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ABSTRACT. The puzzles in approximating a fixed point of nonlinear problems involving the
class of strictly pseudocontractive mappings are conquered in this paper through viscosity im-
plicit rules. Using generalized contraction mappings, a new viscosity iterative algorithm which
is implicit in nature is proposed and analysed in Banach spaces for the class of strictly pseudo-
contractive mappings. The computations and analysis which are used in the proposed scheme are
easy to follow and this gives rooms for a broad application of the scheme. It is obtained that the
proposed iterative algorithm converges strongly to a fixed point of aµ-strictly pseudocontractive
mapping which also solves a variational inequality problem. The result is also shown to hold for
finite family of strictly pseudocontractive mappings. A numerical example is given to show the
skillfulness of the proposed scheme and its implementation.
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1. I NTRODUCTION

Let K be a nonempty, closed and convex subset of a real Banach spaceE. T : K → K is
said to be aµ-strictly pseudocontractive mapping if there exists a fixed constantµ ∈ (0, 1) such
that

(1.1) 〈T (u)− T (v), j(u− v)〉 ≤ ‖u− v‖2 − µ‖(I − T )u− (I − T )v‖2,

for somej(u− v) ∈ J(u− v) and for everyu, v ∈ K, whereI is the identity operator (See e.g
[1]). Equivalence of (1.1) in a restated form is given by

〈(I − T )(u)− (I − T )(v), j(u− v)〉 ≥ µ‖(I − T )u− (I − T )v‖2.

A recent research interest to many authors is the viscosity implicit iterative algorithms for find-
ing a common element of the set of fixed points for nonlinear operators and also the set of so-
lutions of variational inequality problems (See [2, 3, 4, 5, 6, 7, 8, 9] and the references therein).
Following the ideas of Attouch [10], in 2000, Moudafi [11] introduced the viscosity approxi-
mation method for nonexpansive mapping in Hilbert spaces. Refinements in Hilbert spaces and
extensions to Banach spaces were obtained by Xu [12]. Recently, Xu et al. [7] introduced the
implicit midpoint procedure (1.2).

(1.2) xn+1 = θnf(xn) + (1− θn)T

(
xn + xn+1

2

)
, n ∈ N,

where{θn}∞n=1 ⊂ (0, 1), f is a contraction onK and the nonexpansive mappingT : K → K is
also defined onK, which is a nonempty closed convex subset of a real Hilbert spaceH. It was
established that the implicit midpoint sequence (1.2) converges strongly to a fixed pointp of a
nonexpansive mappingT, which also solves the variational inequality

(1.3) 〈(I − f)p, x− p〉 ≥ 0, ∀ x ∈ F (T ).

Yao et al. [9] extended the work of Xu et al. [7] and studied the implicit midpoint sequence

(1.4) xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nT

(
xn + xn+1

2

)
, n ∈ N,

where
{
θ1

n

}∞
n=1

⊂ (0, 1),
{
θ2

n

}∞
n=1

⊂ [0, 1) and
{
θ3

n

}∞
n=1

⊂ (0, 1) are real sequences satisfying
θ1

n + θ2
n + θ3

n = 1 for all n ∈ N. Under certain conditions on the parameters and denoting the set
of fixed points ofT by F (T ), it was shown that (1.4) converges strongly top = PF (T )f(p). In
other words, the implicit midpoint sequence{xn}∞n=1 generated by (1.4) converges in norm to a
fixed pointp of a nonexpansive mappingT, which is also the unique solution of the variational
inequality (1.3). Choosing{δn}∞n=1 ⊂ (0, 1), Ke and Ma [8] worked further in Hilbert spaces
and extended the results of Xu et al. [7] and Yao et al. [9] by proposing the following two
viscosity implicit iterative algorithms:

xn+1 = θnf(xn) + (1− θn)T (δnxn + (1− δn)xn+1) , n ∈ N,
and

(1.5) xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nT (δnxn + (1− δn)xn+1) , n ∈ N.

Yan et al. [13] established the main results of Ke and Ma [8] in uniformly smooth Banach
spaces. The sequence{xn}∞n=1 generated by (1.5) is proved to converge strongly to a fixed
pointp of a nonexpansive mappingT, which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ),

whereJ is a normalized duality mapping. Other mappings which are of the same class as non-
expansive mappings but which are more general and with more broad applications are known,
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e.g asymptotically nonexpansive and pseudocontractive mappings. Some recent studies on the
application of implicit procedures for asymptotically nonexpansive mappings include Zhao et
al. [14], Xiong and Lan [4], Yan and Cai [6] and Aibinu et al. [15]. Also, there are reports on
approximating a fixed point of pseudocontractive mappings by the implicit procedures. Liou
[16] used implicit and explicit iterations to compute the fixed points of strictly pseudocontrac-
tive mappings in Hilbert spaces. Song and Pei [2] studied semi-implicit midpoint rule in Hilbert
spaces. Pertinent studies on implicit iterative algorithms in Banach spaces for pseudocontrac-
tive mappings include Argyros et al. [17], Cheng and Su [18] as well as Saluja and Nashine
[19].

Motivated by the previous works, the goal of this study is to seek for a way of improving
on the existing results in this direction. A new viscosity iterative algorithm which is implicit
in nature is proposed and analysed in Banach spaces for the class of strictly pseudocontractive
mappings. Precisely, for a nonempty closed convex subsetK of a uniformly smooth Banach
spaceE and for real sequences{δn}∞n=1 ⊂ (0, 1),

{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1] and

{{
βi

n

}∞
n=1

}3

i=1
⊂

[0, 1] with β1
n, β

3
n 6= 0 such that

3∑
i=1

θi
n = 1 and

3∑
i=1

βi
n = 1, a new viscosity iterative algorithm

is introduced from an arbitraryx1 ∈ K as follows

(1.6) xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nSn(δnxn + (1− δn)xn+1),

whereSnx = β1
nQ(x)+β2

nx+β3
nT (x), f : K → K is a generalized contraction,Q : K → K is

a contraction andT : K → K is aµ-strictly pseudocontractive mapping. The iterative sequence
which is given by (1.6) generalizes the existing schemes. The computations and analysis which
are used in this proposed scheme are easy to follow and this gives rooms for a broad application
of the scheme. The strong convergence of the proposed sequence to a fixed pointp of T is
obtained and it is shown to be a solution to some variational inequality problems. A numerical
example is given to show the skillfulness of the proposed scheme and its implementation.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a Banach spaceE andT a self-mapping on
K. We shall denote the set of fixed points ofT by F (T ) := {p ∈ K : Tp = p} . Recall that
T : K → K is said to beL-Lipschitzian if for allx, y ∈ K, there exists a constantL > 0 such
that

‖Tx− Ty‖ ≤ L‖x− y‖.
If 0 < L < 1, thenT is a contraction and it called nonexpansive mapping ifL = 1.

