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optimization problems. The first steps for this purpose involve the study of bilevel optimization
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markets. Bilevel optimization is a special kind of optimization where one problem is embedded
within another.

Key words and phrasesConvex programming on affine manifolds; Special connections; Bilevel semivectorial; Finsler metric
manifolds; Optimal control.

2010Mathematics Subject Classificat orf0C25, 90C51.

ISSN (electronic): 1449-5910
(© 2021 Austral Internet Publishing. All rights reserved.


https://ajmaa.org/
mailto: <faik.mayah@yahoo.com>
mailto: <ali.math2018@yahoo.com>
mailto: <ahmedhashem@gmail.com>
mailto: <nsaif642014@yahoo.com>
https://www.ams.org/msc/

2 FAIK MAYAH, ALl S RASHEED AND NASEIF J. AL- JAWARI

1. COMPLETE AFFINE -FINSLER-METRIC MANIFOLDS

In some optimization problems [10,/11,/17, 18] 19, [20,/21, 22], one usedfiar-metric
manifoldas a triple(M, T, d), whereM is a smooth reak-dimensional manifold with metriz-
able topology induced by the metrik I" is an affine symmetric connection dd, andd is a
distance function on\/. The connection produces auto-parallel curves used for defining the
convexity of subsets i/ and convexity of functions oM. The distancel is used for intro-
ducing topological properties. Generally, one supposes that the topoldgyimduced by the
distanced coincides with the manifold topology /. Still not go on this way, since the paper
[6] shows, in reasonable conditions on the metrithat the manifold should be structured as a
Finsler manifold.

In this paper we want to solve some optimization problems based on an affine-Finsler-metric
structure on the basic manifold. Aaffine-Finsler manifolds a triple (M, I, '), whereM is
a smooth reah-dimensional manifold]" is an affine symmetric connection di, and ' is
a Finsler function on the tangent bundid/. An affine connectiorF?j in M is a non-linear
connectionNJh = yiF?j in TM. Such a non-linear connection is callaffine connectiorfsee
[6], p. 211). Let(M, T') be an affine manifold with the property that any two pointg € M are
joined by an auto-parallel curve. Then a Finsler strucfuraduces two metrics: (i) the Finsler
metricdp(z,y) = inf,cc,, {(7), whereC, , the set of all curves which joins two points y,
and (i) the metriaic 4 p compatible to the connectidngiven bydcap(x,y) = infieccap €(7),
whereC' AP is the set of finite concatenations of auto-parallels (broken auto-parallels) which
join the pointse,y € M.

We observe that

(1.1) dr(p,q) < dcar(p,q).
It follows thatdcap(p, q) is a distance o/ and
(1.2) Beap(p;r) C Br(p; 7).
In the next Sections, we shall use the affine-Finsler-metric manifold
(2.3) (M, T, F,dcap).

Concatenation of two curves: The curygoes fromA to B, while the curve) goes fromC' to
D. If one combines these curves by first going alerfpom A to B and then along from C'to
D, the resulting curve fromt to C' is known as the concatenationpfind and is denoted by
y=yUJ.

Definition 1.1. [?] An affine manifold (M, T") is called auto-parallely complete if any auto-
parallely(t) starting atp € M is defined for all values of the parameter R.

Theorem 1.1.[1] Let M be a (Hausdorff, connected, smooth) compaemanifold endowed
with an affine connectiol’ and letp € M. If the holonomy group Ho(I') (regarded as a
subgroup of the groupr (7, M) of all the linear automorphisms of the tangent sp@g&/) has
compact closure, thefiV/, I') is auto-parallely complete.

Suppose that
(1.) () = i /t " P(e(t), £(0))dt
=1 Jtia
Theorem 1.2. The solutions of the problem
(L5) g, = [  F(a(t), a(0)de
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are concatenations of auto-parallel curves whose tangent vectors satisfy

OF or ori O2F .
1.6 — N\ ——mn 9 ), ——In o\ ) TF ) i
(1.6) o+ ( Dl oom + (ag'ckag'cl + “f) m”) v
O*F c ) .

