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ABSTRACT. The frame multiresolution analysis (FMRA) on locally compact Abelian groups
has been studied and the results concerning classical MRA have been worked upon to obtain
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FMRA has aptly been illustrated by sufficient examples.
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2 R. KUMAR AND SATYAPRIYA

1. INTRODUCTION

Wavelet analysis, which may be treated as an alternative to the classical windowed Fourier
analysis, has been studied extensively in recent decades. One of the principal frameworks for
understanding a wavelet basis is the concept of multiresolution analysis (henceforth abbreviated
as MRA). In recent years, the concept of MRA has become an important tool in Mathematics
and in its applications. MRA not only helps us in understanding a wavelet basis but also enables
us to construct a wavelet basis, i.e. a basis whose elements are scaled and translated version of
finite number of functions. This theory, of MRA and wavelets, finds its main application in the
field of signal and image processing and it is mainly concerned with decomposition of signals
into subspaces of different resolutions.

Mathematically, a signal is an element of a Hilbert space. So, we can choose the space as
per our requirements and then MRA is observed in that space only. The easiest spaces to work
with are the Euclidean spaces. Naturally, MRA was developed for these spaces at first and then
this concept was subsequently extended to other general spaces. In 1986 Mallet and Meyer
developed the idea of MRA on L2(R). This was presented in detail in the paper [1]. Since then,
MRA for Euclidean space Rn has also been studied extensively; see [1, 4].

We note that most of the frequently used spaces, like the compact spaces, the discrete spaces
and the Euclidean spaces are all examples of a more general class of spaces, namely, the class of
locally compact Abelian (henceforth abbreviated as LCA) groups. So, over the yeras, a unified
theory was developed to study the generalized structure of LCA groups, which we shall briefly
present in section two. In recent years, there has been a considerable interest in the study of
topics like MRA and Gabor analysis in this generalized setting. Some notable works, in the
setting of LCA groups, include: the study of Gabor analysis by K. Gröchenig in [17], the theory
of shift invariant spaces by C. Cabrelli and V. Paternostro in [16] and the generalization of the
definition of MRA by S. Dahlke in [5].

In his paper Multiresolution Analysis and Wavelets on Locally Compact Abelian Groups (see
[5]), S. Dahlke constructed MRA and wavelets with the help of self-similar tiles and B-splines.
All the MRA conditions were characterized in terms of the scaling and spectral functions by
R.A. Kamyabi and R.R. Tousi in their paper Some Equivalent Multiresolution Conditions on
Locally Compact Abelian Group, [6]. MRA conditions for a locally compact non Abelian group
were given by Q. Yang and K. F. Taylor in their paper Multiresolution Analysis and Harr-like
Wavelet Bases on Locally Compact Groups, [7]. These conditions were characterized without
placing any decay conditions or regularity properties on the scaling function.

In this paper, these MRA conditions are modified to construct a wavelet frame for the space
L2(G), G being an LCA group. Frames have an added advantage over bases due to the fact that,
any element has multiple expressions as superpositions of frame elements as compared to the
unique expression in case of a basis.

We have divided this paper in four sections. First section gives a general introduction to
the theory of wavelets and MRA. We have also listed some of the classical works on MRA
and wavelets in this section. In section two, a necessary background has been prepared which
we shall require later to construct an FMRA. Our main work about the frame multiresolution
analysis (henceforth abbreviated as FMRA) has been presented in section three. Some examples
supporting our work have also been given in this section. Finally, we have concluded our work
in section four.

2. PRELIMINARIES AND NOTATIONS

Some basic known results from the theory of LCA groups have been reviewed here. We refer
[8, 9, 10], and the references therein, for a detailed study on LCA groups.
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CONSTRUCTION OF FMRA ON LCA GROUPS 3

We call a group G, an LCA group if it is equipped with a Hausdorff topology, is metrizable
and locally compact in this topology and can be written as countable union of compact sets. We
denote group composition by ′+′ and identity element by ′0′.

The groups R, T, Z, Zn are some of the frequently used LCA groups. These groups, along
with their higher dimensional variants, are called elementary LCA groups.

A character γ on G is a homomorphism from G to the circle group T. The set Ĝ of all
continuous characters on G, called the dual group of G, also forms an LCA group (see [8])
under compact-open topology with the group operation:

(γ + γ′)(x) = γ(x)γ′(x); γ, γ′ ∈ Ĝ, x ∈ G.

The Pontryagin duality theorem states that the dual group ˆ̂
G of Ĝ is topologically isomorphic

to the group G; usually we can identify both the groups and we will simply write ˆ̂
G = G. Thus

γ(x) can be interpreted as action of γ ∈ Ĝ on x ∈ G or action of x ∈ ˆ̂
G = G on γ ∈ Ĝ; for this

reason, from now on, we will use the following notation:

γ(x) = (γ, x); γ ∈ Ĝ, x ∈ G.

The group G is now equipped with Radon measure µG which is translation invariant, i.e.∫
G

f(x+ y)dµG(x) =

∫
G

f(x)dµG(x); ∀ y ∈ G

and for all continuous functions f on G with compact support. This measure is unique up to
scalar multiplication and is called the Haar measure. For existence and uniqueness of Haar
measure, see [9]. We will use a fixed Haar measure µG throughout this paper. Based on this
Haar measure, we define the spaces L1(G), L2(G) and L∞(G) in the usual way. Out of these
spaces, only L2(G) is a Hilbert space. Moreover, due to our assumption ofG, being a countable
union of compact sets, L2(G) becomes a separable Hilbert space (see [15]). Throghout this
paper, 〈., .〉 will denote an inner product, and ||.|| will denote a norm, in the space L2(G), unless
stated otherwise.

The following theorem establishes an important relation between a group and its dual in the
special case of either a compact group or a discrete group. For proof, we refer [8].

Theorem 2.1. Let G be an LCA group and Ĝ be its dual. Then the following hold:

(i) If G is discrete, then Ĝ is compact.
(ii) If G is compact, then Ĝ is discrete.

