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ABSTRACT. The puzzles in approximating a fixed point of nonlinear problems involving the
class of strictly pseudocontractive mappings are conquered in this paper through viscosity im-
plicit rules. Using generalized contraction mappings, a new viscosity iterative algorithm which

is implicit in nature is proposed and analysed in Banach spaces for the class of strictly pseudo-
contractive mappings. The computations and analysis which are used in the proposed scheme are
easy to follow and this gives rooms for a broad application of the scheme. It is obtained that the
proposed iterative algorithm converges strongly to a fixed poingetictly pseudocontractive
mapping which also solves a variational inequality problem. The result is also shown to hold for
finite family of strictly pseudocontractive mappings. A numerical example is given to show the
skillfulness of the proposed scheme and its implementation.
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1. INTRODUCTION

Let K be a nonempty, closed and convex subset of a real Banach gpdcte K — K is
said to be au-strictly pseudocontractive mapping if there exists a fixed congtan{0, 1) such
that

(1.1) (T(u) = T(v),j(u—v)) < |lu—|* = p|(I = Tyu— (I =T’

for somej(u — v) € J(u —v) and for everyu, v € K, wherel is the identity operator (See e.g
[1]). Equivalence of[(1]1) in a restated form is given by

(1 =T)(u) = (I = T)(v), 5(u = v)) > pl|(I = Tyu— (I = Tpol|"
A recent research interest to many authors is the viscosity implicit iterative algorithms for find-
ing a common element of the set of fixed points for nonlinear operators and also the set of so-
lutions of variational inequality problems (Seel[2, 3,4,/5,/6, 7] 8, 9] and the references therein).
Following the ideas of Attouch [10], in 2000, Moudafi [11] introduced the viscosity approxi-
mation method for nonexpansive mapping in Hilbert spaces. Refinements in Hilbert spaces and
extensions to Banach spaces were obtained by Xu [12]. Recently, Xu gt al. [7] introduced the
implicit midpoint procedure] (1]2).

Tn+ T
n n+1)’n€N7

where{6,,}.~, C (0,1), f is a contraction ot and the nonexpansive mappifig K’ — K is

also defined ork, which is a nonempty closed convex subset of a real Hilbert sfadewas

established that the implicit midpoint sequerce](1.2) converges strongly to a fixeg pdiat
nonexpansive mappirg, which also solves the variational inequality

(1.3) (I = f)p,x—p) >0, VaecF(T).
Yao et al. [9] extended the work of Xu et dl. [7] and studied the implicit midpoint sequence

(1.4) o1 = 00 f (n) + On + 03T (“%) .neEN,

where{6,}™ C (0,1), {62}~ c[0,1)and{#}} " C (0,1) are real sequences satisfying
0} +6> 46> = 1foralln € N. Under certain conditions on the parameters and denoting the set
of fixed points ofT" by F(T), it was shown tha4) converges stronglyte- Pp(r f(p). In
other words, the implicit midpoint sequengte, } -, generated b4) converges in norm to a
fixed pointp of a nonexpansive mappirig which is also the unique solution of the variational
inequality {1.3). Choosingé,.},”, C (0,1), Ke and Ma[[8] worked further in Hilbert spaces
and extended the results of Xu et al.l [7] and Yao et @l. [9] by proposing the following two
viscosity implicit iterative algorithms:

Tpa1 = Onf(xn) + (1 —0,)T (dpzn + (1 —0,)Tpe1), n €N,
and

Yan et al. [13] established the main results of Ke and Ma [8] in uniformly smooth Banach
spaces. The sequen¢e,} -, generated b5) is proved to converge strongly to a fixed
point p of a nonexpansive mappirig which solves the variational inequality

(I = flp,J(x—p)) 20, forallz € F(T),

where/J is a normalized duality mapping. Other mappings which are of the same class as non-
expansive mappings but which are more general and with more broad applications are known,
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e.g asymptotically nonexpansive and pseudocontractive mappings. Some recent studies on the
application of implicit procedures for asymptotically nonexpansive mappings include Zhao et
al. [14], Xiong and Lan([4], Yan and Cali|[6] and Aibinu et &l. [15]. Also, there are reports on
approximating a fixed point of pseudocontractive mappings by the implicit procedures. Liou
[16] used implicit and explicit iterations to compute the fixed points of strictly pseudocontrac-
tive mappings in Hilbert spaces. Song and Pki [2] studied semi-implicit midpoint rule in Hilbert
spaces. Pertinent studies on implicit iterative algorithms in Banach spaces for pseudocontrac-
tive mappings include Argyros et al. [17], Cheng and [Su [18] as well as Saluja and Nashine
[19].

