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ABSTRACT. Inthis paper, we discuss the existence of compositional square roots of circle maps.
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1. SUMMARY OF RESULTS

For interval maps, we have the following theorems:

(1) No interval map with a periodic point with peried> 2 admits a square root.

(2) There are uncountably many interval maps (up to conjugacy) with square root and un-
countably many interval maps (up to conjugacy) without square root whenever the only
periodic points are fixed points.

For circle maps, we have the following theorems:

(1) No circle map with a periodic point with period> 2 admits a square root.

(2) There are uncountably many circle maps (up to conjugacy) with square root and un-
countably many circle maps (up to conjugacy) without square root whenever the only
periodic points are fixed points.

(3) There are uncountably many circle maps (up to conjugacy) with square root and un-
countably many circle maps (up to conjugacy) without square root whenever there are
no periodic points.

2. INTRODUCTION

A compositional square root (simply square root) of anfiapX’ — X isamapg: X — X
such thaty o ¢ = f. Aninterval map is a continuous self map of any closed intervai. iff a
positive integer,/™ always denotes the composition piwvith itself n-times. A compositional
n root of amapf : X — X isamapg : X — X such thay” = f. An elementr € X is
called a fixed point off if f(x) = z, and a periodic point if there is a positive integesuch
that f"(x) = =. The set of all fixed points of a functiofiis denoted byiz( f), the set of all
periodic points of period 2 (i.e{r € X : f(z) = z, f(z) # z}) of a functionf is denoted
by P»(f) and the set of all periodic points of a functigns denoted byP(f). A subsetFE of
the domain is said to bg-invariant if f(E) C E. In the recent paper[[2], the author proved that
() every increasing interval map admits a square root, (ii) no decreasing interval map admits
a square root, (iii) every interval mapcan be extended to another mapn a bigger interval
such thaty o ¢ = f on the smaller interval, (iv) every piecewise linear map fiior| to [0, 1]
that interchange8 and1 and the interior interval is invariant, fails to admit a square root. In
this paper, we consider continuous maps on the circle and obtained some more results in the
case of interval maps. We also discuss many criteria about the existence of a square root.

3. SQUARE R0OOTS OF CIRCLE MAPS

There are several ways of defining the circle. The usual Euclidean circle is giém by <
R : 2% + y* = r?}, wherer is the radius. Another common definition of the circle aboir
C with radiusr is {z € C : z = re?™ ¢ € R}. Another one isS* = R/Z , the real numbers
modulo the integers. However, the first definition is very useful for visualization and the second
one simplifies some computations and the third one is less intuitive but computationally simpler.
This space can be imagine as the unit intefval] identified at its endpoints. If we have two
pointsa andb in the circle, we denotg, b] for the interval (i.e., the arc) wrapping forward from
a to b. We will call a mapf : St — S* orientation-preserving if, for any two points b in
the circle, every point ifa, b] is mapped intdf(a), f(b)], and we callf orientation-reversing
if [a,b] is mapped intdf(b), f(a)]. Definer : R — S!' by n(x) = x(modZ). The mapr
is continuous, orientation-preserving, surjective, injective on any half-open interval of length
1, and satisfiesr(z + n) = «(x) for all real numberr and integem. Let f : S' — S! be
continuous. We denoté& for a countable family of closed intervals iR such that for any
interval I in the family, f o 7(I) is a closed, proper subinterval 6f and the union of all
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elements from the family i®. It is possible to divideR into such a familyF. A continuous
mapF : R — Riscalledaliffof ftoRif ro FF = f ox. Thatis., lift /' is a map which is
semi-conjugate tg. If F': R — R is a lift of f to R then by adding any constant integerto

F, the new function® satisfiesr o ' = f o 7., and thusF is a lift. Also, sincer(z) = 7 (y) if

and only ifx andy differ by an integer, any two lifts must differ from each other by a constant
integer. Therefore, all lifts of are equal ta'(x) + m for some integem. Hence, orientation-
preserving maps on the circle corresponds to increasing for m@psof orientation-reversing
corresponds to decreasing.