Proof. Without less the generality, suppose we have
The attached Lagrangian is

(1.7) L= F(x(t),#(t)) + Xi(t) (#'(t) + Ty (t)d ()3"(1)) -
Consequently, the extremals must satisfy the ODE system

OL d oL d® 0L 4 . ,
- . _ 33X 7,4 - J . k: _
or  dod T azoi 0, &@'(t) + Tl (z ()’ (t)a* (t) = 0.

On the other hand,
oL OF )\’81#3'.,6

oL

o 0L _oF oL
N il

o~ ot TN T ga T ow TN

d oL OF OF \ Tk % ik i sk
Writing the Euler-Lagrange ODE system and eliminatifigwe find the condition on velocities,
in the Theoremp

- )\l7

Let us show that the completeness of the distahiseequivalent to "any auto-parallel curve
v(t) is defined for all values of the parametér This statement is similar to Hopf-Rinow
Theorem in Riemannian manifolds theory (seé, [5, p. 146]).

If there exists a minimizing auto-paralleljoining p to ¢, thendcap(p, q) = (7).

Theorem 1.3. The topology induced by 4p on M coincides to the original topology ol .

Proof. If r is sufficiently small, the normal balB, (p) coincides to the metric ball of radius
centered ap. Hence, metric balls contain normal balls, and convergely.

Theorem 1.4.1f exp, is defined on all of, M, then for any; € M, there exists an auto-parallel
7 joining p to ¢ with £(v) = dcap(p, q).
Proof. Letdcap(p, q) = r andBs(p) a normal ball ap, with Ss(p) = S the boundary oB;(p).
We denote by, a point where the continuous functidpap(q, z), « € S, attains a minimum.
Thenz, = exp, 6v, wherev € T,M, |v| = 1.

Let v(s) = exp, sv be an auto-parallel curve. To show thgt) = ¢, we consider the
equation

(1.8) deap(v(s),q) =1 — s,
and we introduce the set
A = {s € [0, r] | with property thaf 1]8 is valifl

The setA is nonempty, since the equatign (1.8) is truesfes 0. Furthermore, the set C [0, r|
is closed.

Let sy € A. Let us show that ik, < r, then the equalit8 is true also fer + &', whered’
is sufficiently small. This impliesup A = r. SinceA is closed, them € A, which shows that
V(r) =q.

|
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Theorem 1.5.Let (M, T, F,d) be a manifold, wher& is an affine connectior¥’ is a Finsler
fundamental function and is a distance compatible tb via F'. Letp € M. The following
assertions are equivalent:

(i) any auto-parallel curvey(t), starting atp, is defined for all values of the parameter

(ii) exp,, is defined on all of}, M;

(iii) the closed and bounded subsets\éfare compact.

(iv) the metric spacéM, d) is complete;

Proof. (iv) = (i). SupposeV/ is not auto-parallely complete. Then some normalized R)ia
auto-paralleh(s) is defined fors < sy and is not defined fos,. Let {s,} , with s,, < s¢
andlim,_ .. s, = so. Givene > 0, there exists an index, such that: ifn,m > ng, then
|sp — sm| < €. It follows

d(7(30),7(5m)) < Isn — sl <€,
and hence/(s,) is a Cauchy sequence. Them,, .., y(s,) = po € M, sinceM is complete in
the metricd.

Let (U, §) be a totally normal neighborhood pf. Chooser; with the property: ifn, m > ny,
then|s,, — s,| < 0 and~(s,),v(sm) € U. Then there exists a unique auto-paratlelith
the properties: its length is less thanand joins the points(s,) and~(s,,). Itis clear that
« coincides toy, wherevery is defined. Sincexp, , is a diffeomorphism onB;(0) and
exp,(s,)(Bs(0)) D U, the curven extendsy beyonds.

(1) = (ii), obvious.

(11) = (i17). Let A C M be closed and bounded. Sindds boundedA C B, whereB is a
ball with centerp in the metricd. By previous Theorem, there exists a b&}(0) C 7,,M, such
that B C exp, B,(0). Being the continuous image of a compact seh, B,(0) is compact.
Hence,A is a closed set contained in a compact set, and is therefore compact.

1.1. Finsler metric. The functiony — F'(z,y) is called sub-homogeneous of degpeié
F(x, \y) < XNF(2,y).

The functiony — F(z,y) is sub-homogeneous of degredf it verifies the Euler inequality
yiFyi > pF.