Let (X, d) be a metric space andK a subset ofX. A mappingf : K → K is said to be a
Meir-Keeler contraction if for eachε > 0 there existsδ = δ(ε) > 0 such that for eachx, y ∈ K,
with ε ≤ d(x, y) < ε + δ, we haved(f(x), f(y)) < ε. A mappingf : E → E is called a
(ψ,L)-contractionif ψ : R+ → R+ is anL-function andd(f(x), f(y)) < ψ(d(x, y)), for all
x, y ∈ E, x 6= y.

We have the following interesting results about the Meir-Keeler contraction.

Proposition 2.1. LetE be a Banach space,K a convex subset ofE andf : K → K a Meir-
Keeler contraction. Then∀ε > 0, there existsc ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ c‖x− y‖

for all x, y ∈ K with ‖x− y‖ ≥ ε (See[20]).

We shall also need the following Lemmas in the sequel.
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Lemma 2.2. Let K be a nonempty closed and convex subset of a uniformly smooth Banach
spaceE. Let T : K → K be a nonexpansive mapping such thatF (T ) 6= ∅ andf : K → K
be a generalized contraction mapping. Then{xt} defined byxt = tf(xt) + (1 − t)Txt for
t ∈ (0, 1), converges strongly top ∈ F (T ), which solves the variational inequality (See[21]):

〈f(p)− p, J(z − p)〉 ≤ 0, ∀ z ∈ F (T ).

Lemma 2.3. Let K be a nonempty closed and convex subset of a uniformly smooth Banach
spaceE. LetT : K → K be a nonexpansive mapping such thatF (T ) 6= ∅ andf : K → K be
a generalized contraction mapping. Assume that{xt} defined byxt = tf(xt) + (1− t)Txt for
t ∈ (0, 1), converges strongly top ∈ F (T ) ast→ 0. Suppose that{xn} is a bounded sequence
such that‖xn − Txn‖ → 0 asn→∞ (See[21]). Then

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Lemma 2.4. Let {un} and {vn} be bounded sequences in a Banach spaceE and {tn} be a
sequence in[0, 1] with 0 < lim inf

n→∞
tn ≤ lim sup

n→∞
tn < 1. Suppose thatun+1 = (1− tn)un + tnvn

for all n ≥ 0 and lim sup
n→∞

(‖un+1 − un‖ − ‖vn+1 − vn‖) ≤ 0. Then lim
n→∞

‖un − vn‖ = 0 (See

[22]).

Lemma 2.5. Assume{an} is a sequence of nonnegative real sequence such that

an+1 = (1− σn)an + σnδn, n > 0,

where{σn} is a sequence in(0, 1) and{δn} is a real sequence such that

(i)
∞∑

n=1

σn = ∞,

(ii) lim sup
n→∞

δn ≤ 0 or
∞∑

n=1

σn|δn| <∞.

Then, lim
n→∞

an = 0 (See[23]).

Proposition 2.6. LetK be a nonempty convex subset of a Banach spaceE, T : K → K a
nonexpansive mapping andf : K → K a Meir-Keeler contraction. ThenTf andfT : K → K
are Meir-Keeler contractions (See[24]).

In this paper, the generalized contraction mappings will refer to Meir-Keeler or(ψ,L)-
contraction contractions. It is assumed from the definition of(ψ,L)-contraction that theL-
function is continuous, strictly increasing andlim

t→∞
φ(t) = ∞, whereφ(t) = t − ψ(t) for all

t ∈ R+. Whenever there is no confusion,φ(t) andψ(t) will be written asφ t andψ t, respec-
tively.

3. M AIN RESULTS

The sequence (1.6) is well defined in uniformly smooth Banach spaces. Indeed, letcQ ∈ [0, 1]
be the contractive constant ofQ. Firstly, it is shown that for ally, z ∈ K, ‖Sn(y) − Sn(z)‖ ≤
‖y − z‖.
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〈Sn(y)− Sn(z), J(y − z)〉
=

〈
β1

nQ(y) + β2
ny + β3

nT (y)− β1
nQ(z)− β2

nz − β3
nT (z), J(y − z)

〉
=

〈
β1

n(Q(y)−Q(z)) + β2
n(y − z) + β3

n(T (y)− T (z)), J(y − z)
〉

= β1
n 〈Q(y)−Q(z), J(y − z)〉+ β2

n 〈y − z, J(y − z)〉
+β3

n 〈T (y)− T (z), J(y − z)〉
≤ β1

n 〈Q(y)−Q(z), J(y − z)〉+ β2
n 〈y − z, J(y − z)〉

+β3
n

(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2) ,

by theµ-strictly pseudocontractive mapping property. Therefore,

‖Sn(y)− Sn(z)‖‖y − z‖ ≤ β1
n‖Q(y)−Q(z)‖‖y − z‖+ β2

n‖y − z‖2

+β3
n

(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2)

≤ β1
ncQ‖y − z‖2 + β2

n‖y − z‖2

+(1− β1
n − β2

n)
(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2)

≤ β1
n‖y − z‖2 + β2

n‖y − z‖2 (sincecQ ∈ [0, 1])

+(1− β1
n − β2

n)
(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2)

= ‖y − z‖2 − (1− β1
n − β2

n)µ‖(I − T )y − (I − T )z‖2

≤ ‖y − z‖2.

Thus,

‖Sn(y)− Sn(z)‖ ≤ ‖y − z‖.(3.1)

Next is to show that for allv ∈ K, the mapping defined by

x 7→ Tv(x) := θ1
nf(v) + θ2

nv + θ3
nSn(δnv + (1− δn)x)

for all x ∈ K is a contraction with a contractive constant(1 − ε) =: δ ∈ (0, 1). Clearly, for
all y, z ∈ K,

‖Tv(y)− Tv(z)‖ = θ3
n ‖Sn (δnv + (1− δn)y)− Sn (δnv + (1− δn)z)‖

≤ θ3
n ‖(δnv + (1− δn)y)− (δnv + (1− δn)z)‖

≤ θ3
n(1− δn)‖y − z‖

≤ (1− δn)‖y − z‖
≤ (1− ε)‖y − z‖
= δ‖y − z‖.(3.2)

Thus, (1.6) is well defined sinceTv is a contraction and by Banach contraction principle,Tv a
fixed point. Observe that for eachn ∈ N, x ∈ F (T )∩F (Q) ⇒ x ∈ F (Sn). So,F (T )∩F (Q) ⊂
F (Sn) 6= ∅. Indeed, supposex ∈ F (T ) ∩ F (Q), then

Snx = β1
nQ(x) + β2

nx+ β3
nT (x)

= β1
nx+ β2

nx+ β3
nx

= (β1
n + β2

n + β3
n)x

= x.(3.3)

Thus,x ∈ F (Sn).
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Next, the proof of the following lemmas which are useful in establishing our main result are
given.