We now define the Fourier transform of a function f ∈ L1(G) by

F : L1(G)→ C0(Ĝ), F(f)(γ) = f̂(γ) =

∫
G

f(x)(γ,−x)dµG(x).

Here, C0(Ĝ) is the space of all continuous functions on Ĝ vanishing at infinite.
The Haar measure, µĜ, on the dual group Ĝ can be normalized so that, for a specific class of
functions, the following inversion formula holds (see [10]):

(2.1) f(x) =

∫
Ĝ

f̂(γ)(γ, x)dµĜ(γ); ∀ x ∈ G.

Throughout this paper, we shall appropriately normalize the measures µG and µĜ so that
inversion formula (2.1) always holds. Once this is done, the Fourier transform on L1(G) ∩
L2(G) can be extended to a unitary operator from L2(G) onto L2(Ĝ), the so called Plancharel
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4 R. KUMAR AND SATYAPRIYA

transformation(see [9]), which is also denoted by F or ′∧′. We now get a generalized version
of Parseval formula:

(2.2) 〈f, g〉 =

∫
G

f(x)g(x)dµG(x) =

∫
Ĝ

f̂(γ)ĝ(γ)dµĜ(γ) = 〈f̂ , ĝ〉.

To simplify the notations, from now onwards, we will denote dµG(x) by dx and dµĜ(γ) by dγ;
whenever the context is clear.

We now define an important class of subgroups of an LCA group, namely the lattices (or
uniform lattices). A uniform lattice Λ is a countable closed subgroup ofG such that the quotient
groupG/Λ is compact in the quotient topology. The annihilator Λ⊥ of a lattice Λ, is a subgroup
of Ĝ, defined by:

Λ⊥ = {γ ∈ Ĝ : γ(λ) = 1, ∀λ ∈ Λ}.
The topology of the group Ĝ implies that the annihilator Λ⊥ of a lattice Λ is also a lattice in Ĝ.
Moreover, a lattice in G leads to a splitting of the group G, as well as the dual group Ĝ, into
disjoint cosets, as given in the lemma below. For the proof, we refer [11].

Lemma 2.2. Let G be an LCA group and Λ ⊂ G be a uniform lattice in G. Then the following
hold:

(i) There exists a Borel measurable relatively compact set Q ⊂ G such that

(2.3) G =
⋃
λ∈Λ

(λ+Q), (λ+Q) ∩ (λ′ +Q) = ∅ for λ 6= λ′; λ, λ′ ∈ Λ.

(ii) There exists a Borel measurable relatively compact set S ⊆ Ĝ such that

Ĝ =
⋃
ω∈Λ⊥

(ω + S), (ω + S) ∩ (ω′ + S) = ∅ for ω 6= ω′; ω, ω′ ∈ Λ⊥.

Further note that the sets Q and S are in one-to-one correspondence with the quotient groups
G/Λ and Ĝ/Λ⊥ respectively.

The set Q which appears in equation (2.3) is called a fundamental domain associated to
the lattice Λ. For our convenience we will allow sets Q for which two conditions in (2.3)
hold up to a set of measure zero. Throughout this paper, we will denote by Q, a fundamental
domain associated to the lattice Λ ⊂ G and by S, a fundamental domain associated to the lattice
Λ⊥ ⊂ Ĝ.

To avoid any confusion, we find it necessary to mention here, the two different uses of the
symbol ⊥. If H ia any closed subspace of G, then

• z ∈ H⊥ will mean that z is an element of the annihilator of the subspace H; i.e.,
– z ∈ Ĝ.
– (z, h) = 1 for all h ∈ H .

• z ⊥ H will mean that z is in orthogonal complement of the subspace H; i.e.,
– z ∈ G.
– 〈z, h〉 = 0 for all h ∈ H .

The main aim of this paper is to construct a frame for L2(G) via FMRA. For that, we need
to define generalized versions of translation, modulation and dilation operators on L2(G) and
L2(Ĝ). Corresponding to each y ∈ G:

• The operator Ty : L2(G)→ L2(G) given by Tyf(x) = f(x−y) represents a generalized
translation operator on L2(G).
• The operator Ey : L2(Ĝ) → L2(Ĝ) given by EyF (γ) = (γ, y)F (γ) represents a gener-

alized modulation operator on L2(Ĝ).
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CONSTRUCTION OF FMRA ON LCA GROUPS 5

Similarly, Tγ and Eγ define respectively, the generalized translation and modulation operators
on L2(Ĝ) and L2(G).

Defining a generalized version of dilation operator is not that straightforward. To do this,
we proceed via a method used by Dahlke in [5], for which we first need to define dilative
automorphisms. An automorphism (algebraic automorphism and topological homeomorphism)
α : G → G is said to be dilative if for any compact set K in G and any open neighbourhood
U of 0 ∈ G, there exists n0 ∈ N such that K ⊆ αn(U), ∀n ≥ n0. If α : G → G is a dilative
automorphism on G, then there exists a positive constant δα such that∫

G

f(x)dx = δα

∫
G

f(α(x))dx.

This induces a unitary operator D : L2(G) → L2(G) given by Df(x) = δ
1/2
α f(α(x)). This D

is called the dilation operator on L2(G).
The pair (Λ,α), where Λ is a uniform lattice in G and α is a dilative automorphism on G such

that α(Λ) ⊆ Λ, is called a scaling system on G. The following lemma gives us some essential
properties of this scaling system. Proof of this lemma may be found in [7].

Lemma 2.3. Let (Λ, α) be a scaling system. Then the following conditions hold:
(i) Λ is not an open subgroup of G.

(ii) µG(Λ) = 0.
(iii) For any j0 ∈ Z, ∪

j≥j0
α−j(Λ) is dense in G.

Throughout this paper, we shall assume that (Λ, α) is a scaling system on G. Note that, more
often than not, we will work on the dual group Ĝ instead of G; so it becomes imperative for
us to know the corresponding scaling system on Ĝ. Based on some of the existing information
given in [5, 6, 7], we construct the following lemma which gives us a dilation operator on L2(Ĝ)

and thus a scaling system on Ĝ. The straightforward proof has been skipped.