Proposition 3.1. F' : R — R is a lift of a continuous mag : S* — S!if and only if F' is
continuous and there existse Z such that, for alle € R, F(z + 1) = F(z) + d. Inductively,
F(z +m) = F(x) + dm, for any natural number (or integer, jf is a homeomorphismy.

Proof. Any lift £ must satisfyF'(z+1) = F(z)+d for anyz € R and for some integef since
moF = for. Furthermored must be the same integer for all points sidtie+1) is continuous.
For the other direction, we can defifie S' — S* by consideringr o F' on[0,1) = 7([0, 1)).
SinceF(0) and F(1) differ by an integerf will be continuous a6 = 1 € S'. 1

The following theorem provides a relationship between the existence of square roots of circle
maps and the interval maps.

Theorem 3.2. Let f : S* — S! be continuous. A liff" : R — R of f has a square root if and
only if f has a square root.

Proof. The mapr : R — S! restricted to any half open interval of length 1y is a homeo-
morphism from that interval t6. Thus, if J is a closed interval which is a proper subsefo6f
thent—1(J) is a family of disjoint closed intervals iR of length less than. Hence, for each
j € J, if we choose a point € 7~1({;1}), p belongs to exactly one intervalin 7=—*(.J) which

is homeomorphic to/ through the restriction of to L. Let f : S* — S* be continuous and
Iy € F. Supposé € I, € F and choose, € 7~ '(f(0)). Next setF'(0) = p, and letL, € F
be such thap, € Lo. Thenn|,,, the restriction ofr to L, is a homeomorphism from, to
f(m(Iy)). Onl,, we setF = 7!, o f o . By continuing this process, inductively we can
defineF onR. Lettd = {R\ I:1 € F}. ThenC = {x(U) : U € U} is an open cover fof*.
SinceS! is compact( has a finite sub cover. Hence finitely many intervafFwill determine
the existence of square root of a continuous nfiapS* — S* and hence by Propositidn 3.1,
the theorem followsn

Proposition 3.3. Let f : X — X be continuous. Suppose there is gasmvariant setkl C X
such thatf(a) = band f(b) = a for somen, b € E witha # b. If f has no periodic of period
in £\ {a,b} # 0 then the equation? = f has no solution.

Proof. Let f : X — X be continuous. Suppose there is amvariant set£’ C X such that
f(a) = bandf(b) = a for somea,b € E with a # b, and f has no periodic of period in the
non-empty sef \ {a,b}. Contrary to assume that: X — X is a solution ofp> = f. Then
#*(E) C E. Putc := ¢(a). Thenc € E and f?(c) = c. Which implies either: = a orc = b or
f(c) = ¢, and hence it follows that = b. It is a contradiction. Hence the equatioh= f has
no solution.y

The following total order olN is called the Sharkovskii’s ordering:
3=-0=T=9>..>=2xX3>=2X5=2xT%» ..

=2" X 3 =2" x5 =2 X T - ...

L2 =22 =2 1,
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Theorem 3.4.[3] (Sharkovskii’'s Theorem) Let - n in the Sharkovskii’s ordering. For every
continuous self map &, if there is anm-cycle, then there is an-cycle.

Corollary 3.5. No interval map with a periodic point of period> 2 admits a square root.

Proof. Let f : I — I be an interval map with a periodic point of periad> 2. Then by
Theorenj 3.4/ has a periodic point with period2. ConsidetE = (P(f)\ P»(f))U{z, f(x)}.
ThenE is f-invariant. Hence by Propositin 3.3, the proof follows.

Remark 3.1. Any orientation preserving homeomorphism 6h has a square root, and for
any orientation reversing homeomorphism $hhas no square root. This is because, a map
f : S* — S'is an orientation preserving (reversing) homeomorphism if and only if the lift
F :R — Ris an increasing (decreasing) bijection. Hence by Thegrem 3.2, the remark follows.