Lemma 3.1. LetE be a uniformly smooth Banach space andK be a nonempty closed convex
subset ofE. Let T : K → K be aµ-strictly pseudocontractive mapping and suppose thatf :
K → K is a generalized contraction andQ : K → K is a contraction withF (T )∩F (Q) 6= ∅.
{δn}∞n=1 ⊂ (0, 1),

{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1] and

{{
βi

n

}∞
n=1

}3

i=1
⊂ [0, 1] with β1

n, β
3
n 6= 0 are real

sequences. For an arbitraryx1 ∈ K, the iterative sequence which is by (1.6) is bounded.

Proof. The sequence{xn}∞n=1 is shown to be bounded. Letzn := δnxn + (1 − δn)xn+1 and
observe thatp ∈ F (T ) ∩ F (Q) implies thatp ∈ F (Sn) (See (3.3)). Therefore by (3.1),

‖Snzn − p‖ ≤ ‖zn − p‖.

Recall thatφ(t) := t− ψ(t) for all t ∈ R+. Then,

‖xn+1 − p‖ = ‖θ1
nf(xn) + θ2

nxn + θ3
nSnzn − p‖

= ||θ1
n (f(xn)− f(p)) + θ1

n (f(p)− p) + θ2
n(xn − p) + θ3

n(Snzn − p)‖
≤ θ1

n‖f(xn)− f(p)‖+ θ1
n‖f(p)− p‖+ θ2

n‖xn − p‖+ θ3
n‖Snzn − p‖

≤ θ1
nψ‖xn − p‖+ θ1

n‖f(p)− p‖+ θ2
n‖xn − p‖+ θ3

n‖zn − p‖
≤ θ1

nψ‖xn − p‖+ θ1
n‖f(p)− p‖+ θ2

n‖xn − p‖
+θ3

n (δn‖xn − p‖+ (1− δn+1)‖xn+1 − p‖)
≤ θ1

nψ‖xn − p‖+ θ1
n‖f(p)− p‖+ θ2

n‖xn − p‖
+θ3

nδn‖xn − p‖+ θ3
n(1− δn+1)‖xn+1 − p‖.

Consequently,(
1− θ3

n(1− δn)
)
‖xn+1 − p‖ ≤

(
θ1

nψ + θ2
n + θ3

nδn

)
‖xn − p‖+ θ1

n‖f(p)− p‖
=

(
θ1

nψ + (1− θ1
n − θ3

n) + θ3
nδn

)
‖xn − p‖+ θ1

n‖f(p)− p‖
=

(
1− θ3

n(1− δn)− θ1
n(1− ψ)

)
‖xn − p‖+ θ1

n‖f(p)− p‖
=

(
1− θ3

n(1− δn)− θ1
nφ
)
‖xn − p‖+ θ1

n‖f(p)− p‖.

Observe that1− θ3
n(1− δn) > 0 since

{{
θi

n

}∞
n=1

}3

i=1
, {δn}∞n=1 ⊂ (0, 1). Therefore, it leads to

‖xn+1 − p‖ ≤ 1− θ3
n(1− δn)− θ1

nφ

1− θk
n(1− δn)

‖xn − p‖

+
θ1

n

1− θ3
n(1− δn)

‖f(p)− p‖(3.4)

=

(
1− θ1

nφ

1− θ3
n(1− δn)

)
‖xn − p‖+

θ1
n

1− θ3
n(1− δn)

‖f(p)− p‖

=

(
1− θ1

nφ

1− θ3
n(1− δn)

)
‖xn − p‖+

θ1
nφ

1− θ3
n(1− δn)

. φ−1‖f(p)− p‖

≤ max
{
‖xn − p‖, φ−1‖f(p)− p‖

}
.

Thus, by the induction, it is obtained that

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖, φ−1‖f(p)− p‖

}
.
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This implies that the sequence{xn}∞n=1 is bounded and hence{Sn (δnxn + (1− δn)xn+1)}∞n=1

and{f(xn)}∞n=1 are also bounded. Certainly, forp ∈ F (T ) ∩ F (Q),

‖Sn (δnxn + (1− δn)xn+1) ‖ = ‖Sn (δnxn + (1− δn)xn+1)− p+ p‖
≤ ‖Sn (δnxn + (1− δn)xn+1)− Snp‖+ ‖p‖
≤ ‖δnxn + (1− δn)xn+1 − p‖+ ‖p‖
≤ δn‖xn − p‖+ (1− δn)‖xn+1 − p‖+ ||p||
≤ max

{
||x1 − p||, φ−1||f(p)− p||

}
+ ||p|| (by induction).

The boundedness of{Sn}∞n=1 implies thatQ andT are also bounded sinceSn is defined in term
of Q andT. Moreover,

‖f(xn)‖ = ‖f(xn)− f(p) + f(p)‖ ≤ ψ‖xn − p‖+ ‖f(p)‖
≤ max

{
ψ||x1 − p||, ψφ−1||f(p)− p||

}
+ ||f(p)|| (by induction).

Lemma 3.2. Let E be a uniformly smooth Banach space andK a nonempty closed convex
subset ofE. LetQ : K → K be a contraction,T : K → K a µ-strictly pseudocontractive
mapping and{δn}∞n=1 is a real sequences in(0, 1). Definezn := δnxn + (1 − δn)xn+1 and let

M1 = max

{
sup

n
‖T (zn)− zn‖, sup

n
‖Q(zn)− zn‖

}
. Then

‖Sn+1zn+1 − Snzn‖ ≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖
+
(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1 for all n ∈ N.

Proof. It is known that{zn}∞n=1 is bounded since{xn}∞n=1 is a bounded sequence. Notice that

‖zn+1 − zn‖ = ‖δn+1xn+1 + (1− δn+1)xn+2 − (δnxn + (1− δn)xn+1) ‖
= ‖δn+1xn+1 + (1− δn+1)xn+2 − δnxn − (1− δn)xn+1‖
= ‖(xn+2 − xn+1)− δn+1(xn+2 − xn+1) + δn(xn+1 − xn)‖
= ‖δn(xn+1 − xn) + (1− δn+1)(xn+2 − xn+1)‖
≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖.(3.5)

Then,‖Sn+1zn+1 − Snzn‖ = ‖Sn+1zn+1 − Sn+1zn + Sn+1zn − Snzn‖
≤ ‖zn+1 − zn‖+ ‖β1

n+1Q(zn) + β2
n+1zn + β3

n+1T (zn)

−β1
nQ(zn)− β2

nzn − β3
nT (zn)‖

= ‖zn+1 − zn‖+ ‖β1
n+1Q(zn) + (1− β1

n+1 − β3
n+1)zn

+β3
n+1T (zn)− β1

nQ(zn)− (1− β1
n − β3

n)zn − β3
nT (zn)‖

= ‖zn+1 − zn‖+ ‖β1
n+1(Q(zn)− zn) + zn

+β3
n+1(T (zn)− zn)− β1

n(Q(zn)− zn)