Lemma 2.4. Let G be an LCA group and Ĝ be its dual group. Suppose α : G→ G is a dilative
automorphism on G. Then the following hold:

(i) The map, α̂ : Ĝ→ Ĝ given by

(α̂(γ), x) = (γ, α(x)); x ∈ G,

is a dilative automorphism on Ĝ.
(ii) For any appropriately defined function F on Ĝ, we have∫

Ĝ

F (γ)dγ = δα

∫
Ĝ

F (α̂(γ))dγ.

for any appropriately defined function F on Ĝ.
(iii) The operator D : L2(Ĝ) → L2(Ĝ) given by DF (γ) = δ

1/2
α F (α̂(γ)) is a unitary operator

on L2(Ĝ). This operator D works as dilation operator on L2(Ĝ).
(iv) (Λ⊥, α̂) is a scaling system on Ĝ.

We note that it is not always easy to find a dilative automorphism on G. In fact, it may be
possible that no automorphism on G is dilative:

Example 2.1. Consider the LCA group G = Zn. Take U = {0}, a neighbourhood of 0 ∈ G;
and K = {1}, a compact set in G. Let α : G → G be any automorphism of G. Then it is easy
to see that, for any n ∈ N, αn(U) = U . Thus, for any n ∈ N, K can’t be contained in αn(U)
and hence α fails to be dilative.
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6 R. KUMAR AND SATYAPRIYA

More generally, letG be any discrete group with identity e. Then any automorphism α ofG fails
to be dilative as the condition fails for the neighbourhood U = {e} of e ∈ G and the compact
set K = {x} (x 6= e) in G.

Example 2.1 along with Theorem 2.1 and Lemma 2.4 suggests us that the existence of dilative
automorphism also fails for all the compact groups. But discrete groups and compact groups
are not the only ones where this happens. Given below is an example of a non discrete and non
compact group on which we are unable to define a dilative automorphism.

Example 2.2. Let G =

{(
a 0
0 b

)
: a, b ∈ R , ab > 0

}
. Then G forms an LCA group under the

operation of matrix multiplication and the topology induced by the Eucledian space R2. The

matrix I =

(
1 0
0 1

)
is the identity element of G. Note that G = G1 ∪G2, where

G1 =

{(
a 0
0 b

)
∈ G : a, b > 0

}
;

and

G2 =

{(
a 0
0 b

)
∈ G : a, b < 0

}
.

Let U be a neighbourhood of I contained entirely in G1, and let K ⊆ G be a compact set
contained entirely in G2. Then K * αn(U), for any automorphism α of G and n ∈ N. Hence,
α can’t be dilative.
We use a similar approach to show that the existence of dilative automorphism also fails for all
those LCA groups which are disconnected but have a connected neighbourhood of identity.

To construct an FMRA on G via the methods given in this paper, first we must ensure that
there exists a dilative automorphism on G. Once we find a dilative automorphism on G and
define the subsequent dilation operator on L2(G), then translation, modulation and dilation
operators follow the same commutative relations amongst them, and behave similarly under
Fourier transform, as in the case of G = R.

We will now list some more notations corresponding to the group G, which shall also hold
analogously for the group Ĝ.

• If H ⊂ G, then the function XH given by:

XH(x) =

{
1 , x ∈ H
0 , x /∈ H

is called the indicator function of H or the characteristic function of H .
• For any H ⊂ G, we say that a function f : G→ C is H-periodic, if

f(x+ h) = f(x); ∀ x ∈ G and ∀ h ∈ H.

• For any f, g ∈ L2(G), the tem fg will denote the pointwise product of f and g, and the
term f ∗ g will give us the convolution of f and g; i.e., for any x ∈ G, we have

fg(x) = f(x)g(x) and f ∗ g(x) =

∫
G

f(y)g(x− y)dy.

Moreover, both fg and f ∗ g are members of L1(G).
Now, since, the quotient G/Λ is in one to one correspondence with the fundamental domain
Q ⊂ G associated to the lattice Λ ⊂ G, therefore we are here tempted to assert a relation
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between the spaces Lp(G/Λ) and Lp(Q) (p=1 or 2 or∞). But before that, we define the spaces
Lp(Q):

Lp(Q) = {f ∈ Lp(G) : f = 0 a.e. G/Q}; p=1, 2 or∞.
Analogously, we define the space Lp(S) (p=1,2 or∞), S being the fundamental domain associ-
ated to the lattice Λ⊥ ⊂ Ĝ. The following remark provides us an orthonormal family in L2(S)
which is also its basis. For more details, we refer [16].

Remark 2.1. Let, for each λ ∈ Λ, ηλ : Ĝ → C be defined by ηλ(γ) = (γ, λ)XS(γ). Then the
family, {

1√
µĜ(S)

ηλ

}
λ∈Λ

forms an orthonormal basis for L2(S).

Using the above given notation of the periodic functions, we note that there is a one to one
correspondence between L2(G/Λ) and the set of all Λ−periodic functions f such that fXQ ∈
L2(Q). So, with a slight abuse of notation, we write f ∈ L2(G/Λ) whenever f is a Λ−periodic
function on G satisfying fXQ ∈ L2(Q). Analogously, we give the definition for the space
L2(Ĝ/Λ⊥).

Now, Remark 2.1 and the notations of the above paragraph help us in constructing the follow-
ing lemma which gives us an explicit representation of the elements of the space L2(Ĝ/Λ⊥).

Lemma 2.5. If, for each λ ∈ Λ, the functions ηλ are defined as in Remark 2.1, then the following
are equivalent :

(i) F ∈ L2(Ĝ/Λ⊥).
(ii) There exists a sequence {cλ}λ∈Λ ∈ l2(Λ) such that

F =
∑
λ∈Λ

cλελ;

where ελ : Ĝ→ C is given by, ελ(γ) = (γ, λ).