Motivated by the previous works, the goal of this study is to seek for a way of improving
on the existing results in this direction. A new viscosity iterative algorithm which is implicit
in nature is proposed and analysed in Banach spaces for the class of strictly pseudocontractive
mappings. Precisely, for a nonempty closed convex sulsset a uniformly smooth Banach

spacek and for real sequencéé boo, C(0,1) {{91 1 1}1 L c0,17and{{s,} _ 1}2 )

[0, 1] with 3%, 32 £ 0 such thatZ: 0 =1 andZﬁ — 1, a new viscosity iterative algorithm

is introduced from an arbltrar;yl e K as foIIows
(16) Tnt1 = an(l‘n> + Qil‘n + Qisn((snxn + (1 - 5n)mn+1)7

whereS,x = 3L Q(x)+322+ 32T (x), f : K — K is ageneralized contractiof),: K — K is

a contraction and’ : K — K is au-strictly pseudocontractive mapping. The iterative sequence
which is given by[(1.6) generalizes the existing schemes. The computations and analysis which
are used in this proposed scheme are easy to follow and this gives rooms for a broad application
of the scheme. The strong convergence of the proposed sequence to a fixeg qiointis
obtained and it is shown to be a solution to some variational inequality problems. A numerical
example is given to show the skillfulness of the proposed scheme and its implementation.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a Banach spaaed 7" a self-mapping on
K. We shall denote the set of fixed pointsBfby F(T) := {p € K : Tp = p} . Recall that
T : K — K is said to bel-Lipschitzian if for allz, y € K, there exists a constant > 0 such
that

Tz — Tyl < Lz — yl|.
If 0 < L < 1,thenT is a contraction and it called nonexpansive mapping# 1.

Let (X, d) be a metric space anld a subset ofX. A mappingf : K — K is said to be a
Meir-Keeler contraction if for each > 0 there exist$ = (¢) > 0 such that for each,y € K,
with € < d(z,y) < €+ 0, we haved(f(z), f(y)) < e. Amappingf : E — E is called a
(v, L)-contractionif ¢ : Rt — R™ is an L-function andd(f(z), f(y)) < «¥(d(x,y)), for all
x,y € B, xF#y.

We have the following interesting results about the Meir-Keeler contraction.

Proposition 2.1. Let E¥ be a Banach spacdy a convex subsetdf and f : K — K a Meir-
Keeler contraction. Theke > 0, there exists € (0, 1) such that

1f (@) = fW)ll < cllz =yl
forall 2,y € K with ||z — y|| > € (Se€[20]).

We shall also need the following Lemmas in the sequel.
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Lemma 2.2. Let K be a nonempty closed and convex subset of a uniformly smooth Banach
spaceFE. LetT : K — K be a nonexpansive mapping such thdf") # fandf : K — K

be a generalized contraction mapping. Then} defined byr, = tf(z;) + (1 — )Tz, for

t € (0,1), converges strongly tp € F(7T'), which solves the variational inequality (Sgdl]):

(f(p) =p,J(z—p)) <0,V ze F(T).

Lemma 2.3. Let K be a nonempty closed and convex subset of a uniformly smooth Banach
spaceFE. LetT : K — K be a nonexpansive mapping such thdf") # ) and f : K — K be

a generalized contraction mapping. Assume that defined byc, = ¢f(z;) + (1 — )Tz, for

t € (0,1), converges strongly tp € F(T) ast — 0. Suppose thafz, } is a bounded sequence
such thatl|z,, — Tz, || — 0 asn — oo (See[21]]). Then

limsup (f(p) — p, J(zn —p)) < 0.

n—oo

Lemma 2.4. Let {u,} and{v,} be bounded sequences in a Banach spécand {¢,,} be a
sequence if), 1] with 0 < liminf ¢, < limsupt, < 1. Suppose that,,,; = (1 —t,)u, + t,v,

for all n > 0 andlim sup (||unt1 — Un|| = [|[vns1 — vnl]) < 0. Thenlim |u, — v, || = 0 (See
[22]).

Lemma 2.5. Assum€ga,, } is a sequence of nonnegative real sequence such that
a1 = (1 —op)an, + 0,0, n >0,

where{s,} is a sequence if0, 1) and{J,, } is a real sequence such that

i) >0, =,

(i) limsupd, < 0or Zan|5n| < 00.
n—oo n=1

Then, lim a, = 0 (Se€23)]).

Proposition 2.6. Let K be a nonempty convex subset of a Banach sgacé’ : K — K a
nonexpansive mapping arfd X — K a Meir-Keeler contraction. Thefhf and fT : K — K
are Meir-Keeler contractions (S¢24]).

In this paper, the generalized contraction mappings will refer to Meir-Keeldr)of )-
contraction contractions. It is assumed from the definitiorfuafL)-contraction that the .-
function is continuous, strictly increasing a%hiﬂn ¢(t) = oo, whereg(t) = t — 1(t) for all

t € R*. Whenever there is no confusiop(t) and«(t) will be written as¢ ¢ and ¢, respec-
tively.

3. MAIN RESULTS

The sequenc.6) is well defined in uniformly smooth Banach spaces. Indegdclén, 1]
be the contractive constant . Firstly, it is shown that for aly, z € K, ||S,(y) — S»(2)|| <

ly — =II
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(Snly) — Su(2), J(y — 2))
= (8,Q) + Bry + BT (y) — 8,Q(2) = Brz = ByT(2), I (y — 2))
= (8,(Qy) = Q(2) + Baly — 2) + B(T(y) = T(2)), I (y - 2))
= G, (Q) = Q2), Jly—2)) + 52y — 2 J(y —2))
+0, (T(y) = T(2), J(y — 2))
< Ba{Qy) = Q2), J(y —2)) + Bn{y — 2 J(y —2))
+3 (ly = 21> = (1 = Ty = (1 =T)z|]*)
by theu-strictly pseudocontractive mapping property. Therefore,
152 (y) = Su@)llly =2l < BrllQ) — Q)ly — 2l + Billy — =°
+05 (ly = 2" = ull(I = T)y = (I = T)=|")
< Bucolly = 2I° + Bally — z|1°
+(1 =B, = 62) (ly = 21" = pll (I = Ty — (I = T)=|)
Bully = 21" + B2y — 2| (sincecq € [0,1])
+(1 =B, = 62) (ly = 2I1* = pll (I = Ty = (I = T)=|)
= Ny — 2" = (1= B = Bl = T)y — (I = T)=|*
< y—=l*.