Suppose the fundamental functiéiiz, y) is non-negative, has the value zero only i 0,
and is homogeneous of degree ong.iimhe homogeneity holds in particular for positive factors.
Using Euler PDE, we havg'F,; = F' (we abbreviate usual partial derivatives by subscripts).
Repeated usual partial derivatives give

ijyiyj = O’ kuyiyjyk — _Fyiyju
Defineg;;(z,y) using the usual partial derivatives,
1 ?F* 1, ,
9ii(%.y) = 5 o 5 (F)yis = FFy + FyiFy

and suppose;;(z, y) is positive definite (the energy partial functipn— F*(z, y) is Euclidean
strictly convex; Finsler metric). It follows

zZ:FF Z]Z":FZ 7 U:O k U:O.
yg] yﬂayyg] ’yayk 7y 8yk

The relations N N .
gij(x’ y)plp] = FFyiyjplp] + (Fyz‘pl)

i\ 2 i q i

F2 (Fyip ) = (gij(x>y)y p])Q < F29ij($, y)pp]
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implies thatF:,; (z,y)p'p’ > 0 (positive semidefinite). In other words, the partial function
y — F(z,y) is Euclidean convex. Hence it satisfies

F(z,y) + Fy(z,y)(p —y)' < F(z,p).
Adding Euler PDE, we obtaift: (x, y)p’ < F(z,p). Also, the convexity and the homogeneity
of y — F(x,y) lead to triangle inequality
F(z,p+q) < F(z,p) + F(z,q),

with equality if and only ifp andq are collinear. The last two inequalities permit to prove that
Finsler geodesics minimize locally the distance.
Letg;; = gi;(x, y) be the local components of Finsler metyic:, y). Denote

1, ( ®F , OF el ) 0
Gj:ﬁj(wy—@)w‘—@: -

oy 0w oy
The Finsler metric determines the Chern connectioof components

) 1 . ..
;k = §glh (5kgjh + 5jgkh - 5hgjk> y Uy 0, kv h = 17 ey N

The fundamental properties of this connection are: (i) is torsion-free, (ii) is almost compatible
with the Finsler metric in the sengg;, = aag;{ N, (iii) the vector fieldy a?;i Is h-parallel, i.e.,
y‘lk = 0.
Our basic manifold is in fact thprojectivized tangent bundIB7T M (each tangent space to
a manifold is taken to be a projective vector space). The fundamental furictiony) defines
the length of aC' curve~(t), t € [a, b], namely

() = / F(y(t), 5(t))dt

and a functional whos€” extremals are called geodesics. In other words? aurvey : I C
R — M, with constant speed parametrization, is called geodesic if its tangent vectoy f&eld
auto-parallel with respect t0, i.e., V4 = 0. Let¥(¢) = (y(t),7(¢)) be the lift ofy to PT' M.
Then the equations of geodesics are
d*z" dad daF
FTERRE T

Sinceg—g part disappears, it rests
d*z N da’ da* 1 4 (Dgin | Ogin  Ogji =0
ar " dt dt 27 \ 9k T owi  oah )T

Let v(¢) be a Finsler geodesic joining the point&:) = p,~v(b) = ¢. The Finsler metricly
is defined byir(p, ¢) = inf,, (). We do not use this metric.

2. COINCIDENCE BETWEEN AUTO -PARALLEL CURVES AND FINSLERIAN GEODESICS

The auto-parallel curves @f(z) coincide to Finsler geodesics gf (z, y) if and only if

L o (Ogin | Ogen  Ogjk o

or
99in | Ogen  Ogjk
oxk oxJ Oxh
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Changingh with j, we find

Ogjn . Ogr;  Ognk ;
oxk + oxh  Ox = 205

Adding the last two PDE relations, we get

9gjn
a ]k gzhrjk + gz]Fhk’

i.e.,9:;(x, y) is parallel with respect tb’ ().