Proof. First suppose that F ∈ L2(Ĝ/Λ⊥). This means that F is Λ⊥-periodic and that FXS ∈
L2(S). Since {ηλ}λ∈Λ is orthogonal basis forL2(S), therefore there exists a sequence {cλ}λ∈Λ ∈
l2(Λ) such that

FXS =
∑
λ∈Λ

cληλ;

i.e, for any γ ∈ Ĝ,
FXS(γ) =

∑
λ∈Λ

cλ(γ, λ)XS(γ).

Using Λ⊥-periodicity of the function F we get that, for any γ ∈ Ĝ,

F (γ) =
∑
λ∈Λ

cλ(γ, λ) i.e. F =
∑
λ∈Λ

cλελ.

The fact that {cλ}λ∈Λ ∈ l2(Λ) can be proved using orthogonality of the family {ηλ}λ∈Λ and the
definition of the space L2(S).
For the converse, suppose F =

∑
λ∈Λ

cλελ for some sequence {cλ}λ∈Λ ∈ l2(λ). Then clearly F is

Λ⊥-periodic. Further, note that ∫
S
|FXS(γ)|2dγ =

∑
λ∈Λ

|cλ|2.
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8 R. KUMAR AND SATYAPRIYA

Therefore,
∫
S
|FXS(γ)|2dγ < ∞ and thus FXS ∈ L2(S). So, by our definition of the space

L2(Ĝ/Λ⊥), we conclude that F ∈ L2(Ĝ/Λ⊥). This completes the proof.

We finish this section with a brief discussion on frames in an arbitrary separable Hilbert
space. For a detailed study on frames and their properties, we refer [12].

Definition 2.1. Let H be a separable Hilbert space and I be a countable index set. Then, a
sequence of elements {fβ}β∈I is called frame forH if there exist constants A,B > 0 such that

A||f ||2 ≤
∑
β∈I

|〈f, fβ〉|2 ≤ B||f ||2, ∀ f ∈ H.

The numbers A and B, appearing in Definition 2.1, are called frame bounds. More precisely,
A is the lower bound and B is the upper bound. The frame is exact, if it ceases to be a frame
whenever any single element is deleted. The frame is tight if A = B; moreover, when A =
B = 1, the frame is called Parseval frame.

The following lemma gives us one of the main characterizations of the frames in a separable
Hilbert space. It does not involve any knowledge of the frame bounds. Proof of this lemma may
be found in [12].

Lemma 2.6. Let H be a separable Hilbert space and I be a countable index set. Then, a
sequence {fβ}β∈I inH is a frame forH if and only if the map T : l2(I)→ H, given by

T ({cβ}) =
∑
β∈I

cβfβ,

is well defined and onto.

3. FRAME MULTIRESOLUTION ANALYSIS

The definition of frame multiresolution analysis, for the special case G = R, was first given
by J. J. Benedetto and S. Li in the paper [13]. The following definition, of FMRA on LCA
groups, may be treated as a generalized version of the analogous definition by Benedetto and
Li.

Definition 3.1. A frame multiresolution analysis for L2(G) consists of a sequence of closed
subspaces {Vj}j∈Z of L2(G) and a function φ ∈ V0 such that

(i) ... ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ ....
(ii) ∪

j∈Z
Vj = L2(G) and ∩

j∈Z
Vj = ∅.

(iii) Vj = DjV0.
(iv) f ∈ V0 =⇒ Tλf ∈ V0, ∀ λ ∈ Λ.
(v) {Tλφ}λ∈Λ is a frame for V0.

The function φ, which appears in Definition 3.1, is called the scaling function and the sub-
spaces Vj are called multiresolution subspaces or approximation spaces. If the conditions in
Definition 3.1 are satisfied, it follows that

(3.1) Vj = Dj(span{Tλφ}λ∈Λ) = span{DjTλφ}λ∈Λ, j ∈ Z

Remark 3.1. Equation (3.1), Definition 3.1 and the fact that Dj is a unitary operator together
implies that for j ∈ Z, {DjTλφ}λ∈Λ is a frame for Vj with same frame bounds as that of the
frame {Tλφ}λ∈Λ. See [12, Lemma 5.3.3] for more details.
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CONSTRUCTION OF FMRA ON LCA GROUPS 9

To start the construction of a FMRA, the foremost requirement is chosing a function φ in
L2(G) such that {Tλφ}λ∈Λ is a frame for V0. Assuming that the subspaces Vj are defined as in
(3.1), R A Kamyabi, in his paper [6], proved the triviality of the intersection for the classical
case i.e. the case where {Tλφ}λ∈Λ forms a orthonormal basis for V0. We modify that result to
get triviality of intersection in the case of frames.

Theorem 3.1 (Triviality of the intersection). If φ ∈ L2(G) is such that the sequence {Tλφ}λ∈Λ

is a frame sequence and {Vj}j∈Z is a sequence of closed subspaces of L2(G) defined as in (3.1),
then ∩

j∈Z
Vj = ∅.

Proof. Let f ∈ ∩
j∈Z
Vj and ε > 0 be arbitrary. Then there exists a compactly supported continu-

ous function f̃ ∈ L2(G) such that ||f − f̃ || < ε. Let K denote the support of f̃ .
If, for j ∈ Z, Pj : L2(G) → Vj denotes the orthogonal projection onto the subspace Vj , then
we have

||f − Pj(f̃)|| = ||Pj(f)− Pj(f̃)|| ≤ ||f − f̃ || < ε.

This implies that

(3.2) ||f || ≤ ||Pj(f̃)||+ ε.

Our aim is to find a bound for ||Pj(f̃)|| which can be made arbitrarily small.
Now, since {Tλφ}λ∈Λ is a frame sequence and the subspaces are defined as in (3.1), therefore,
it is a frame for V0. Let A and B denote the frame bounds for this frame. Further Remark 3.1
tells us that {DjTλφ}λ∈Λ is a frame for Vj with bounds A and B. All this information can be
clubbed together to write

(3.3) ||Pj(f̃)|| ≤ A
−1/2

(∑
λ∈Λ

|〈f̃ , DjTλφ〉|2
)
.