IN

Thus,
(3.1) 150 (y) = Su(2)l < lly — =]
Next is to show that for alb € K, the mapping defined by
z— T,(x) == 0L f(v) + 020+ 025, (5,v + (1 — 6,)x)

for all = € K is a contraction with a contractive constaht— ¢) =: 6 € (0, 1). Clearly, for
ally,z € K,

IT(y) = To(2)]] O 1180 (320 + (1 = 8a)y) — Su (60 + (1 = 0n)2)l|

< 001100 + (1= 8n)y) — (Guv + (1 = 00)2)
< (1= dn)lly — 2|
< (1T=dn)lly — =]
< (T=9lly— =l
(3.2) = Oy —=|.

Thus, [1.6) is well defined sincE, is a contraction and by Banach contraction princifilea
fixed point. Observe thatforeaehe N, = € F(T)NF(Q) = = € F(S,). So,F(T)NF(Q) C
F(S,) # 0. Indeed, suppose € F(T) N F(Q), then
Spr = B,Q(x) + Box+ BT (x)
= Bor + Bz + Bro
(Bn + B3+ o)z

(3.3 = .
Thus,z € F(S,).
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Next, the proof of the following lemmas which are useful in establishing our main result are
given.

Lemma 3.1. Let £/ be a uniformly smooth Banach space akidbe a nonempty closed convex
subset ofF. LetT : K — K be ap-strictly pseudocontractive mapping and suppose ghat
K — K is a generalized contraction ar@d : K — K is a contraction with'(7') N F(Q) # 0.

{0.}0, C (0,1), {{6.} 1} c[0,1]and{{8.} 1}@ , C [0,1] with 3, 3, # 0 are real
sequences. For an arbltrar:gy1 e K the iterative sequence WhICh is By (1.6) is bounded.

Proof. The sequencéz,} -, is shown to be bounded. Lef, := d,x, + (1 — §,)z,4+1 and
observe thap € F(T) N F(Q) implies thatp € F(S,) (See|(3.B)). Therefore by (3.1),

[1Snzn = pll < llzn = pll-
Recall thatp(t) := ¢ — ¢ (t) forall t € R*. Then,

|21 —pll = ‘|0’}Lf(xn> + Qixn + eisnzn =7l
167, (f (z0) = f(0) + 6, (f(p) = p) + 0 (20 — D) + 05 (Snz0 — )|

< Ol f () = FDI 4 0,11f (p) — pll + 02|z — pll + 05[] Snzn — pll
< Oz — pll + 0511 £ (p) — pll + 022 — pll + 6, ]2 — D]
< O 0llzn — pll + 0,1 £ (p) — pll + 02|20 — pll
+0, (Onllzn — pll + (1 = 0nsa) l2nsa — pl)
< O, 0llzn — pll + 0,1 £ (p) — pll + 02|20 — pll

+050nll2n — pll + 05 (1 = 6ng)[|nrs — Dl
Consequently,
(1=02(1=60)) 1z —pll < (000 + 67 +656,) w0 — pll + 6,1 f (p) — Dl
L+ (1 - 91 —05) +050,) |2 — pll + 0511 £ (0) —
1—05(1—=6,) — 0,(1 =) lzn — pll + 6,1 f (p) — pll
— (1-6(1- 5n) —0,0) |z = pll + 6,117 (p) — plI.

Observe that — 62 (1 —6,,) > 0 since{{9;}:’21}5’:1 , {6,322, C (0,1). Therefore, it leads to

0
0

(
(
(

1-6°(1-6,)—0¢

HxN—i—l _pH < 1— 0712(1 _ 5n) Hxn _pH
91
_ 0£¢> o
Ond 0L

— _ _ n -1 .
< max {|z, — pll ¢~ 1||f —pll}-

Thus, by the induction, it is obtained that

11 = pll < max {[lz1 —pll, ¢~'II£(p) — I}
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This implies that the sequende,, } >~ | is bounded and hendes,, (6,7, + (1 — 6,)Tnt1)} o,
and{f(z,)},-, are also bounded. Certainly, forc F(T') N F(Q),
1S, (G + (1 — 5) 1) | 1S (Opn 4 (1 — 6,)Tpns1) — p+ pl|
1S (Onp + (1 = 0n)Tps1) — Supll + |||
|0nzn + (1 = 0,)zns1 — pll + |2l
onllzn —pll + (1 = 6n)[[znr — pll + |Ipl]
max {[lz1 = pll, #~'[1£(p) — pII} + [Ip|| (by induction).

The boundedness ¢, } 7 | implies thatQ) andT" are also bounded sin¢, is defined in term
of ) andT'. Moreover,

1f @)l = [f(zn) = f(p) + FO)] < Yllzn —pll + [ f(D)]
< max {¢||z1 — pl|, vo Y| f(p) —pll} + [If(p)]| (by induction).