2.1. Affine-Hessian metric. Supposé’(z, y) is the fundamental function generating the Finsler
structure on the manifold\/, I").
The partial fundamental functian— F'(z,y) and the connectiohi(z) define the Hessian

O?F? , OF? OF OF
— — =2F(H Fl+2——.
Oyt oyl ” oy (HessrF)i; + oyt OyJ

Suppose the Hessian tensor
hij(z,y) = % (HesspF?)y;
is positive definite. By hypotheses we find
Y'hij(z,y) = F Fyn ((5? — yiF?j) , Y'Yy hy(z,y) = F? — FF, ;Lth Yy >0

(H@SSFFQ)Z'J‘ =

It follows that the next relations are true:
hz](x y) Zp] F(HGSSFF)’L]pp] +( Zp)

F2 (Fyp' = FpUly'p)) = (hij(, p)y'p’)” < (F2 = FEATly'y?) hij(z,9)p'p.
The equality (in the last relations) holds true only if the vecioasdy are collinear.
Open problem The partial functiony — F(z,y) is affine convex, i.e(Hessr F');;p'p’ > 0
or not?

3. SIGNIFICATIVE EXAMPLE

Let (R,T, F(z,y) = |y'| + |y*|) be an affine-Finsler manifold, with the tangent manifold
TR = R% x R?. Suppose

1 ut
2 p2x?’

12

5 gt and otherwisd™}; = 0.

Fb = F%l = F%z = F%l =
Then the auto-parallel curves are of the form
2i(t) = Nt i =1,2.

Also, the auto-parallel segment: [0,1] — R? joining the pointsP = (a',a?) and@ =

(b',0%),i.e.,7(0) = P,v(1) = Q is given by
Y1) = ((@') 'Y (@)1 (07)).

Let us define a distaneeon the Finsler spacgR?, T, F(z,y) = |y'| + |y*|), compatible to

the affine structur&. For that we use the length of an auto-parallel curve between pBiatsd

Q,
o) = / F(y(t), 4(t)dt = / (1)) + 1a2(0) )t = B — a?| + 1 — o).

Then, naturally, we define
d(P,Q) = |b* — a| + |b* — a?|.
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It follows easily the closed ball
B(P;R): |z' —a'| + |2° — a®| < R,

centered at the poirft = (a', a*) € R%, of radiusR > 0.
In this way, it was created an affine-Finsler-metric manifold

(RL, T, F(z,y) = ly'| + [v°].d) -

Proposition 3.1. Let F(z, y) = |y*| + |42
(i) Any curvey(t) = (x'(t),2*(t)), t € [0,1], joining the points(a', a?), (b',b*), whose
components!, 22 are monotonic, is a Finsler geodesic.

(i) The auto-parallels
y(t) = ((@)' (b)) (a®) ' (6%)")
are Finsler geodesics.

Proof. Indeed, for an arbitrary piecewige' curvey(t) = (z'(t), 2%(t)), t € [0, 1], joining the
points(a', a?), (b', %), we have

1 1
l(y) = / |21 (t)|dt +/ |2 (t)|dt = Vo' + Vya?
0 0

> bt — at| + |b? — a?],
whereV,'z means the variation of the functianon the interval0, 1]. If z is monotonic, then
Vor = |z(1) — z(0)].
Example 3.1. Let us consider the function
@ M; x My — R?,

p(,y) = (p1(2,9), a(z,9)) = (I0*(2") + yva?,yIn(z") — Ina?).
The partial functiont — ¢(z,y) is affine convex. Indeed
u(t) = ¢i(a(t),y) = (1= Ina + tha®)* +y(a') 7 (a*)?
v(t) = oo(x(t),y) = y((1 —t)Ina* +tlna?®) — (1 —t)Inb' + t1nb?)
verifiesu”(t) > 0 respectively”(t) > 0.

Our paper is based also on some ideaslin: [2] (convex mappings between Riemannian man-
ifolds), [4] (geometric modeling in probability and statistics), [6] (arc length in metric and
Finsler manifolds),[[8] (applications of Hahn-Banach principle to moment and optimization
problems), [[14] (geodesic connectedness of semi-Riemannian manifolds), [25] (tangent and
cotangent bundles), and see ([23],/[24]).

4. THE SEMIVECTORIAL BILEVEL PROBLEM

Let (M4, 'T"), the leader decision affine manifold, agd,, ’I"), the follower decision affine
manifold, be two connected affine manifolds of dimensierandn, respectively. Moreover,
(M,,>T,d) is supposed to be complete. Let alo M; x M, — R be the leader objective
function, and letr" = (Fy, ..., F,) : M; x M, — R" be the follower multiobjective function.