Note that, for any j ∈ Z and λ ∈ Λ, we have;

|〈f̃ , DjTλφ〉|2 =

∣∣∣∣∫
G

f̃(x)(DjTλ)φ(x)dx

∣∣∣∣2 .
An appropriate manipulation now yields∑

λ∈Λ

|〈f̃ , DjTλφ〉|2 ≤ µG(K)||f̃ ||2∞
∫
Kj
|φ(x)|2dx;

where Kj =
⋃
λ∈Λ

(αj(K)− λ). We rewrite above inequality as follows:

∑
λ∈Λ

|〈f̃ , DjTλφ〉|2 ≤ µG(K)||f̃ ||2∞
∫
G

X (Kj)|φ(x)|2dx.

It is easy to see that X (Kj)→ 0 as j → −∞.
It then follows from Lebesgue dominated convergence theorem that∫

G

X (Kj)|φ(x)|2dx→ 0 as j → −∞.

When this is substitued in (3.3) and then in (3.2), we get that ||f || < ε. This proves our result.

Theorem 3.1 tells us that the condition of triviality of the intersection is a redundant condition
whenever we are given that the subspaces are defined as in (3.1) and {Tλφ}λ∈Λ is a frame
sequence. Keeping this in mind, it is convenient to work with a shorter definition of frame
multiresolution analysis in which all the redundancies are removed.
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Definition 3.2. A function φ ∈ L2(G) generates an FMRA if {Tλφ}λ∈Λ is a frame sequence
and the spaces {Vj}j∈Z defined by (3.1) satisfy the conditions

(i) · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · .
(ii) ∪

j∈Z
Vj = L2(G).

So it turns out that nested property of the subspaces and density of the union, is all that we
need to prove to ensure that the function φ generates an FMRA.

Before investigating these conditions, we wish to introduce another notation, namely Φ, a
complex valued function on Ĝ, which is defined by:

Φ(γ) =
∑
ω∈Λ⊥

|φ̂(γ + ω)|2.

It is easy to see that Φ is Λ⊥-periodic and ΦXS ∈ L1(S); thus, by the definition of the space
L1(Ĝ/Λ⊥), we can say that Φ ∈ L1(Ĝ/Λ⊥). We now state a lemma which gives us bounds for
the function Φ. This lemma, which can be treated as a generalized version of a result given by
Benedetto and Li (see [13, Theorem 3.4]), shows that the frame properties of {Tλφ}λ∈Λ can be
completely described in terms of the function Φ.

Lemma 3.2. Let φ ∈ L2(G) be given and the subspace Vj be defined by (3.1). Then {Tλφ}λ∈Λ

is a frame for V0 with bounds A and B if and only if A ≤ Φ(γ) ≤ B; for all γ ∈ S/N , where
N is the null set of Φ, given by

N = {γ ∈ S : Φ(γ) = 0}.

We now return back to our discussion of investigating the two properties listed in Definition
3.2. Both these properties can be obtained by modifying the corresponding results in the case
of classical MRA. See [2, 3] for detailed discussion on classical MRA.

We now list the equivalent conditions for the subspaces {Vj}j∈Z to be nested.

Theorem 3.3 (Nested Property). Let G be an LCA group with the dual group Ĝ and let (Λ, α)
be a scaling system defined on G. Assume that φ ∈ L2(G) and that {Tλφ}λ∈Λ is a frame
sequence. If the subspaces Vj are defined by (3.1), then, the following conditions are equivalent:

(i) Vj ⊆ Vj+1 for all j ∈ Z.
(ii) There exists a function H0 ∈ L∞(Ĝ/Λ⊥) such that

(3.4) φ̂(γ) = H0(α̂−1(γ))φ̂(α̂−1(γ)).

Proof. First assume that the subspaces Vj are nested. Since φ ∈ V0 ⊆ V1 = DV0, therefore
D−1φ ∈ V0.
A direct implication of Lemma 2.6 gives us existence of a sequence {cλ}λ∈Λ ∈ l2(Λ) so that for
any x ∈ G, we can write

(D−1φ)(x) =
∑
λ∈Λ

cλTλφ(x).

So, for any γ ∈ Ĝ, we have

φ̂(α̂(γ)) = δ
−1/2
α F (γ)φ̂(γ); where F (γ) =

∑
λ∈Λ

c−λ(γ, λ).

Clearly, F ∈ L2(Ĝ/Λ⊥). Further, if we choose H0(γ) = δ
−1/2
α F (γ), then it is evident that

H0 ∈ L2(Ĝ/Λ⊥). Now, it only remains to show that H0 is bounded. To see this, first note that

Φ(α̂(γ)) ≥ |H0(γ)|2Φ(γ).
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If A,B denote the frame bounds for the frame {Tλφ}λ∈Λ, then using Lemma 3.2, we can write

A ≤ Φ(γ) ≤ B;

whenever Φ(γ) 6= 0. Therefore, for such γ, we have

|H0(γ)|2 ≤ B

A
.

Choosing H0(γ) = 0 whenever Φ(γ) = 0, gives us that H0 is bounded. This means that
H0 ∈ L∞(Ĝ/Λ⊥) and thus (ii) holds.
For the converse implication, suppose there exists a function H0 ∈ L∞(Ĝ/Λ⊥) such that (3.4)
holds.
Let f ∈ Vj . Then Lemma 2.6 gives us existence of a sequence {dλ}λ∈Λ ∈ l2(Λ) such that for
any x ∈ G, we have

f(x) =
∑
λ∈Λ

dλD
jTλφ(x).

This means that, for any γ ∈ Ĝ, we can write

f̂(α̂j(γ)) = F (γ)φ̂(γ); where F (γ) = δ
j/2
α

∑
λ∈Λ

d−λ(γ, λ).

Clearly, F ∈ L2(Ĝ/Λ⊥). Further

f̂(α̂j+1(γ)) = F (α̂(γ))H0(γ)φ̂(γ).

If we write G(γ) = F (α̂(γ))H0(γ), then G ∈ L2(Ĝ/Λ⊥) and the expression

f̂(α̂j+1(γ)) = G(γ)φ̂(γ)

holds. Moreover, Lemma 2.5 gives us existence of a sequence {gλ}λ∈Λ ∈ l2(Λ) such that, for
any γ ∈ Ĝ, we have

G(γ) =
∑
λ∈Λ

gλ(γ, λ).