IA AN IA A

Lemma 3.2. Let E be a uniformly smooth Banach space alida nonempty closed convex
subset ofF. Let@ : K — K be a contraction]’ : K — K a pu-strictly pseudocontractive
mapping and{(d,,} -, is a real sequences ifY, 1). Definez,, := 0,2, + (1 — d,)z,+1 and let

My = max {sup I7(n) = 2l sup [Q(zn) — znn} Then

HSH+12n+1 - SnZnH < 5n“'rn+1 - an + (1 - n+1)Hxn+2 - $n+1H
+ (18041 — Bl + 18241 — B2]) M, forall n € N.
Proof. It is known that{z,} -, is bounded sincéz, } - , is a bounded sequence. Notice that
[2nt1 = 2ull = [0nt1%ns1 + (1 = 6ny1)Tnge — (6020 + (1 = 60)Tnta) ||
[0ns1Zn41 + (1= 6ng1)Tngo — 0pn — (1 — 0p) Ty |
= [[(Tny2 = Tot1) = Oni1(Tng2 — Tng1) + On(Tn — 20) ||
= 0n(zns1 — ) + (1 = 6nt1) (@nt2 — Tnta)||

(3.5) < OnllTntr — all + (1 = dpg1)[[ns2 — Toga -
Then,||S, 12001 — Snznll = |Snt12n41 — Snt12n + Snt12n — Snzal|
< lzntr — 2l + ”ﬂiﬂ-lQ(Zn) + ﬁi-i-lzn + 6§L+1T(Zn>
_6262(271) - @%Zn - 6§LT(Zn>H
= [lzap1 = zall + 1811 Q(20) + (1 = Brpy — Bosr) 2
01T (20) = 8,Q(20) — (1= By, = B3)zn — B T(z) |
= [lzar1 = 2all + 18241 (Q(20) — 2a) + 25
+ﬁn+1( (20) = 20) = Bn(Q(20) — 2n)
— Bo(T(2n) = 2) |
= ||Zn+1 — 2ol + [ (Br1 = Ba)(Q(z0) — 20)
H(Bhr = BT (20) = 20)|
< Onllwngr — @l + (1 - 5n+1)||17n+2 — Ty
(3.6) + (1Bh1 = Bhl + 18541 — B3]) M.
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Theorem 3.3. Let £ be a uniformly smooth Banach space akida nhonempty closed convex
subset of. LetT be au-strictly pseudocontractive self-mapping definediomwhile f : K —
K is a generalized contraction ang is a contraction defined o&” with F(7') N (Q) # fZ)

Suppose the real sequendgs,}>, C (0,1), {{6,} _ 1}1 L C[0,1)and {{8,}, _ 1}1 )
0,1] W|thﬁ , 32 # 0 satisfy the following condltlons

(i) Ze@ =1, Zel = o0,

(i) hm 02, — 62]—0 0 < liminf#? < limsup6? < 1,

n—0oo n—o0

(i) ZB =1, lim B,y = B, =0, lim |55, = 53] =0,

(iv) 0<e<6 < 0,41 < 1foralln e N.

Then, for an arbitraryz; € K, the iterative sequencéz, } -, defined by[(1]6) converges
strongly to a fixed poing of 7', WhICh solves the variational mequallty

(3.7) (I = f)p,J(x—p)) >0, forall z € F(T)N F(Q).
Proof. Observe that one can write the iterative sequeince (1.6) as:

Tnp1 = Q%Lf(xn) + Qixn + QiSn (0nxn + (1 = 0p)xnat)
1-6 '

= 0a, +(1-62)

3
Sincez 6’ = 1 by condition (i), it could be obtained that
=1
0 f(2n) + 025, (0pn + (1 — 6,)T041)

(3.8) = (1—-0} =6z, + (0. +0>)w,,
where

H:Lf(xn) + eisn (5713571 + (1 - 6n)xn+1)

1-6
0, 0>
61 3
= 91 03 f(xn) 91 —:ei Sh (5nxn + (1 - 6n)$n+1) NS N.

Notice that{z,, } -, {f(z,)} —, and{T (6,z, + (1 — &,)xn41)} -, are bounded sequences.
Furthermore, since them sup 62 < 1 by the condition (iii), there exists, € N andr < 1 such

that o
(3.10) 1-60>>1-nV¥Yn>n,.
The consequence df (3.9) afd (3.10) is that }~ , is bounded.
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Next is to show thatim ||w, — x,|| = 0.

The first step is to show théitn sup(||w,+1 — w,|| — ||zns1 — za]|) < 0. Observe that
On i1 On i1
n+ n+
Wpi1 — Wy, = ——————f(Ty —Sn Opt1Tns1 + (1 — 0ppq)xy,
i T g @) + S (B + (1= 8aa)asa)

3

0) 6
(91 63 f( ) 61 + 03 Sn (5nxn + (]. - (5”).7)”_;'_1))

91+1 91 1 61
— n— n _ W)+ n+ n N

0,
+91 +193 (S"H (Ont1%ns1 + (1 = Ont1)Tnta)
n+1 n+1

S (i + (1 — 6,)Tps1) )

03+1 83
(28 = 2 ) S+ Bus+ (1= 8)s)

1 1
011 6,

91+1 + 9n+1 9711 +6

= L(f(xnm—f(xn)) ( )f<wn>

Onr + Ot
0>,
e (Sn—i-l (5n+1$n+1 + (1 - 5n+1)xn+2)