−zn − β3
n(T (zn)− zn)‖

= ‖zn+1 − zn‖+ ‖(β1
n+1 − β1

n)(Q(zn)− zn)

+(β3
n+1 − β3

n)(T (zn)− zn)‖
≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1.(3.6)
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Theorem 3.3. LetE be a uniformly smooth Banach space andK a nonempty closed convex
subset ofE. LetT be aµ-strictly pseudocontractive self-mapping defined onK whilef : K →
K is a generalized contraction andQ is a contraction defined onK with F (T ) ∩ F (Q) 6= ∅.
Suppose the real sequences{δn}∞n=1 ⊂ (0, 1),

{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1] and

{{
βi

n

}∞
n=1

}3

i=1
⊂

[0, 1] with β1
n, β

3
n 6= 0 satisfy the following conditions:

(i)
3∑

i=1

θi
n = 1,

∞∑
n=1

θ1
n = ∞,

(ii) lim
n→∞

|θ2
n+1 − θ2

n| = 0, 0 < lim inf
n→∞

θ2
n ≤ lim sup

n→∞
θ2

n < 1,

(iii)
3∑

i=1

βi
n = 1, lim

n→∞
|β1

n+1 − β1
n| = 0, lim

n→∞
|β3

n+1 − β3
n| = 0,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
Then, for an arbitraryx1 ∈ K, the iterative sequence{xn}∞n=1 defined by (1.6) converges
strongly to a fixed pointp of T, which solves the variational inequality

(3.7) 〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ) ∩ F (Q).

Proof. Observe that one can write the iterative sequence (1.6) as:

xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nSn (δnxn + (1− δn)xn+1)

= θ2
nxn + (1− θ2

n)
θ1

nf(xn) + θ3
nSn (δnxn + (1− δn)xn+1)

1− θ2
n

.

Since
3∑

i=1

θi
n = 1 by condition (i), it could be obtained that

xn+1 = (1− θ1
n − θ3

n)xn + (θ1
n + θ3

n)
θ1

nf(xn) + θ3
nSn (δnxn + (1− δn)xn+1)

1− θ2
n

= (1− θ1
n − θ3

n)xn + (θ1
n + θ3

n)wn,(3.8)

where

wn :=
θ1

nf(xn) + θ3
nSn (δnxn + (1− δn)xn+1)

1− θ2
n

=
θ1

n

1− θ2
n

f(xn) +
θ3

n

1− θ2
n

Sn (δnxn + (1− δn)xn+1)(3.9)

=
θ1

n

θ1
n + θ3

n

f(xn) +
θ3

n

θ1
n + θ3

n

Sn (δnxn + (1− δn)xn+1) , n ∈ N.

Notice that{xn}∞n=1 , {f(xn)}∞n=1 and{T (δnxn + (1− δn)xn+1)}∞n=1 are bounded sequences.
Furthermore, since thelim sup

n→∞
θ2

n < 1 by the condition (iii), there existsn0 ∈ N andη < 1 such

that

(3.10) 1− θ2
n > 1− η ∀ n ≥ n0.

The consequence of (3.9) and (3.10) is that{wn}∞n=1 is bounded.
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Next is to show thatlim
n→∞

||wn − xn|| = 0.

The first step is to show thatlim sup
n→∞

(||wn+1 − wn|| − ||xn+1 − xn||) ≤ 0. Observe that

wn+1 − wn =
θ1

n+1

θ1
n+1 + θ3

n+1

f(xn+1) +
θ3

n+1

θ1
n+1 + θ3

n+1

Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−
(

θ1
n

θ1
n + θ3

n

f(xn) +
θ3

n

θ1
n + θ3

n

Sn (δnxn + (1− δn)xn+1)

)
=

θ1
n+1

θ1
n+1 + θ3

n+1

(f(xn+1)− f(xn)) +

(
θ1

n+1

θ1
n+1 + θ3

n+1

− θ1
n

θ1
n + θ3

n

)
f(xn)

+
θ3

n+1

θ1
n+1 + θ3

n+1

(
Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−Sn (δnxn + (1− δn)xn+1)

)
+

(
θ3

n+1

θ1
n+1 + θ3

n+1

− θ3
n

θ1
n + θ3

n

)
Sn (δnxn + (1− δn)xn+1)

=
θ1

n+1

θ1
n+1 + θ3

n+1

(f(xn+1)− f(xn)) +

(
θ1

n+1

θ1
n+1 + θ3

n+1

− θ1
n

θ1
n + θ3

n

)
f(xn)

+
θ3

n+1

θ1
n+1 + θ3

n+1

(
Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−Sn (δnxn + (1− δn)xn+1)

)
+

(
θ1

n+1 + θ3
n+1 − θ1

n+1

θ1
n+1 + θ3

n+1

− θ1
n + θ3

n − θ1
n

θ1
n + θ3

n

)
Sn (δnxn + (1− δn)xn+1)

=
θ1

n+1

θ1
n+1 + θk

n+1

(f(xn+1)− f(xn)) +

(
θ1

n+1

θ1
n+1 + θ3

n+1

− θ1
n

θ1
n + θ3

n

)
f(xn)

+
θ3

n+1

θ1
n+1 + θ3

n+1

(
Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−Sn (δnxn + (1− δn)xn+1)

)
+

(
θ1

n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

)
Sn (δnxn + (1− δn)xn+1)

=
θ1

n+1

θ1
n+1 + θ3

n+1

(f(xn+1)− f(xn))

+

(
θ1

n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

)
(Sn (δnxn + (1− δn)xn+1)− f(xn))

+
θ3

n+1

θ1
n+1 + θ3

n+1

(
Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−Sn (δnxn + (1− δn)xn+1)

)
.
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Therefore,

||wn+1 − wn|| ≤
θ1

n+1ψ

θ1
n+1 + θ3

n+1

‖xn+1 − xn‖+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣
×‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖+

θ3
n+1

θ1
n+1 + θ3

n+1

×‖Sn (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1) ‖.