Using this notation, we can write

f̂(α̂j+1(γ)) =
∑
λ∈Λ

gλ(γ, λ)φ̂(γ); γ ∈ G.

This implies that, for any x ∈ G, we have

f(x) =
∑
Λ∈Λ

g1
λD

j+1Tλφ(x); where {g1
λ}λ∈Λ = {δj+1/2

α g−λ}λ∈Λ ∈ l2(Λ).

Using a straightforward application of Lemma 2.6, we get that f ∈ Vj+1. Thus (i) holds. This
completes the proof.

An equation of the form (3.4) is called refinement equation and such φ is called refinable.

Remark 3.2. In the classical MRA, where {Tλφ}λ∈Λ is an orthonormal basis for V0, the func-
tion H0 is always unique. But this might not be the case for FMRA. It may happen that the
the set {γ ∈ S : Φ(γ) = 0} has a positive measure, in which case, the function H0 has more
than one choice to take. Trivially, we can choose H0 = 0 on this set, as in Theorem 3.3. The
function H0 obtained in this way is called two scale symbol or refinement mask for the FMRA.
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Now it only remains to show that the union of the subspaces {Vj}j∈Z is dense in L2(G).
This can be achieved in more ways than one. R A Kamyabi, [6], used the theory of spectral
functions and spectral radius to prove the density; I Daubechies, [2], proved density of the union
by working with the Fourier transform of the scaling function; Q.Yang and K. F. Taylor, [7],
did not use either of the above, but he proved this using translation invariant subspaces and the
concept of zero divisors.

We will follow the works of Q. Yang and K. F. Taylor to prove the density of the union. For
that, we need a few definitions:

• A subspace X of L2(G), is called a translation invariant subspace, if Txf ∈ X , for all
x ∈ G and f ∈ X .
• We call a family F ⊆ L2(G), a zero divisor in L2(G), if there exists a nonzero g ∈
L2(G) such that the convolution f ∗ g = 0, for all f ∈ F .
• Given an automorphism α of G and subsequent dilation operator D defined on L2(G),

we say that a function f ∈ L2(G) is α-substantial if and only if the family {Djf : j ∈
Z} is not a zero divisor in L2(G).

The following lemma lists all the results which are required to prove the density of the union
of the subspaces Vj .

Lemma 3.4. Let G be an LCA group and let (Λ, α) be a scaling system defined on G. If the
subspaces {Vj}j∈Z are defined by (3.1) and φ is a refinable function in L2(G), then the following
hold:

(i) The map f 7→ f̃ , where
f̃(x) = f(−x); x ∈ G,

is a norm preserving conjugate linear bijection on L2(G).
(ii) For any f, g ∈ L2(G) and any x ∈ G, we have:

f ∗ g(x) = 〈T−xf, g̃〉.

(iii) If W = ∪
j∈Z
Vj , then W is a translation invariant subspace of L2(G). Thus we can write:

W = span{TxDjφ : x ∈ G, j ∈ Z}.

We finally give the proof of the density theorem in terms of α-substantiality of the scaling
function φ.

Theorem 3.5 (Density of the Union). Let φ be a refinable function in L2(G) and {Vj}j∈Z be
defined by (3.1). Then the following conditions are equivalent:

(i) ∪
j∈Z
Vj = L2(G).

(ii) φ is α-substantial.

Proof. First assume that ∪
j∈Z
Vj = L2(G). Suppose that, for some g ∈ L2(G), we have:

Djφ ∗ g = 0; ∀ j ∈ Z.

Then using Lemma 3.4, we get that:

〈T−xDjφ, g̃〉 = 0; ∀ x ∈ G and ∀ j ∈ Z.

This gives us that
g̃ ⊥

(
span

{
TxD

jφ : x ∈ G, j ∈ Z
})
.
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So by our assumption we get that g̃ = 0 and hence g = 0. This implies that φ is
α-substantial.

Conversely, suppose that φ is α-substantial. Let g ⊥
(
∪
j∈Z
Vj

)
. Then Lemma 3.4-(iii) gives us

〈T−xDjφ, g〉 = 0; ∀x ∈ G and ∀j ∈ Z.
This implies that

Djφ ∗ g̃(x) = 0; ∀x ∈ G and ∀j ∈ Z.
i.e.

Djφ ∗ g̃ = 0; ∀j ∈ Z.
Since φ is α-substantial, therefore we must have g̃ = 0; and hence g = 0. This implies that

∪
j∈Z
Vj = L2(G).

This proves the result.

We now club all the conditions which need to be imposed on a function φ to get a frame
multireoluton analysis.

Theorem 3.6. A function φ ∈ L2(G) generates an FMRA if it satisfies the following conditions:
(i) {Tλφ}λ∈Λ is a frame sequence.

(ii) {Vj}j∈Z are defined as in equation (3.1).
(iii) There exists a function H0 ∈ L∞(Ĝ/Λ⊥) satisfying the relation:

φ̂(α̂(γ)) = H0(γ)φ̂(γ).

(iv) φ is α-substantial.

We now present some examples where a function φ satisfies all the properties listed in Theo-
rem 3.6 and, thus, generates a frame multiresolution analysis:

Example 3.1. Let G = R+ denote the multiplicative group of positive real numbers. This
group together with the topology induced by the Euclidean group R forms an LCA group. For
any Borel set B in G, a Haar measure µG on G is given by:

µG(B) =

∫
S

dµG(t); where dµG(t) =
(log 2)−1

t
dt.