+ 1 3
0n+1 9n+1

S (G + (1= 6,)Tps1) )

ol 4+ 63, — 0! 0! + 63 — o}
( n+l n+1 ntl _ “n t 0 n) Sn (0nn + (1 = 05)Tnt1)

Onr + Ot 0, + 0,
O O o)
= o o) = f(a) + ( e e ) Fea)

0,
+01 ) _:10 ) (Sn—H (5n+lxn+1 + (1 - (5n+1)l’n+2)
n+ n+

—Sn (O0pxn + (1 — ) xna1) )

0, O
+ . - - Sn 577, n 1_671 n
(o~ ) S+ (1= i
0! 1
= o (f(@as1) — f(2n))
01 1+9n+1 o
01 61 )
(G2 = g ) (S B+ (1= 8,)5001) = f2)
n n n+1 n+1

0,
+91 _:19 (S"H (On+1%ni1 + (1 = Oni1)Tni2)
n+1 n+1

—Sn (Onxy + (1 = 6p)xns1) )

AJMAA Vol. 18(2021), No. 2, Art. 12, 21 pp. AIMAA


https://ajmaa.org

10 M. O. AIBINU, S. C. THAKUR, S. MoYO

Therefore,

ol 1 1
Y 4 041
HwnJrl - wn“ S #ijﬂri’l - [IZ’nH + - - =
91+1 + 9n+1 0, + 6 ‘91+1 + 9n+1
03
X ||Sy, (0pxy + (1 — 0p)Tnt1) — fxn +”—+1
1S ( ( JTni1) = f(zn)]] M

X HSn (5n+1xn+1 + (1 - 5n+1)$n+2) — Sy (5nxn + (1 - 5n)xn+1) H

Applying Lemmd 3.2 leads to

ol
n - n < ;ﬂp n - 4n
I e
6 0.,
g — | 15, B+ (= B = Sl
3
e O (s — 2l + (1= S lEs2 — Tl
91+1+9n+1 n|l4n+41 n n+1 n+2 n+1
+ (1Bhey = Bl + 1850 — B3]) My )
3
+1w+9n+15 H 0n+1( _57’b+1)
91+1+0n+1 9%&1 ‘9?1+1
|0 Ot L5, (B + (L= 6,)) — Fa)
9711—1-92 61+1+9n+1 nOnn n)n o
ol
(0
1) et (ks B2+ 18— ) M
+1 n+1

To evaluaté|z, o — z,11||, let M := sup {||z, — Sn (6p2n + (1 = 60)ns1) ||},
M? := sup {|[ Sy (9nn + (1 = 0n)2ns1) = f(zn)|[} @nd My =: max {M*, M?}.

Tpt2 = Tpt1 = 9711+1f($n+1) + 9%+1$n+1 + 92+1Sn+1 (On+1Znt1 + (1 = 6pi1)Tps2)
— (00 f (@n) + 02 + 025, (62 + (1 — 6,)Tnt1))
= ‘9711+1 (f(anrl) - f(ajn)) + (9iz+1 - 9,11)][(1’”) + 92+1 (l’n+1 — an)
(9721+1 Qi)xn + (Giﬂ - 92) Sn <5nxn + (1 - 5n)$n+1>
+9n+1 (Snt1 (Ong1Zpg1 + (1 = Ong1)Tnt2) — Sp (6n2n + (1 — 0n)@ny1))
= Opir (F(@ns1) = F20)) + Ony — 00) F (@) + 05y (@010 — 20)
+(9721+1 - ei)xn ((91 9711-&1) (97214—1 - 92)) Sn (0nn + (1 — 6n)Tnt1)
+92+1 (Sn41 (Ont1Zns1 + (1 = ng1)Tnt2) — Sn (Gnn + (1 — 05)Tn41)) -
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Consequently,

|Znt2 = Tnptll < (¥ + Oaps) 1201 — 2
0 = 0t 190 (Gn2n + (1 = 80)zns1) — f ()

HOnr = Oallzn = Sn (6nn + (1 = 80)T4) |
051181 Gni1@nsr + (1= 8n41)Tny2) = S (§a2n + (1 = 0n)ans1) |
( n ¥+ 9n+1) |Zni1 — Tall + (|‘9711 +1‘ + ‘(9n+1 QZD M,
1 Ballznrs = zall + (1 = Gnsi) [ 2nre — Tnsa |

(lﬂnJrl ﬁ |+ |6n+1 |) M; | (by Lemm@)

= ( +1¢+9 +1 +0n+1 ) |Zni1 — o]
(|51 Onga| + 16741 — 07]) M.

(3.12) Ot (1Brr — Bal + 10041 — |) M,

+9n+1< - 5n+1)”xn+2 - xn+1H.