Applying Lemma 3.2 leads to

||wn+1 − wn|| ≤
θ1

n+1ψ

θ1
n+1 + θ3

n+1

‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣ ‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖

+
θ3

n+1

θ1
n+1 + θ3

n+1

[ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1 ]

=
θ1

n+1ψ + θ3
n+1δn

θ1
n+1 + θ3

n+1

‖xn+1 − xn‖+
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

‖xn+2 − xn+1‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣ ‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1.(3.11)

To evaluate||xn+2 − xn+1||, letM1 := sup
n
{‖xn − Sn (δnxn + (1− δn)xn+1) ‖} ,

M2 := sup
n
{‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖} andM2 =: max {M1,M2} .

xn+2 − xn+1 = θ1
n+1f(xn+1) + θ2

n+1xn+1 + θ3
n+1Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−
(
θ1

nf(xn) + θ2
nxn + θ3

nSn (δnxn + (1− δn)xn+1)
)

= θ1
n+1 (f(xn+1)− f(xn)) + (θ1

n+1 − θ1
n)f(xn) + θ2

n+1(xn+1 − xn)

+(θ2
n+1 − θ2

n)xn +
(
θ3

n+1 − θ3
n

)
Sn (δnxn + (1− δn)xn+1)

+θ3
n+1 (Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1))

= θ1
n+1 (f(xn+1)− f(xn)) + (θ1

n+1 − θ1
n)f(xn) + θ2

n+1(xn+1 − xn)

+(θ2
n+1 − θ2

n)xn +
(
(θ1

n − θ1
n+1)− (θ2

n+1 − θ2
n)
)
Sn (δnxn + (1− δn)xn+1)

+θ3
n+1 (Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1)) .
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Consequently,

||xn+2 − xn+1|| ≤
(
θ1

n+1ψ + θ2
n+1

)
‖xn+1 − xn‖

+|θ1
n − θ1

n+1|‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖
+|θ2

n+1 − θ2
n|‖xn − Sn (δnxn + (1− δn)xn+1) ‖

+θ3
n+1‖Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1) ‖

≤
(
θ1

n+1ψ + θ2
n+1

)
‖xn+1 − xn‖+

(
|θ1

n − θ1
n+1|+ |θ2

n+1 − θ2
n|
)
M2

+θ3
n+1 [δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1 ] (by Lemma 3.2)

=
(
θ1

n+1ψ + θ2
n+1 + θ3

n+1δn

)
‖xn+1 − xn‖

+
(
|θ1

n − θ1
n+1|+ |θ2

n+1 − θ2
n|
)
M2

+θ3
n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1(3.12)

+θ3
n+1(1− δn+1)‖xn+2 − xn+1‖.

Let

Bn =
1

1− θ3
n+1(1− δn+1)

(
|θ1

n − θ1
n+1|+ |θ2

n+1 − θ2
n|
)
M2

+θ3
n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1,

since1− θ3
n+1(1− δn+1) > 0, (3.12) gives,

‖xn+2 − xn+1‖ ≤
θ1

n+1ψ + θ2
n+1 + θ3

n+1δn

1− θ3
n+1(1− δn+1)

‖xn+1 − xn‖+Bn.(3.13)

Substituting (3.13) into (3.11) gives

‖wn+1 − wn‖ ≤ [
θ1

n+1ψ + θ3
n+1δn

θ1
n+1 + θ3

n+1

+
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

×
θ1

n+1ψ + θ2
n+1 + θ3

n+1δn

1− θ3
n+1(1− δn+1)

]

×‖xn+1 − xn‖+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1

=
θ1

n+1ψ + θ3
n+1δn + θ3

n+1(1− δn+1)θ
2
n+1

[θ1
n+1 + θ3

n+1][1− θ3
n+1(1− δn+1)]

‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1
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=

(
1−

θ1
n+1(1− ψ) + θ3

n+1(δn+1 − δn)

[θ1
n+1 + θ3

n+1][1− θ3
n+1(1− δn+1)]

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1

=

(
1−

θ1
n+1φ+ θ3

n+1(δn+1 − δn)

[θ1
n+1 + θ3

n+1][1− θ3
n+1(1− δn+1)]

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1

≤
(

1−
θ1

n+1φ

θ1
n+1 + θ3

n+1

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1,

sinceθ1
n+1φ+θ3

n+1(δn+1−δn) > θ1
n+1φ and[θ1

n+1+θ3
n+1][1−θ3

n+1(1−δn+1)] < θ1
n+1+θ3

n+1.
It then follows that

‖wn+1 − wn‖ − ‖xn+1 − xn‖ ≤ −
θ1

n+1φ

θ1
n+1 + θ3

n+1

‖xn+1 − xn‖

+

∣∣∣∣ θ1
n

θ1
n + θ3

n

−
θ1

n+1

θ1
n+1 + θ3

n+1

∣∣∣∣M2 +
θ3

n+1(1− δn+1)

θ1
n+1 + θ3

n+1

Bn

+
θ1

n+1ψ

θ1
n+1 + θ3

n+1

(
|β1

n+1 − β1
n|+ |β3

n+1 − β3
n|
)
M1,

and thus,

(3.14) lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Invoking Lemma 2.4 gives
lim

n→∞
‖wn − xn‖ = 0.

Obviously from (3.8), one can obtain that

‖xn+1 − xn‖ = ‖(1− θ1
n − θ3

n)xn + (θ1
n + θ3

n)wn − xn‖
≤ (θ1

n + θ3
n)‖wn − xn‖ → 0 as n→∞.(3.15)

Next is to show thatlim
n→∞

‖xn − Snxn‖ = 0. From (1.6), one can have that
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‖xn − Snxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Snxn‖
≤ ‖xn+1 − xn‖+ θ1

n‖f(xn)− Snxn‖+ θ2
n‖xn − Snxn‖

+θ3
n‖Sn (δnxn + (1− δn)xn+1)− Snxn‖

≤ ‖xn+1 − xn‖+ θ1
n‖f(xn)− Snxn‖+ (1− θ1

n − θ3
n)‖xn − Snxn‖

+θ3
n‖δnxn + (1− δn)xn+1 − xn‖

≤ ‖xn+1 − xn‖+ θ1
n‖f(xn)− Snxn‖+ (1− θ1

n − θ3
n)‖xn − Snxn‖

+θ3
n(1− δn)‖xn+1 − xn‖.

(θ1
n + θ3

n)‖xn − Snxn‖ ≤ (1 + θ3
n(1− δn))‖xn+1 − xn‖+ θ1

n‖f(xn)− Snxn‖

‖xn − Snxn‖ ≤ 1 + θ3
n(1− δn)

θ1
n + θ3

n

‖xn+1 − xn‖+
θ1

n

θ1
n + θ3

n

‖f(xn)− Snxn‖

=
1 + θ3

n(1− δn)

1− θ2
n

‖xn+1 − xn‖+
θ1

n

1− θ2
n

‖f(xn)− Snxn‖

≤ 1 + θ3
n(1− δn)

1− η
‖xn+1 − xn‖

+
θ1

n

1− η
‖f(xn)− Snxn‖ → 0 asn→∞,(3.16)

by the condition(ii) and since1− η > 0 (3.10).
Define a sequence{xt} by xt = tf(xt) + (1− t)Snxt for t ∈ (0, 1). Lemma 2.2 establishes

that{xt} converges strongly top ∈ F (T ) ∩ F (Q), which solves the variational inequality:

〈f(p)− p, J(x− p)〉 ≤ 0, ∀ x ∈ F (T ) ∩ F (Q),

equivalently,

〈(I − f)p, J(x− p)〉 ≥ 0, ∀ x ∈ F (T ) ∩ F (Q).