The set Λ = {2n : n ∈ Z} works as a uniform lattice in G, and the map α : x 7→ x2 works
as a dilative automorphism of G. For any x, ξ ∈ G, the map x 7→ xi log ξ is a continuous
homomorphism from G to T. Defining the characters of G in this way, i.e. by writing (ξ, x) =

φξ(x), we get that the Pontryagin dual group of R+ is R+ i.e., Ĝ = G. The measure µĜ is
normalized appropriately so that the inversion formula and the Parseval formula hold. Further,
the annihilator Λ⊥ of Λ and the automorphism α̂ of Ĝ(corresponding to the automorphism α of
G) can be derived accordingly. We choose the set

Q =

[
1√
2
,
√

2

)
as a fundamental domain associated to Λ in G, and the set

S =
[
e
−π
log 2 , e

π
log 2

)
as a fundamental domain associated to Λ⊥ in Ĝ. With the chosen measures, it is evident that

µG(Q) = 1 = µĜ(S).
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We now define a function φ ∈ L2(G) via its Fourier transform as:

φ̂(γ) = XA1(γ); where A1 =
[
e
−π
log 4 , e

π
log 4

)
.

Then for γ ∈
[
e−π/log 2, eπ/log 2

)
, we have that∑

m∈Z

|φ̂(γe
2πm
log 2 )|2 = XA1(γ).

Thus, Φ(γ) = 1 outside its null set and hence by Lemma 3.2, we get that {Tλφ}λ∈Λ is a frame
sequence.
Further note that, for γ ∈ S, φ̂(α̂(γ)), i.e. φ̂(γ2) is given by:

φ̂(γ2) = XB1(γ); where B1 =
[
e
−π

log 16 , e
π

log 16

)
.

Define a function H on S by H(γ) = XB1(γ). Let H0 denote the Λ⊥-periodic extension of
the function H . Then as per the definition of the space L∞(Ĝ/Λ⊥), H0 ∈ L∞(Ĝ/Λ⊥) and it
satisfies the refinement equation

φ̂(α̂(γ)) = H0(γ)φ̂(γ).

This means that the function φ is refinable.
We finally show that φ is α-substantial. For that, suppose there is a g ∈ L2(G) such that
Djφ ∗ g = 0 for all j ∈ Z. Then, using the convolution theorem , we get that (Djφ̂)(ĝ) = 0

for all j ∈ Z, i.e. φ̂(γ2
j

)ĝ(γ) = 0 ∀j ∈ Z and γ ∈ Ĝ. Note that φ̂(γ2
j

) 6= 0 only when

γ ∈

[(
e
−π
log 4

)2
−j

,
(
e

π
log 4

)2
−j
)

. Thus ĝ has to be zero on the set
⋃
j∈Z

[(
e
−π
log 4

)2
−j

,
(
e

π
log 4

)2
−j
)

.

This implies that ĝ = 0 on R+ and hence g = 0 on R+. So φ is α-substantial.
Defining the subspaces via (3.1), we conclude that the function φ generates an FMRA forL2(G).

In most of the practical applications, the scaling function φ is defined via its Fourier trans-
form, as in Example 3.1. Many authors, working with MRA and FMRA, prefer to give the
density property in terms of behaviour of the function φ̂ around the identity 0 ∈ Ĝ (see [2]).
Keeping this in mind, we give the following lemma which connects α-substantiality of φ and
the behaviour of φ̂ around 0 ∈ Ĝ.

Lemma 3.7. If φ ∈ L2(G) is such that |φ̂| > 0 on a neighbourhood of 0 ∈ Ĝ, then φ is
α-substantial.

Proof. Let U be a neighbourhood of 0 ∈ Ĝ such that

φ̂(γ) 6= 0; ∀ γ ∈ U.
Now if Djφ ∗ g = 0 for some g ∈ L2(G), then, this means that

φ̂(α̂j(γ))ĝ(γ) = 0; ∀ γ ∈ Ĝ.

For any j ∈ Z, φ̂(α̂j(γ)) 6= 0 whenever γ ∈ α̂−j(U). This means that ĝ = 0 on the set
∪
j∈Z
α̂−j(U). Since α̂ is a dilative automorphism on Ĝ, therefore ∪

j∈Z
α̂−j(U) = Ĝ and hence

ĝ = 0 on Ĝ. This implies that g = 0 on G and hence φ is α-substantial.

We now give some more examples in the Euclidean space R2, where a function φ generates
an FMRA.
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Example 3.2. Consider the LCA group G = R2 with the standard Haar measure µ given by

µ(B) =

∫∫
B
dx1dx2 ; B ⊂ R2 is a Borel set;

and x =

[
x1

x2

]
represents a general point of the space G. It is a well known fact that the dual

group, Ĝ, of G is G; with exactly the same structure and same measure µ. Thus, Ĝ can be
identified with G in this case. Further, the action of a character ξ ∈ R2 on an element x ∈ R2 is
given by (ξ, x) = e2πiξ.x, where ξ.x represents the usual dot product in R2. The set Λ = Z× Z

works as a uniform lattice and the map α :

[
x1

x2

]
7→
[
2x1

2x2

]
works as a dilative automorphism

of G. Further, Λ⊥ = Λ gives the annihilator of the lattice Λ and the coorosponding dilative
automorphism α̂ on Ĝ may be identified with α. The set

S =

[
−1

2
,
1

2

)
×
[
−1

2
,
1

2

)
is a fundamental domain associated to Λ as well as Λ⊥ in R2. Moreover, with the chosen
measure, we have

µ(S) = 1.

A function φ is now defined in L2(G) via its Fourier transform by:

φ̂(γ) = 4XA2(γ) + 3XA3(γ)− 7XA4(γ);

where

A2 =

[
−1

4
,
−1

4

)
×
[
−1

4
,
−1

4

)
,

A3 =

[
−1

3
,
1

3

)
×
([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

))
,

A4 =

([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

))
×
[
−1

3
,
1

3

)
.

Now if γ ∈ S, then ∑
k∈Λ

|φ̂(γ + k)|2 = 16XB2(γ) + 9XB3(γ) + 49XB4(γ);

where

B2 =A2

⋃(([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

))
×
([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

)))
,

B3 =

[
−1

4
,
1

4

)
×
([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

))
,

B4 =

([
−1

3
,
−1

4

)
∪
[

1

4
,
1

3

))
×
[
−1

4
,
1

4

)
.

