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ABSTRACT. The curve on a regular surface has a moving frame and it is called Darboux frame.
We introduce sweeping surfaces along the curve relating to the this frame and investigate their
geometrical properties. Moreover, we obtain the necessary and sufficient conditions for these
surfaces to be developable ruled surfaces. Finally, an example to illustrate the application of the
results is introduced.
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1. INTRODUCTION

Sweeping surface is a surface generated by the motion of the plane curve (the profile curve
or generatrix) while this movement of the plane in the space is in the same direction of the
normal to the plane. In geometrical modeling, sweeping is an essential and useful tool and
it has some applications in specially in geometric design. The idea depends on choosing a
geometrical object, that is called generator, and sweeping it along a spine curve, which is called
trajectory ([1]-[9]). In recent years, the properties of sweeping surfaces and their offsets surfaces
have been examined in Euclidean and non-Euclidean spaces (See for instancé Réfs. ([6]-[13])).
In view of the mentioned references , tubular surface, pipe surface, string, and canal surface
are considered as different names for the sweeping surfaces|(([11]-[13]). So far as we know,
there is no previous studies in regard to curves lying in surfaces as the initial objects with the
consideration of singularities and convexity of sweeping surfaces. In order to extend the work in
[12], this study focuses on the geometrical properties of sweeping surfaces whose center curves
in surfaces in Euclidean 3-spafié. Furthermore, in kinematics, the sweeping surfaces, the
ruled surfaces, are introduced as one-dimensional line manifolds created by oriented moving
line in the space, playing an important role of the line trajectory. As a consequence, considering
the sweeping surfaces as a special ruled surfaces is important in both kinematics and differential
line geometry theory.

In this work , the differential geometry of the sweeping surface with Darboux frame is de-
veloped. We also show that the parametric curves on this surface are lines of curvature. Then
we study local singularities and convexity of a sweeping surface. In terms of this, we derived
the necessary and sufficient condition for a sweeping surface to become the developable ruled
surface. Additionally, an example of application is introduced and explained in detail.

2. PRELIMINARIES

The general references are used|([14],[15]) in this work. &et] C R — E3 is the unit
speed curve; we will use(s) andr(s) to define curvature and torsion of = «(s), in the

same order. Let’ (s) # 0 forall s € [0, L], which gives a straight line. At this researefs)
defines the derivative ak respecting ta the arc length parameter. At every pointaefs), the
set{t, n, b} is named Serret—Frenet frame througls), such that(s) = a'(s) defines a unit

tangentn(s) = "‘—ES;‘ being the unit principal normal, aldo= t x n defines a unit binormal

vector. The derivative of the Serret—Frenet frame respecting to the arc length is given as:

t 0 k(s) 0 t
(2.1) n | = —k(s) 0 7(s)
b’ 0 —7(s) 0 b

Let F' be the regular surface, amd : I C R — F'is the unit speed curve of. At this
surface, the Darboux frame {3x(s); e;, ey, es}; ei(s) is a unit tangent vector tex(s),
e3 = e3(s) is a unit normal to the surface restrictedapande,(s)= ez xe; is the unit tangent
to the surface’. Then, the rotation matrix between Serret—Frenet frame and Darboux frame is

t 10 0 e
(2.2) n | =0 cosp sing e
b 0 —siny cosp e3
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The variation of the Darboux frame througtis) is described using the following equations:

e 0 Kg  Kn e
(2.3) e, | =1 —r, O Tg e |,
e, —Knp —Tg 0 es
where
Kn(S) = ksinf = k,(u),
(2.4) Ky(s) = K cosb,

To(s) =716
We callr, = r,(s) a geodesic curvature,, = «,(s) a normal curvature, and, = 7 + 6 a
geodesic torsion ak(s), in the same order. Using these quantities, geodesics line of curvatures,
and asymptotic lines on the smooth surface can be characterized, as loci along:ykiah
7, = 0, andx,, = 0, in the same order.

3. SWEEPING SURFACES WITH DARBOUX FRAME

In this section, we give the parametric representations of sweeping surfaces through the spine
curvea(s) of the surfaceF in the following: The sweeping surface associated{o), is the
envelope of the family of unit spheres, with the center on the caifv@ € F.