It is claimed that

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 ≤ 0,

wherep ∈ F (T )∩F (Q) is the unique fixed point of the generalized contractionPF (T )∩F (Q)f(p)
(Proposition 2.6), that is,p = PF (T )∩F (Q)f(p).

Since lim
n→∞

‖xn − Snxn‖ = 0 by (3.16), it follows from Lemma 2.3 that

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Moreover, since the duality map is continuous and‖xn+1− xn‖ → 0 by (3.15), it is obtained
that,

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 = lim sup
n→∞

〈f(p)− p, J(xn+1 − xn + xn − p)〉

= lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.(3.17)

Finally, it is shown thatxn → p ∈ F (T ) asn→∞.
Assume that the sequence{xn}∞n=1 does not converge strongly top ∈ F (T ). Therefore, there
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existsε > 0 and a subsequence
{
xnj

}∞
j=1

of {xn}∞n=1 such that‖xnj
− p‖ ≥ ε, for all j ∈ N.

Thus by Proposition 2.1, for thisε, there existsc ∈ (0, 1) such that

‖f(xnj
)− f(p)‖ ≤ c‖xnj

− p‖.

||xnj+1
− p||2 = θ1

nj

〈
f(xnj

)− f(p), J(xnj+1
− p)

〉
+ θ1

nj

〈
f(p)− p, J(xnj+1

− p)
〉

+θ2
nj

〈
xnj

− p, J(xnj+1
− p)

〉
+θ3

nj

〈
Sn

(
δnj
xnj

+ (1− δnj
)xnj+1

)
− p, J(xnj+1

− p)
〉

≤ cθ1
nj
||xnj

− p|| ||xnj+1 − p||+ θ1
nj

〈
f(p)− p, J(xnj+1

− p)
〉

+θ2
nj
||xnj

− p|| ||xnj+1
− p||

+
(
θ3

nj
δnj
‖xnj

− p‖+ θ3
nj

(1− δnj
)‖xnj+1

− p||
)
||xnj+1

− p||

≤
(
cθ1

n + θ2
nj

)
||xnj

− p|| ||xnj+1
− p||+ θ1

nj

〈
f(p)− p, J(xnj+1

− p)
〉

+
(
θ3

nj
δnj
‖xnj

− p‖+ θ3
nj

(1− δnj
)‖xnj+1

− p||
)
||xnj+1

− p||

≤ 1

2

(
cθ1

nj
+ θ2

nj
+ θ3

nj
δnj

)
(||xnj

− p||2 + ||xnj+1
− p||2)

+θ1
nj

〈
f(p)− p, J(xnj+1

− p)
〉

+ θ3
n(1− δnj

)‖xnj+1
− p||2

2||xnj+1
− p||2 ≤

(
1− θ1

nj
(1− c)− θ3

nj
(1− δnj

)
)

(||xnj
− p||2 + ||xnj+1

− p||2)

+2θ1
nj

〈
f(p)− p, J(xnj+1

− p)
〉

+ 2θ3
nj

(1− δnj
)‖xnj+1

− p||2

=
(
1− θ1

nj
(1− c)− θ3

nj
(1− δnj

)
)
||xnj

− p||2

+
(
1− θ1

nj
(1− c) + θ3

nj
(1− δnj

)
)
||xnj+1

− p||2

+2θ1
nj

〈
f(p)− p, J(xnj+1

− p)
〉
.

Therefore, (
1 + θ1

nj
(1− c)− θ3

nj
(1− δnj

)
)
||xnj+1

− p||2

≤
(
1− θ1

nj
(1− c)− θ3

nj
(1− δnj

)
)
||xnj

− p||2

+2θ1
nj

〈
f(p)− p, J(xnj+1

− p)
〉
,

which is equivalent to

||xnj+1
− p||2 ≤

1− θ1
nj

(1− c)− θ3
nj

(1− δnj
)

1 + θ1
nj

(1− c)− θ3
nj

(1− δnj
)
||xnj

− p||2

+
2θ1

nj

1 + θ1
nj

(1− c)− θ3
nj

(1− δnj
)

〈
f(p)− p, J(xnj+1

− p)
〉

=

(
1−

2θ1
nj

(1− c)

1 + θ1
nj

(1− c)− θ3
nj

(1− δnj
)

)
||xnj

− p||2

+
2θ1

nj

1 + θ1
nj

(1− c)− θ3
nj

(1− δnj
)

〈
f(p)− p, J(xnj+1

− p)
〉
.(3.18)
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By applying Lemma 2.5 to (3.17) and (3.18), one can deduce thatxnj
→ p asj →∞. This is a

contradiction. Hence, the sequence{xn}∞n=1 converges strongly top ∈ F (T ).

3.1. Extension to a finite family of strictly pseudocontractive mappings.The result of The-
orem 3.3 can be extended to a finite family ofµ-strictly pseudocontractive mappings by using
the lemma given below.

Lemma 3.4. [25] LetK be a nonempty convex subset of a real smooth Banach spaceE and

let λi > 0 (i = 1, 2, ..., N) such that
N∑

i=1

λi = 1. Let {Ti}N
i=1 be a finite family ofµi-strictly

pseudocontractive mappings and letT =
N∑

i=1

λiTi. Then, we have the following:

(i) T : K → K is µ-strictly pseudocontractive mapping withµ = min {µi : 1 ≤ i ≤ N} .
(ii) If ∩N

i=1F (Ti) 6= ∅ thenF (T ) = ∩N
i=1F (Ti).

The next following result then comes readily.

Theorem 3.5. LetE be a uniformly smooth Banach space andK a nonempty closed convex
subset ofE. Let Ti be a finite familyµi-strictly pseudocontractive self-mapping defined onK
andQ a contraction defined onK with∩N

i=1F (Ti)∩F (Q) 6= ∅. Letf : K → K be a generalized

contraction and suppose that the real sequences{δn}∞n=1 ⊂ (0, 1),
{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1] and{{

βi
n

}∞
n=1

}3

i=1
⊂ [0, 1] with β1

n, β
3
n 6= 0 satisfy the following conditions:

(i)
3∑

i=1

θi
n = 1,

∞∑
n=1

θ1
n = ∞,

(ii) lim
n→∞

|θ2
n+1 − θ2

n| = 0, 0 < lim inf
n→∞

θ2
n ≤ lim sup

n→∞
θ2

n < 1,

(iii)
3∑

i=1

βi
n = 1, lim

n→∞
|β1

n+1 − β1
n| = 0, lim

n→∞
|β3

n+1 − β3
n| = 0,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
Then, for an arbitraryx1 ∈ K, the iterative sequence{xn}∞n=1 defined by

xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nSn(δnxn + (1− δn)xn+1),

whereSnx = β1
nQ(x)+β2

nx+β3
n

N∑
i=1

λiTi(x), converges strongly to a fixed pointp ∈ ∩N
i=1F (Ti)

which solves the variational inequality

Proof. DefineT =
N∑

i=1

λiTi, it suffices to show thatT is aµ-strictly pseudocontractive mapping

with F (T ) = ∩N
i=1F (Ti). Indeed by Lemma 3.4,T is aµ-strictly pseudocontractive mapping

with µ = min {µi : 1 ≤ i ≤ N} . Therefore, the conclusion holds by following the steps of
proof for Theorem 3.3.