IA

Let
1
B, =
1- 0?1-1—1( - 5n+1) (
n—i-l (‘ﬁn—&-l 5711’ + Wi—i—l - ﬁi’) Ml’

10, — O ol + 105, — 03]) My

sincel — 62, (1 — 6,41) > 0, (3.12) gives,

O + 05y + 0i1n
I ei-i-l( - 5n+1)

Substituting[(3.13) intd (3.11) gives

+1¢ + 9n+1 9i+1(1 - 5n+1) % n+17/’ + 9 n+1 + 9n+15 ]

(3.13) [Ttz = Tna ] < [2n+1 = Zall + B

IN

=

lwni1 — wal

81 +1 + 0n+1 81 +1 + 9n+1 6?1+1( - 5n+1)
6! 6! 03 — 0,
xHxn—f—l _ xn” + - n - — = n+1 n—&il( +1) .
0,+0, 0,1+ 9n+1 01 + 9n+1
gl
(0 1 1 3 3
+;1 — + — M
61 o + 9n+1 (|6n+1 ﬁn| |ﬁn+1 ﬁn|) 1
_ 0100+ 05100 405 (1= 6,01)07
= 1 3 H nt+l — xn”
[0 i1 4 050 ][1— 05 1 (1 — 6p1))]
0, b O (1 —5n+1)B
91+93 01+1+9n+1 oL +03., "
Y 1
01+1 +0n+1 ( +1 7 +1 )
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_ (1 - — +1( w) ng( +1 ) ) ||xn+1 . In”
[0 1 + 05 ][0 — 051 (1= 0np1)]

0, O On1(1 = 0npa)
91 + 03 91+1 + 071-1—1 01+1 + en-i-l
Y |
91+1 +0, 4, (191 = v =)

- 0_914; 1T¢+yw nss =
[ 1 + n+1][ n+1( n+1)]

91 B 071L+1 9731+1( - 5n+1)B
91+03 O 1+ 065, oL +0 "
(0
ﬁ (1Bhsy = Bal + 1821 — B2]) My
+1 n+1
< (1 —¢) T
9 +1 + en—i-l
PR W BV (R T
0, +05 0, +0°., Oh o +02. "
1
(0
+ﬁ (181 — Bl + 1821 = Bol) My,
n+1 n+1

Sinced,, 1 ¢+0;, 1 (01 —0n) > O and(l;,  +05 1 1[1—0, 1 (1= 0np1)] < Oyy +050-
It then follows that

ol
¢
[wWnt1 — wall = |Tn41 — zal| < $”xn+l — T
Onr + Ot
B B [y P
91+93 Or 1 +02 0L +02. "
(0 1 3 3
+;1(|ﬁn L= Bal + 18310 = B3]) My,
Opir+ 05 ’ *
and thus,
(3.14) limsup ([|[wp11 — wy|| — [|[Tne1 — xnl]) <0

Invoking Lemmad 2.4 gives
lim |Jw, — x,| = 0.
Obviously from [3.8), one can obtain that
1 = zall = 11 = 0, = )z + (0 + 05)wn — 2
(3.15) < (0L +02)|w, — 2,]| — 0@s n — oo.

Next is to show thatlim ||x,, — S,z,|| = 0. From ), one can have that
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|20 — Snznll < 2 — Zpga || + |70 — S|
< Hxn-&-l - xn” + Q;Hf(xn) - Snxn” + ei“xn - Snxn”
+9§L||Sn (Onn + (1 = 0p)xni1) — S|
< Hxn-&-l - xn” + Q}LHf(xn) - Snxn” + (1 - 9%1 - 9131>Hxn - Snxn”
+9§L”5n$n + (1 = 0n)Tny1 — 2|
< Nwngs — @l + 0,11 f (20) = Snznll + (1= 0, — 0)) |2, — Spn]|
+05 (1 = 6n) || ns1 — Tl
(0711 + ei)Hxn — S| < (1+ 02(1 = )| Zns1 — | + 071L||f(xn) — Spa|
1+63(1-96,) 0}
oo = Sl < ST s o) - S
1+63(1-96,) 6!
= 1_ 9721 [Tni1 — Znl| + 1— Hi |f(zn) — Sna||
1+63(1 -6,
= TR
01
(3.16) —i—l_nan(In) — Spy|| — 0asn — o,

by the condition(iz) and sincel — 7 > 0 (3.10).
Define a sequencgr;} by z; = tf(z,) + (1 — t)S,a, for t € (0,1). Lemmg 2.2 establishes
that{z,} converges strongly to € F(T') N F(Q), which solves the variational inequality:

(f(p) =p,J(x—p)) <0, Vo e F(T)NF(Q),
equivalently,
(I = fp,J(x —p)) 20, Vo e F(T)NF(Q).
It is claimed that
limsup (f(p) — p, J(@nt1 —p)) <0,

wherep € F(T)NF(Q) is the unique fixed point of the generalized contractagynr(q) f (p)

(Proposition 2.8), that iss = Prrynr) f(p)-
Since lim [[z,, — S,x,|| = 0 by (3.18), it follows from Lemm3 that

limsup (f(p) — p, J(zn —p)) < 0.

n—oo

Moreover, since the duality map is continuous g, — z,,|| — 0 by (3.15), it is obtained
that,

limsup (f(p) —p, J(¥ns1 —p)) = limsup(f(p) —p, J(Tnt1 — Tn + 0 —p))

n—oo n—oo

(3.17) = limsup (f(p) —p, J(v, —p)) < 0.

n—oo

Finally, it is shown that:,, — p € F(T') asn — oc.
Assume that the sequenée, } ~, does not converge strongly toc F'(T'). Therefore, there
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existse > 0 and a subsequen({ean}J of {z,,},~, such that|z,, — p| > ¢, forall j € N.
Thus by Propositioh 2|1, for this there exists: € (O 1) such that