Remark 3.1. Clearly, if a(s) is a straight line, thus the sweeping surface is just a circular cylin-
der, havingx(s) as symmetry axis. If, on the other hawd,s) is a circle, then the corresponding
sweeping surface is a torus.

Now, it is easy to see that the contact between the spheres from the family and the sweeping
surface is a great circle of the unit sphere, lying in the subspa¢e,, e;}, of the spine curve
a(s). Let us denote b¥) the position vector connecting the point from the cum@) with the
point from the sweeping surface. Then, clearly, we have

(3.1) M : Q= «a(s) + x,

where the unit vectox itself lies in the same subspaSe{e,, e;}. Let us denote by the angle
) between the vectoss ande,. Then, as one can see immediately, we have

(3.2) x ()= cos ey + sin e,

which is the characteristic circles of sweeping surface. Combining Eg$. (3.1) ahd (3.2), we see
that we obtained a parameterization of the sweeping surface,

(3.3) M : Q(s,9) = a(s) + cosveq(s) + sindes(s).

This parametrization of\/ excludes sweeping surfaces with stationary veetoibecause its
geometrical properties that is not very important and very easy to be studied.

3.1. The Properties of sweeping surfacesUsing the formulae in Eq[ (3.3) , we calculate

(3.2) Qo(s, V) = —sindey + cos Ve + 7,Q;(s, V),
' Q;s(s,Y) = (1 — Kkycos¥ — Ky sind)ey,
and
(3.5 N(s,9) :== % = cos ey + sinves.
9 s
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Eq.(3.5) shows that the surface norm¥s, ) is included in the subspac&{e, e; }, because
it is perpendicular te,. Also Egs. [(3.1), it is easily checked that the coefficients of the first
fundamental forny;; = < Qg, Qs >, g12 =< Q,, Qy > andgss =< Qy, Qy > are given by

To compute the second fundamental form\éf we have to calculate the following
Q. = [— (ng cos + K, sin ) + 74(ky cos — K, sin 0] e )

+ [Kg (1 = kpsind) — (k2 4 72) cos ) — 7, sin 1] e,
+ [ (1 = g cos) — (k2 4 72) sind + 7, cos V] es,

Qso = (kgsind — k,, cosV)e; + 74€3,

Quy = — cos ey — sin Jes. )

This gives the second fundamental form elements;as=< Q,,, N >, h1s =< Q.y, N >,
andhyy =< Qyy, N > are given by

hiy = (1 = Kgcos ) — kypsind)(ky cos? + kysind) + 77,
hia = 7g, hao = —1.

(3.7)

The Gaussian and mean curvature of the sweeping surface at a regular point can be calculated,
respectively, as

(3.8) K (s 9) o= T2 =My g o+ psind

gug2 — g, 1— Kgcost) — Ky sind’
and
_ g22hi1 — 2912712 + giihae 2 (kg cosV + Ky, sind) — 1

3.9 H(s,9) := = )
(3.9) (s,9) 2 (911922 — 9 2(1 — kycos — Ky sind — 1)

Proposition 3.1. For the sweping surfacé/ represented by E((3.3), the values of<(s, ¥),
and H (s, ) are independent of the geodesic torsion of the spine coif¢é.

Proposition 3.2. For the sweping surfac#/ represented by E(8.3), then we state the follow-
ing:

(1) If o is a geodesic ort’, then the Gaussian and mean curvature of the sweeping sukface
are:

2k, sind — 1

1 — Kpsind’ 2(1— kysindg —1)°

(2) If a is an asymptotic ort’, then the Gaussian and mean curvature of the sweeping surface
M are

Ky, sin v

K(s,0) = and H(s,v) =

kg cosv 2kg cost — 1

1 — kycost)’ 2(1—krgcos —1)

On the other hand, from ER.J3)it is easily checked that the isoparametric curve
(3.10) C(0) = Q(1V, s0) = ax(sp) + cosVes(sg) + sindes(so),

is a planar unit speed curve. The unit tangent vectqf (@) is

T (V) = —sindes(sg) + cosves(so),

K(s,9) = and H(s, ) =
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and therefore the unit principal normal vector ¢f?) is calculated as
N¢ = e1(s0) x T¢(u) = cosvey + sindeg = N(sp, ).