Remark 3.1. The following results are readily obtained as corollaries of Theorem 3.3.

Corollary 3.6. LetE be a uniformly smooth Banach space andK a nonempty closed convex
subset ofE. Let T be a nonexpansive self-mapping defined onK, f : K → K a generalized
contraction andQ is a contraction defined onK with F (T ) ∩ F (Q) 6= ∅. Suppose that the
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real sequences{δn}∞n=1 ⊂ (0, 1),
{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1] and

{{
βi

n

}∞
n=1

}3

i=1
⊂ [0, 1] with

β1
n, β

3
n 6= 0 satisfy the following conditions:

(i)
3∑

i=1

θi
n = 1,

∞∑
n=1

θ1
n = ∞,

(ii) lim
n→∞

|θ2
n+1 − θ2

n| = 0, 0 < lim inf
n→∞

θ2
n ≤ lim sup

n→∞
θ2

n < 1,

(iii)
3∑

i=1

βi
n = 1, lim

n→∞
|β1

n+1 − β1
n| = 0, lim

n→∞
|β3

n+1 − β3
n| = 0,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
Then, for an arbitraryx1 ∈ K, the iterative sequence{xn}∞n=1 defined by (1.6) converges
strongly to a fixed pointp of T, which solves the variational inequality (3.7).

Proof. The class ofµ-strictly pseudocontractive mappings is more general than the class of
nonexpansive mappings. Hence, the conclusion follows from Theorem 3.3.

Corollary 3.7. LetE be a uniformly smooth Banach space andK a nonempty closed convex
subset ofE. LetTi be aµ-strictly pseudocontractive self-mapping defined onK andQ a con-
traction defined onK with ∩N

i=1F (Ti) ∩ F (Q) 6= ∅. Let f : K → K a generalized contraction

and assume that the real sequences he real sequences{δn}∞n=1 ⊂ (0, 1),
{{
θi

n

}∞
n=1

}3

i=1
⊂ [0, 1]

and{λn} ⊂ (0, 1) satisfy the following conditions:

(i)
3∑

i=1

θi
n = 1,

∞∑
n=1

θ1
n = ∞,

(ii) lim
n→∞

|θ2
n+1 − θ2

n| = 0, 0 < lim inf
n→∞

θ2
n ≤ lim sup

n→∞
θ2

n < 1,

(iii) lim
n→∞

|λn+1 − λn| = 0,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
Then, for an arbitraryx1 ∈ K, define the iterative sequence{xn}∞n=1 by

(3.19) xn+1 = θ1
nf(xn) + θ2

nxn + θ3
nSn(δnxn + (1− δn)xn+1),

whereSnx = λnQ(x)+ (1−λn)T (x). Then the iterative sequence{xn}∞n=1 converges strongly
to a fixed pointp of T, which solves the variational inequality (3.7).

Proof. Takeβ2
n = 0 in (1.6), thenλn = β1

n and(1 − λn) = β3
n. Thus, the desire result follows

from Theorem 3.3.

4. NUMERICAL EXAMPLE FOR ILLUSTRATION OF CONVERGENCE ANALYSIS

An example of aµ-strictly pseudocontractive mapping is presented in this section. This is
used to illustrate the convergence analysis of the main theorem in this paper.

Example 4.1.

LetE be the real lineR with absolute value norm and defineT : R → R by

(4.1) Tx = |x| =

{
−x, x ∈ (−∞, 0],

x, x ∈ (0,∞).

Clearly,F (T ) = [0,∞). It is imperative to ascertain thatT is aµ-strictly pseudocontractive
mapping withµ ∈ (0, 1).
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Figure 1: Iteration forx1 = 2.5 andp = 0.

Case(i) : Notice that for allx, y ∈ (−∞, 0],

〈(I − T )(x)− (I − T )(y), x− y)〉 = 2 〈x− y, x− y〉
= 2|x− y|2

≥ µ1|(I − T )(x)− (I − T )(y)|2,
for µ1 ≤ 1

4
.

Case(ii) : For allx, y ∈ (0,∞),

〈(I − T )(x)− (I − T )(y), x− y)〉 = 2 〈0− 0, x− y〉
= |0− 0|2

= µ2|(I − T )(x)− (I − T )(y)|2,
for µ2 > 0.

Case(iii) : For allx ∈ (−∞, 0] andy ∈ (0,∞),

〈(I − T )(x)− (I − T )(y), x− y)〉 = 2 〈x− 0, x− y〉
= 2|x− 0|2

≥ µ1|(I − T )(x)− (I − T )(y)|2,
for µ1 ≤ 1

4
. Defineµ := min {µ1, µ2} , T is thus aµ-strictly pseudocontractive mapping.

The convergence analysis of Theorem 3.3 will be applied in obtaining a fixed point of the
mappingT in Example 4.1. Let

{
θ1

n

}∞
n=1

:=
{

3
5
− 1

5n

}∞
n=1

,
{
θ2

n

}∞
n=1

:=
{

1
5n

}∞
n=1

and
{
θ3

n

}∞
n=1

:={
2
5

}∞
n=1

. Clearly
3∑

i=1

θi
n = 1 and each sequence satisfy the conditions of Theorem 3.3. More-

over, defined
{
β1

n

}∞
n=1

:=
{

1
2
− 1

2n

}∞
n=1

,
{
β2

n

}∞
n=1

:=
{

1
2n

}∞
n=1

,
{
β3

n

}∞
n=1

:=
{

1
2

}∞
n=1

and take
{δn}∞n=1 :=

{
n

2n+1

}∞
n=1

. The real value functionsf : R → R andQ : R → R are respectively
defined byf(x) = 1

5
x andQ(x) = 1

4
x. Figures 1, 2, 3 & 4 display the convergence of the

iterative sequences to some given fixed points ofT with different starting points.
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Figure 2: Iteration forx1 = 5.0 andp = 1.0.

Figure 3: Iteration forx1 = −1.0 andp = 0.

AJMAA, Vol. 18 (2021), No. 2, Art. 12, 21 pp. AJMAA

https://ajmaa.org


ALGORITHMS FORNONLINEAR PROBLEMS 19

Figure 4: Iteration forx1 = −7.0 andp = 2.5.