1S (2n;) = F)I| < cllan; —pll-

||xnj+1 _p||2 - 0'}% <f(xni) o f(p)’ J(‘T”J’H - > + 81 <f (‘rn]ﬂ _p)>
_'_672%‘ <I"J' =, J(Tnp — p)>
+92J <Sn (5nj-1'nj + (1 — 5nj)$nj+1) —p, J(anl — p)>

< O [z, = Il lwn s = pll + 64, (FB) = p, Ty, = D)
+62 12, = Il [0, —
(63,80, I, = pll + 63, (1 = 60|, = 211, —

< (B +62) llan, = Pl ln, =PIl + 04, (F() =, I (@, = P)
+(@ﬁmwm—pW+ﬁxr—%»wmﬂ—moH%ﬁfﬂm

< 5 (et + 82, +62,6,,) U, =PI + llzay., — )

+08 (D) = P, I (@nyyy — D)) + 021 = 80|20y, — DI

Aan,y 2l < (1=04,00=0) = 65,1 =6,)) (lan, = > + I, — 2I)
+29711j <f<p (xn]+1 - )> + 29ij(1 o (snj)H‘TnjH - p||2
= 0—%0—@—@u—%ww%—mf
(10,0 -0 +62,0=6,)) llan,,, —
+20, (f(p) = p, J (a1, — D)) -
Therefore,
(1468, (1= ) = 63,(1 = 62,)) llzn,,, — Il
< (1-0,00-0) =6 (1=06,)) lln, — ol
+2071LJ <f(p) - D J(xnj-u - p)> )
which is equivalent to
1—0, (1—¢)—0, (16,
140, (1—¢)— 65 (10,
20}
+— L3 (
L+0) (1—c)— 02 (1—0d,,)

! 209 (-
— _1—1-9,1”(1—0)—923_(1—5%) Tn; =P

20}
+ 1 - 3
1+97’LJ(1 - C) - en](l - 5”])

2
Hxnj+1 _pH <

f(p> - Db J(xanrl - p)>

(318) <f(p) - b J(xnj+1 - p)> :
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By applying Lemma 2]5 td (3.17) ar@m) one can deducerfhat- p asj — oo. Thisis a
contradiction. Hence, the sequeres, },_, converges strongly to € F/(T').

3.1. Extension to a finite family of strictly pseudocontractive mappings. The result of The-
orem[3.B can be extended to a finite family;ebtrictly pseudocontractive mappings by using
the lemma given below.

Lemma 3.4. [25] Let K be a nonempty convex subset of a real smooth Banach dpacel
N

let\; >0 (i = 1,2,...,N) such thatz A = 1. Let{T;}Y, be a finite family ofu,-strictly

i=1
N

pseudocontractive mappings and Tet= Z A:T;. Then, we have the following:
=1
() T : K — K is u-strictly pseudocontractive mapping with= min {u;, : 1 <i < N}.
(i) N, F(T;) # 0thenF(T) =N, F(T;).
The next following result then comes readily.
Theorem 3.5. Let F be a uniformly smooth Banach space akida nonempty closed convex

subset off. LetT; be a finite familyui-strictly pseudocontractive self-mapping definedfon
and@ a contraction defined o withnY | F(T;,)NF(Q) # 0. Letf : K — K be ageneralized

contraction and suppose that the real sequer{dg#n L C(0,1), {{6,} " 1}1 L C[0,1] and
{{BL} 1}Z . C [0, 1] with 3,, 3, # 0 satisfy the following conditions:

(i) Zel =1, Zel = 0,

(i) hm 0%, — 92| =0, 0 < liminf 62 < limsup6? < 1,

n—oo n—oo

(i) Zﬂ =1, lim |8, = B[ =0, lim |3}, — 3| =0,

(iv) 0<e<6 <1 < 1foralln e N.
Then, for an arbitraryr; € K, the iterative sequencgr,, } -, defined by

Tpy1 = 0 f(2) + 022, + 035, (820 + (1 — 0p)Znt1),

N
whereS,r = BLQ(z)+F2x+32 Z \T;(z), converges strongly to a fixed pojnte N, F(T;)

=1
which solves the variational inequality

N
Proof. DefineT = Z AT, it suffices to show thédf is au-strictly pseudocontractive mapping
=1
with F(T) = NY, F(T;). Indeed by Lemma 3]4] is a u-strictly pseudocontractive mapping
with ¢ = min {g, : 1 <i < N}. Therefore, the conclusion holds by following the steps of
proof for Theoren 3/3x

Remark 3.1. The following results are readily obtained as corollaries of The¢rem 3.3.

Corollary 3.6. Let E be a uniformly smooth Banach space akica honempty closed convex
subset oft. LetT" be a nonexpansive self-mapping definedkanf : K — K a generalized
contraction and@ is a contraction defined o with F(T) N F(Q) # (0. Suppose that the
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real sequence$d,} >, C (0,1), {{6;}20:1}?:1 c [0,1] and {{B}} " 1}Z . C [0,1] with
B 7é 0 satisfy the following conditions:

(i) Ze@ =1, Zel = 0,

(i) hm |92Jrl 02] 0, 0 < liminf #? < limsup#? < 1,

n—00 n—o00

(i) Zﬂ =1, lim |3,y = 3, =0, lim |55, = 53] =0,

(iv) 0<e<6 < 0,41 < 1foralln e N.
Then, for an arbitraryz; € K, the iterative sequencéz, } -, defined by-6) converges
strongly to a fixed poing of T, WhICh solves the variational mequallt[@ 7).