Letx € M,y € M be the generic points. Theeakly or properly Pareto solution set of the
follower multiobjective optimization problers represented by the set-valued function

¥ My = Ms, (z) = 0-ARGMINS, . F(z,y).
We deal with two semivectorial bilevel problems:

AJMAA Vol. 18(2021), No. 2, Art. 2, 10 pp. AIMAA
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(i) The optimistic semivectorial bilevel problem
(4.2) min inf f(z,y).

€My yey(x)

In this case, the follower cooperates with the leader; i.e., for eaeh/;, the follower chooses
among all itso-Pareto solutions (his best responses) one which is the best for the leader (as-
suming that such a solution exists).

(i) The pessimistic semivectorial bilevel problem

4.2) min sup f(z,y).

€M1 yey(x)
In this case, there is no cooperation between the leader and the follower, and the leader expects
the worst scenario; i.e., for each € M, the follower may choose among all issPareto
solutions (his best responses) one which is unfavorable for the leader (in this case we prefer to
use "sup" instead of "max").(se€ [3],122], [27]).
Example 4.1. Consider the bilevel programming problem
(4.3) min [~y +2°: —0.5<2<0.5, y € ()],
wherey)(z) = Argmin, [yz? : —1 < y < 1]. Sincey(z) = —1 for z # 0 andy(0) = [—1,1],
the unique optimistic optimal solution of the bilevel problennisy) = (0,1). The optimistic

optimal function value is-1.
Now assume that the followers problem is perturbed

Y, (z) = Argmin (y2* +ay® : —1 <y < 1),
Y
for smalla > 0. Then,
(2) = -1 if 22> 2«
YalPI = —22/2a if 2% < 2a.
Replacing this function into Leaders objective function gives
2?2 +1 if 22> 2«
F(xaya(x)) - { x? +£I§'2/2C( |f 33'2 S 2C¥.
This function must be minimized pr0.5, 0.5]. The unique optimal solution of this problem is

zq = 0, forall a > 0, with f(0,y,(0)) = 0. For « — 0, the Leaders objective function value
tends ta0, which is not the optimistic optimal objective function value in the original problem.

Example 4.2. Consider the bilevel programming problem

(4.4) min [(z — y)?+ 2% =20 < 2 <20, y € Y(z)],
where
(x) =Argminfzy: —z — 1 <y < —z + 1]
y
or
[—1,1] if =0
Y(r)=<9 —xz—1 if >0

—x+1 if z<0.

Let F(z,y) = (x — y)? + x*. Then the optimal solution of the Lower level problem into this
function 4.4 where the solution is uniquely determined, we get
[0, 1] if 2=0
F(z,y(z)) =< (=22 —-1*4+2* if 2>0
(—2z+1)*+2% if 2<0.
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on the regions where the functions are defined. Taking infimum, for y tending to zero, we find
lim, o F(z,y(z)) = 1.

This can be used to confirm th@at°, 4°) = (0, 0), is the unique optimistic optimal solution of
the problem in this example. Now, if the leader is not exactly enough in choosing his solution,
then the real outcome of the problem has an objective function value alvelieh is for away
from the optimistic optimal value zero.

5. OPTIMAL CONTROL PROBLEM

In this section we discuss an optimal control problem, for this let the fundfion) be as
defined in Sectiof|1 of this paper, but with take) = u(.), whereu(.) here is a piecewise con-
tinuous control function, thus with the performance index (or cost function) defined in equation
[1.4, we have an optimal control problem, se€ [26]. Therefore by using the method of dynamic
programming([26, Ch.IV], we can obtain an optimal control of our problem. This method deals
with study the properties of the value function, this function of initial state defined as a minimum
value of the performance index of the problem i.e., when the value function is differentiable and
satisfies the partial differential equation of dynamic programming [26, Th.4.1], then we have an
optimal control for the control problem.

6. CONCLUSION

Class of Finsler metric affine manifolds on bilevel semivectorial with optimization problems
is constructed. Study the bilevel optimization on affine manifolds is the main purpose of this
paper. So, we solve some optimization problems based on an affine-Finsler-metric structure
on the basic manifold and the semivectorial Bilevel problem as well. Bile del optimization is
special kind of optimization where one problem is embedded within another.
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