5. CONCLUSION

This study has contributed immersely to the exploration on how to find a fixed point of non-
linear problems which involve the class of strictly pseudocontractive mappings. The customary
riddles in computations and analysis of approximating a fixed of nonlinear problems involving
the class of strictly pseudocontractive mappings are elucidated by using the technique which are
easy to follow. This gives rooms for a broad application of the scheme which was proposed in
this paper. The obtained results was shown to hold for finite family of strictly pseudocontractive
and this is an additional prestige to the proposed scheme and techniques which were used for
the computations and analysis. The skillfulness of the proposed scheme and its implementation
are displayed through a numerical example.

REFERENCES

[1] F. E. BROWDER and W. V. PETRYSHYN, Construction of fixed points of nonlinear mappings in
Hilbert spaces,J. Math. Anal. Appl., 20 (1967), pp. 197-228.

[2] Y. SONG and Y. PEI, A new viscosity semi-implicit midpoint rule for strict pseudo-contractions and
(α, β)-generalized hybrid mapping,Optimization, (2020). DOI: 10.1080/02331934.2020.1789640

[3] M. O. AIBINU, S. C. THAKUR and S. MOYO, Solutions of nonlinear operator equations by
viscosity iterative methods,Journal of Applied Mathematics, Article ID: 5198520, (2020).

[4] T. XIONG and H. LAN, General modified viscosity implicit rules for generalized asymptoti-
cally nonexpansive mappings in completeCAT(0) spaces,J. Inequal Appl., 176 (2019). DOI:
10.1186/s13660-019-2114-7

AJMAA, Vol. 18 (2021), No. 2, Art. 12, 21 pp. AJMAA

https://ajmaa.org


20 M. O. AIBINU , S. C. THAKUR , S. MOYO

[5] M. O. AIBINU and J. K. KIM, Convergence analysis of viscosity implicit rules of nonexpansive
mappings in Banach spaces,Nonlinear Functional Analysis and Applications, 24 (4), (2019), pp.
691-713.

[6] Q. YAN and G. CAI, Strong Convergence Theorems for the Generalized Viscosity Implicit
Rules of Asymptotically Nonexpansive Mappings in the Intermediate Sense in Hilbert Spaces,
Numerical Functional Analysis and Optimization, 39 (13), (2018), pp. 1351-1373. DOI:
10.1080/01630563.2018.1478852

[7] H. K. XU, M. A. ALGHAMDI and N. SHAHZAD, The viscosity technique for the implicit mid-
point rule of nonexpansive mappings in Hilbert spaces,Fixed Point Theory Appl., 41, (2015).

[8] Y. KE and C. MA, The generalized viscosity implicit rules of nonexpansive mappings in Hilbert
spaces,Fixed Point Theory Appl., 190(2015).

[9] Y. YAO, N. SHAHZAD and Y. C. LIOU, Modified semi-implicit midpoint rule for nonexpansive
mappings,Fixed Point Theory and Applications166(2015). DOI: 10.1186/s13663-015-0414-2.

[10] H. ATTOUCH, Viscosity solutions of minimization problems,SIAM J. Optim., 6 (1996), pp. 769-
806.

[11] A. MOUDAFI, Viscosity approximation methods for fixed-points problems,J. Math. Anal. Appl.,
241(2000), pp. 46-55.

[12] H. K. XU, Viscosity approximation methods for nonexpansive mappings,J. Math. Anal. Appl., 298,
(2004), pp. 279-291.

[13] Q. YAN, G. CAI and P. LUO, Strong convergence theorems for the generalized viscosity implicit
rules of nonexpansive mappings in uniformly smooth Banach spaces,J. Nonlinear Sci. Appl., 9
(2016), pp. 4039-4051.

[14] L. C. ZHAO, S. S. CHANG and C. F. WEN, Viscosity approximation methods for the implicit
midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces,J. Nonlinear Sci. Appl.,
9 (2016), pp. 4478-4488.

[15] M. O. AIBINU, S. C. THAKUR and S. MOYO, The implicit midpoint procedures for asymptoti-
cally nonexpansive mappings,Journal of Mathematics, Article ID: 6876385, (2020).

[16] Y. LIOU, Computing the fixed points of strictly pseudocontractive mappings by the im-
plicit and explicit iterations,Abstract and Applied Analysis, Article ID 315835, (2012). DOI:
10.1155/2012/315835

[17] I. K. ARGYROS, Y. J. CHO and X. QIN, On the implicit iterative process for strictly pseudo-
contractive mappings in Banach spaces,Journal of Computational and Applied Mathematics, 233
(2009), pp. 208-216.

[18] Q. CHENG and Y. SU, Viscosity implicit iterative algorithms based on generalized contractions
for strictly pseudo-contractive mappings in Banach spaces,J. Nonlinear Sci. Appl., 10 (2017), pp.
4611-4627.

[19] G. S. SALUJA and H. K. NASHINE, Strong convergence of an implicit iteration process for a finite
family of strictly asymptotically pseudocontractive mappings,CUBO A Mathematical Journal, 13
(1), (2011), pp. 137-147.

[20] T. SUZUKI, Moudafi’s viscosity approximations with Meir-Keeler contractions,J. Math. Anal.
Appl., 325(2007), pp. 342-352.

[21] P. SUNTHRAYUTH and P. KUMAM, Viscosity approximation methods based on generalized con-
traction mappings for a countable family of strict pseudo-contractions, a general system of varia-
tional inequalities and a generalized mixed equilibrium problem in Banach spaces,Math. Comput.
Modell., 58 (2013), pp. 1814-1828.

AJMAA, Vol. 18 (2021), No. 2, Art. 12, 21 pp. AJMAA

https://ajmaa.org


ALGORITHMS FORNONLINEAR PROBLEMS 21

[22] T. SUZUKI, Strong convergence theorems for infinite families of nonexpansive mappings in gen-
eral Banach spaces,Fixed Point Theory and Applications, 1 (2005), pp. 103-123.

[23] H. K. XU, Iterative algorithms for nonlinear operators,J. Lond. Math. Soc., 2 (2002), pp. 240-256.

[24] T. C. LIM, On characterizations of Meir-Keeler contractive maps,Nonlinear Anal., 46 (2001), pp.
113-120.

[25] H. ZHOU, Convergence theorems forλ-strict pseudo-contractions in 2-uniformly smooth Banach
spaces,Nonlinear Anal., 69 (2008), pp. 3160-3173.

AJMAA, Vol. 18 (2021), No. 2, Art. 12, 21 pp. AJMAA

https://ajmaa.org

	1. Introduction
	2. Preliminaries
	3. Main Results
	3.1. Extension to a finite family of strictly pseudocontractive mappings

	4. Numerical example for illustration of convergence analysis
	5. conclusion
	References