The family PER(SY) := {Per(f) : f : S* — S'is continuou$ has been completely
described by Block and Coppel as follows:

Theorem 3.6. [1] The following are equivalent for a subsgof N:
(1) 1€ S ePER(SY)
(2) If n € S for somen > 1, (at leas} one of the following should hold:
(1) Every integer greater than belongs taS.
(7i) Every integer that comes later thann the Sharkovskii’s ordering, belongs to

Theorem 3.7.Let f : ST — S! be a continuous map such th&iz(f) # 0. If P(f) # Fix(f)
then f has no square root.

Proof. Let f : S' — S! be continuous withFiz(f) # (. Suppose thaP(f) # Fiz(f). By
Theoren] 3, ifl € Per(f) = S andn € S with n > 1 then either every integer that comes
later thann in the Sharkovskii’'s ordering, belong or every integer greater thanbelongs

to S. If n € S and every integer that comes later tham the Sharkovskii’'s ordering, belong
to S, thenf has a periodic point of period2. In this case, c0n5|del?(f) (P(f)\ P(f))U

{z, f(x)}. By Proposmorl the map has no square root sinde(f) is an f-invariant set
with no periodic point of perio@ other thanz. If every integer greater thanbelongs taS then
considerg = f?™ for some natural numben with 2m > n. Letx be a periodic point of with
period2m. By a similar argument involved above has no square root. Contrary to assume
that f has a square root. Which impligshas a square root. Which is a contradiction. Hence
the proof.g

Theorem 3.8.LetF be the set of all interval mapé: I — I suchthatP(f) = Fix(f). There
are uncountably many elements (up to conjugacyy with square root and uncountably many
elements (up to conjugacy) JA without square root.

Proof. Without loss of generality assume that= R U {—o0,c0}. Let {I, := [an,b,] :
an, b, € RU{—00, 00} } be a countable family of closed intervalsi { —oo, co} with disjoint
interiors. For each € N\ {1}, consider an increasing continuous bijectipn 1,, — I,, such
that f(a,) = an,, f(b,) = b, and f,, hasn-number of fixed points. For each C N\ {1},
let f4 : I — I be an increasing bijection such that the restrictiory pfto I,, is f,, for each
n € AandFiz(f) = UpeaFiz(f,). Thenfs has a square root an®l(f4) = Fix(f4) for
eachA C N\ {1}. Also f4 is not conjugate tgp for distinct subsets!, B of N \ {1}. Hence
there are uncountably many elements (up to conjugacyy with a square root. Next, let
{Jn = [an,by] : an,b, € [0,00]} be a countable family of closed intervals [ co| with
disjoint interiors. For eactl C N\ {1}, let f4 be an increasing bijection df, oo] such that
the restriction off4 to J, is f, for eachn € A and Fix(f) = UpeaFiz(f,). Consider a
decreasing bijection, : I — I suchthay? = f4 on[0, oc]. Theng,4 has a no square root and
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P(ga) = Fix(fa) foreachA C N\ {1}. Also g4 is not conjugate tgp for distinct subsets
A, B of N\ {1}. Hence there are uncountably many elements (up to conjugadywithout
square rootu

Corollary 3.9. Let G be the set of all continuous mags: S' — S! such thatP(f) =
Fix(f) # 0. There are uncountably many elements (up to conjugacy)with square root
and uncountably many elements (up to conjugacy) without square root.

Proof. Leta,b € S* andl = [a, b] be a closed arc if'. Suppose thaf : I — I is a continuous
such thatf(a) = aandf(b) = b. If g : S — S'is a continuous map such that= f on7 and
g(z) =z onS*\ I thenP(g) = P(f). Hence by Theorem 3.8, the results follows.

Theorem 3.10.Let H be the set of all continuous mags: S' — S! such thatFiz(f) = 0.
There are uncountably many elements (up to conjugack)with square root and uncountably
many elements (up to conjugacy)khwithout square root.

Proof. Every orientation preserving irrational rotation has a square root and no orientation re-

versing irrational rotation has a square root. Hence the proof follows by Rémank 3.1.

4. CONCLUSION

Studying compositional square roots of a map X — X and finding a criteria for the

existence are very much interested in mathematics. This paper gives a criteria for continuous
circle maps and it is listed in the Sectiph 1. The same question can be asked in the case of

compositionah!" roots and we shall address this question in sequel to this paper.
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