy = —uy

(2.12) and2 [4(1+ A\)?*(2 — T2)*] a3 = L2, 1 (z)(u] + v7)

By adding [2.8) to[(2.70), we get,

(2.13) 2[3(3 —T3) + 4To(Ty — 2)] a3 = Ly g1 () (ug + vo) + Ly ga(z)(uf + v7)
By using [2.12) in[(2.13) we have,

(2.14) 2 = £pan (@)t 4 va)

2{4(Ty — 2) {TrL2 1 () — Lpgo(x)(To —2)(L4+ N} —3(T5 — 3)L2 1 (x) }
Thus From[(1.8) and (2.14) we get,
)|V Ip(@)]

= VR -2 (17 @) — P@)(T: — 20 + ) — 20 (T — (1 + V)] — 505 P @)}
Next, in order to find the bound dn;|, by subtracting[(2.10) fronj (2.8), we obtain

6(1 + 2)\)(3 - Tg)(ag - CL%) = ,Cp’qJ(SL’)('LLQ - Ug)

Lpg1(z)(ug — o)
6(1 4 2)\)(3 —1T3)

|as|

(2.15) az = + a3

_ ‘pr%l('r)(u? - UZ) ﬁpq 1( )(U% + U%)
CTE1 NG Ty) | 81+ NP2 - Ty
p' ()] p(z)]

lag| < 3(142)0)(3 —Ty) * 414 N)2(2 = Ty)?

This completes the proaf

If we take\ = 0 andt = 0 in theorem|[(2.]L) we obtain the following corollaries respectively,

Corollary 2.2. A functionf € A of the form [(1.]L) is in the clas§(¢, \) whereX = 0, we
obtain,

§ DIV
S VREAT ) (0w Po)E 224G 2) 3G 9P @)

p'(2)] p* (@)
<
9l < 35 T 1= 1)
Corollary 2.3. Afunctionf € A of the form[(1.]1) is in the clas¥(¢, \) wheret = 0, we obtain
z)|V/Ip(2)|

~ V{4 {Tp?(2) + p2(2) (1 + A) + 29(2) (1 + M)} + 3p(2)}]

23] '@l 1P*()
61420 41+ )2

|as]

lag| <
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3. FEKETE-SZEGO INEQUALITY FOR THE CLASSC(t,\)

Fekete-Szego inequality is one of the famous problem related to coefficient of univalent an-
alytic functions. It was first given by [12] , the classical Fekete-Szego inequality for the co-
efficients off € S is

jas — pal| < 14 2e7+ for p € [0,1)

As 1 — 17 we have the elementary inequality; — a3| < 1. Moreover, the coefficient
functional S, (f) = as — pa3 on the normalized analytic functionfsin the unit diskU plays

an important role in function theory. The problem of maximizing the absolute value of the
functionalS,(f) is called the Fekete-Szego problem. In this section, we are ready to find the
sharp bounds of Fekete-Szego functiaSalf) defined forf € C(t, A) given by [1.1)

Theorem 3.1. Let f given by[(1.]L) be in the clag¥¢, \) andx € R. Then,

Ip(z)| o< k()| < 1
3(1+20)(3 = T3) 6(1+ 2X)(3 — T3)
1

lag — pa3| <

2lp(a) 101, bl 2 5o E =T
where
[2{ (142))(3 = T3) — 2T(1 + )2 (2—T2)]£§q1( x) — 4L, 02(x) (1 + N)2(2 — Tv)?}]

Proof. From (2.14) & (2.1F) we conclude that

an — a2 — (1 =)L 1 (x)(ug + v2)
TR T RBO 2N B - Th) — 201+ V22— To) L2, 1 (2) — ALy g2 (@) (1 + N)?(2 — T)2}]

‘Cp,q,l(x)(u — U )
+ {6(1 i 2/\)(§—T§)}

a5 = ity = Ly (7) Kh(“) T 2)\1)(3 - T3)> e (h(“) T 61+ 2>\1)(3 - T3)) “2}

where,

M) = (1= )L} ()
[2{[B(L+2X)(3 = T3) = 2T5(1 + \)?(2 — To)] L2 1 (x) — 4Ly g2(x) (1 + X)2(2 — T3)?}]

Then, in view of [(1.B), we obtain

Pl ) < !
3(1+2))(3 — T3) 6(1 +2)\)(3 — T3)

1
2lp(2)] ()], Ml = -y

|ag — paj| <

we end this section with some corollaries.
Taking, = 1 in theorem|[(3.]1) we get the following corollary,
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Corollary 3.2. If f € C(t, \) then,

p(2)]
1+20)(3 - Ty)

2
— <
‘0’3 a2’ — 3(

For A = 0 andt = 0 in theorem|[(3.]1), the following Fekete-Szego inequality is obtained
Corollary 3.3. Let f given by[(1.1) be in the clag¥t, \), then

Fort=20
()| !
< |2 SIS Sy
2Ap(a)||h()],  [h(p)] > m
For\A=0
p(2)] L
R R 17| g———
o T < [h(p)] 6(3 — Ty)
2Ap()||h(m)],  h(w)] > 6(31@))
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