Proof. The class ofu-strictly pseudocontractive mappings is more general than the class of
nonexpansive mappings. Hence, the conclusion follows from Theforérs 3.3.

Corollary 3.7. Let E be a uniformly smooth Banach space akida honempty closed convex
subset ofF. LetT; be au-strictly pseudocontractive self-mapping definedfomand Q a con-
traction defined orid with N, F(T;) N F(Q) # 0. Let f : K — K a generalized contraction

and assume that the real sequences he real sequéfiges | C (0,1), {{02}2011}?:1 c (0,1
and{\, } C (0,1) satisfy the following conditions:

(i) Zel =1, Zel = 0,

(i) hm 02, — ] 0, 0 < liminf#? < limsup? < 1,

(iii) hm | Ant1 — A\ =0,

(iv) 0 <e<d, <d,41 <1forallneN.
Then, for an arbitraryz; € K, define the iterative sequenée,,} -, by
(319) Tpt1 = 9,11]5(37”) + 97213771 + eisn(énxn + (1 - 5n)xn+l)a

whereS,,z = \,Q(x) + (1 — \,)T(z). Then the iterative sequenge,, } -, converges strongly
to a fixed poinp of 7', which solves the variational inequality (8.7).

Proof. Take? = 0 in (1.6), then\, = 3L and(1 — \,) = 2. Thus, the desire result follows
from Theoren) 331

n—oo

4. NUMERICAL EXAMPLE FOR ILLUSTRATION OF CONVERGENCE ANALYSIS

An example of gu-strictly pseudocontractive mapping is presented in this section. This is
used to illustrate the convergence analysis of the main theorem in this paper.

Example 4.1.
Let £ be the real lin€R with absolute value norm and defifie: R — R by
(4.1) Tx = |z| = —, =€ (00,0
x, € (0, 00).

Clearly, F(T') = [0,00). It is imperative to ascertain thdt is a p-strictly pseudocontractive
mapping withu € (0, 1).
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04
02

01

0.08

lix,-pll

0.06

0.04 |

0.02 |

0 ! Ak ok #
1] 10 20 30 40 50 60
Iteration number (n)

Figure 1: lteration forz; = 2.5 andp = 0.

Case(i) : Notice that for allz, y € (—o0, 0],

(U-=T)z)=(I-T)y),z—y) = 2@—y,x—y)
20z —yf°

> (I =T)(x) = (I =T)(y)P,
for iy < 1.
Case(ii) : Forallz,y € (0, 00),
(I =T)(z)-(I=T)y)z-y) = 2(0-0,2—-y)
0—0f°

= |l =T)(z) = (I = T)(y)I,
for uy, > 0.
Case(iii) : For allz € (—o0, 0] andy € (0, 00),
(I -=T)(2) = (I -T)(y)z—y) = 2(z—0,z—y)
= 2z -0
> w|(I=T)(x) = (I =T
for p, < % Definey := min {u,, uy}, T is thus gu-strictly pseudocontractive mapping.
The convergence analysis of Theorem| 3.3 will be applied in obtaining a fixed point of the

mappingT in Exampld 4.1L. Le{6),} ™ = {2 — L1™ {621™ = {L}* and{6}}” =
3

{217 . Clearlyz 0! = 1 and each sequence satisfy the conditions of Theorem 3.3. More-
=1

over, defined{ﬁ;}:il = % - % 20:1 ’ {631}20:1 = {%}Zozl ’ {ﬁi}f;l = {%}7010:1 and take

{6,107, = {#H}ZO:I . The real value functiong : R — R and@ : R — R are respectively

defined byf(z) = iz andQ(z) = jxz. Figureg 1] P[ B & |4 display the convergence of the

iterative sequences to some given fixed point$ @fith different starting points.
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0 20 40 60 B0 100 120 140
lteration number (n)

Figure 2: Iteration forx; = 5.0 andp = 1.0.

0.35T1

——x =-1.0~p=0

0.3

0.25

lix_-pli

0.15

0.1

0.05

0 10 20 30 40 50 60 70 80
lteration number (n)

Figure 3: Iteration forxz; = —1.0 andp = 0.

AJMAA Vol. 18(2021), No. 2, Art. 12, 21 pp. AIMAA


https://ajmaa.org

ALGORITHMS FORNONLINEAR PROBLEMS 19

3.57T
—— % =-7.0~p=25
g
3
2571
= 27
[=3
[]
=
X
— 15
1F
0.5
DW

0 20 4 60 80 100 120 140 160 180 200
lteration number (n)

Figure 4: Iteration forx; = —7.0 andp = 2.5.

5. CONCLUSION

This study has contributed immersely to the exploration on how to find a fixed point of non-
linear problems which involve the class of strictly pseudocontractive mappings. The customary
riddles in computations and analysis of approximating a fixed of nonlinear problems involving
the class of strictly pseudocontractive mappings are elucidated by using the technique which are
easy to follow. This gives rooms for a broad application of the scheme which was proposed in
this paper. The obtained results was shown to hold for finite family of strictly pseudocontractive
and this is an additional prestige to the proposed scheme and techniques which were used for
the computations and analysis. The skillfulness of the proposed scheme and its implementation
are displayed through a numerical example.
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