This implies that 9 ≤ Φ(γ) ≤ 49 outside its null set and hence {Tλφ}λ∈Λ is a frame sequence
with lower bound 9 and upper bound 49.
Next we define a function H on S such that H(γ) = φ̂(2γ). We then extend this function Λ⊥-
periodically to whole of R2 to get another function H0. Clearly H0 ∈ L∞(Ĝ/Λ⊥) and satisfies
the refinement equation as stated below:

φ̂(2γ) = H0(γ)φ̂(γ).
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This means that the function φ is refinable.
Finally note that |φ̂| > 0 on any neighbourhood of 0 ∈ Ĝ which is contained entirely con-
tained in A2. So we can conclude α-substantiality of φ using Lemma 3.7. Further, defining the
subspaces Vj as in (3.1), we get that the function φ generates an FMRA on L2(G).

Example 3.3. On the LCA group G = R2 (defined in Example 3.2) we define a function φ by:

φ̂(γ) = XA5(γ);

where

A5 =

{
(x1, x2) ∈ R2 : |x1| −

1

4

√
1− 16x2

1 ≤ x2 ≤ |x1|+
1

4

√
1− 16x2

1, |x1| ≤
1

4

}
.

Now if γ ∈ S, then ∑
k∈Λ

|φ̂(γ + k)|2 = XA5(γ).

We infer from here that Φ(γ) = 1 outside its null set, and this further implies that the sequence
{Tkφ}k∈Λ generates a tight frame sequence with frame bound equal to 1.
Let

B5 =

{
(x1, x2) ∈ R2 : |x1| −

1

8

√
1− 64x2

1 ≤ x2 ≤ |x1|+
1

8

√
1− 64x2

1, |x1| ≤
1

8

}
.

FIGURE 1. A relative diagram comparing the sets A5 and B5 in R2

We now define a function H on S by:

H(γ) = XB5(γ).

Extending this function Λ⊥-periodically, we obtain another function H0. Clearly, H0 is in
L∞(Ĝ/Λ⊥) and satisfies:

φ̂(2γ) = H0(γ)φ̂(γ).

This means that φ is refinable.
Since |φ̂| is continuous at 0 ∈ Ĝ and φ̂(0) 6= 0, therefore α-substantiality of φ can be deduced
by using Lemma 3.7. Thus, by defining the subspaves Vj as in equation (3.1), we conclude that
the function φ generates an FMRA on L2(G).

A function φ does not generate an FMRA whenever it fails to satisfy one or more conditions
listed in Theorem 3.6. In the following example we present various scenarios where we are not
able to generate an FMRA.

Example 3.4. Consider the LCA group G = R+ as defined in Example 3.1.
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(a) We define a function φ on G by:

φ(x) = XA1(x); A1 =

[
1

2
, 4

)
.

It is easy to note that the funtion Φ is continuous and it has isolated zeroes at the points
e
−2π
3 log 2 and e

2π
3 log 2 in S (see Figure 2).

ⅇ
-

2 �

3 log(2)
1

2

4

6

8

(A) Φ on the interval
[
e
−π
log 2 , 1

) ⅇ

2 �

3 log(2)
1 ⅇ

�

log(2)

2

4

6

8

(B) Φ on the interval
[
1, e

π
log 2

)
FIGURE 2. Isolated zeroes of the functon Φ in

[
e
−π
log 2 , e

π
log 2

)
Lemma 3.2 implies that {Tλφ}λ∈Λ can’t generate a frame sequence and thus φ can’t gener-
ate an FMRA.

(b) If a function φ on G is defined by

φ̂(γ) = XA2(γ); A2 =
[
e

π
log 2 , e

2π
log 2

)
,

then it is evident that for no H0 ∈ L∞(Ĝ/Λ⊥), the refinement equation (3.4) can be satis-
fied. Hence, φ doesnot generate an FMRA.

(c) A function φ on G is defined by:

φ̂(γ) = XA3(γ); A3 =
[
1, e

π
log 2

)
.

It is easy to see that φ is refinable and that {Tλφ}λ∈Λ is a frame sequence. But φ can’t be
α-substantial, as suggested by Lemma 3.7. Therefore φ can’t generate an FMRA.

4. CONCLUSION

We combined the definition of MRA on LCA groups, given in [5], and the definition of
FMRA on the Euclidean group R, given in [13], to give the definition of FMRA on LCA groups
(see Definition 3.1). The foremost steps in the construction of FMRA are:

• Choosing a function φ such that {Tλφ}λ∈Λ is a frame sequence; so that the condition
(v) of Definition 3.1 holds true.
• Defining the subspaces Vj by (3.1); due to which the conditions (iii) and (iv) of Defi-

nition 3.1 always hold true.
With these choices of φ and Vj , we see that the triviality of intersection of the subspaces Vj ,
mentioned at (ii) in above definition, becomes a redundant property, i.e., no extra assumption
is required to prove this property. After that, we shifted our entire focus in establishing the
remaining two properties, i.e., the density of the union and nested property of the subspaces Vj .
With substant changes to the result of classical MRA, we proved an equivalent condition for the
subspaces Vj to be nested. This equivalent condition is given in terms of the Fourier transform of
the scaling function φ. To prove the density of the union, we used the concept of α-substantiality
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of the scaling function φ. Finally, in Theorem 3.6, we gathered all the conditions which need to
be imposed on a function φ ∈ L2(G) to generate an FMRA.

The next step is the construction of a frame for L2(G) via the given FMRA. For the case
G = R, the construction of a frame via a given FMRA has been studied by J.J. Benedetto and
O. M. Treiber in [14]. They proved that, unlike the case of classical MRA, it may happen that
we may not be able to find a function ψ ∈ L2(R) such that {DjTλψ}λ∈Λ is a frame for L2(R),
inspite of an FMRA given to us. Establishing an analogous result for an arbitrary LCA group
needs some additional study.

We emphasize that this paper deals explicitly with the construction of FMRA on LCA groups.
As we mentioned earlier, there are several works which give us the theory of MRA on LCA
groups, but none of them mentions FMRA on these groups. Hence, to best of our knowledge,
the work done in this paper is a new work.
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