Hence, the surface norm® (s, ) is parallel to the principal normaN¢, i.e., the curve (V)
is a geodesic, and cannot be asymptotic curvéfin

Proposition 3.3. For the sweping surfacé/ represented by E(.3), then thes-parameter
curves are asymptotic curves an if and only if

Kn £ Kg\/K2 + K2 —0
(3.11) ¥ = tan™! J g ,
Kg & Kny/Kp + K2 — 0

0(5)23[11,/1—473 .

Proof. The s- parameter curves are asymptotic curves/ohand only if

where

<N,Q,, >= 0% (5,080 + Kk, sinv)? — (k, cosV + k, sin ) — 7'3 =0.
It follows that

Kp £ Kg\/K2 + K2 — 02 Kg & Kny/K2 + K2 — 02
(3.12) sin1) = J g ,and cos ) = 2 £

2 2 2 2
Ky T Ky Ky T Ky

we therefore obtain Eq.(3./L1) which leads to the end of the proof

3.1.1. Singularity and lines of curvature. Singularities and lines of curvature are very impor-
tant to understand the properties and they are studied as in the folloWitngis singular points
if and only if their first derivatives are linearly dependent, that is,

(3.13) Qy x Qs= (1 — K cosV — Ky, sin )N = 0.
SinceN is a nonzero unit vector, then— x, cosv — k, sinv = 0, that is,

Kp £ Kgy/K2 + K2 — 1 Kg £ Kpy/K2 + K2 — 1
(3.14) sind = J 9~ andcosd = 2 A

2 2 2 2
Ky + Ky Ky + Ky

Hence there exist two singular points on every generating circle. Joining them gives two curves
that contain all the singular points of a sweeping surface. Using [Eql (3.3), the two singular
curves are

Cl : '}’(S) = o+ Kg+l€n\/mez i nn+,€g\/m

e
K2 +r2 K2 +k2 3

(3.15)

Kg—kKnr/K2+K2—1 Kn—FkKgr/K2+K2—1
Co:vy(s)=a+ —F 5" —e+ —F—52

2,2 2,2 €s3.
KRG K tRg

From the above analysis the following conclusions can be reached:

Corollary 3.1. The sweeping surfack/ represented by Ed. (3.3), has no singular points if the

condition
Kg £ Kpy/K2 + K2 — 1 Kn £ Kg\/K2 + K2 —1
1 — kg2 5 g — Kn J g # 0,
K2 + K2 K2 + K2
is satisfied.

According to theorem of line of curvature, it is well known that for the generating circles to
be lines of curvature it must BN, = \(J)Qy, WhereA(?) is a differentiable function of.
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Using algebraic manipulations, it is founded that the generating circles are lines of curvature if
and only if

Tg(1 — kg cos ¥ — Ky, sindd) = 0.
for all the values ok, and?. Clearly, there are two major cases, we present them as:

Case (1)happens ifr, # 0, andl — x4 cos ¥ — K, sin¥ = 0. Therefore, two singular points on
the generating circle occur at

nt Ko /K2 + K2 —1
(3.16) 9 = tan™ <F” MoV T >

Kg & Kpy/Kp + K2 — 1

Case (2) occurs wheny = 0, andl — x4 cos ¥ — K, sin? # 0. Therefore, from Eqs.(3.6) and
(3.7) it can be found that;» = h1» = 0. Thus, thej-ands curves ofM are lines of curvature.

Surfaces whose parametric curves are lines of curvature have several applications in geomet-
ric designs ([2]4[4]). In the case of sweeping surfaces, one has to compute the offset surfaces
Qs(s,9) = Q(s,9) + f N(s,9) of a given surfac&)(s, ) at a certain distancg. In conse-
guence of this equation, the offsetting operation for sweeping surface is reduced to the offsetting
of planar profile curve, which is easier. Hence, the following proposition is given:

Proposition 3.4. Consider a sweeping surfacd represented by E@B.3). Letx(J) be the
planar offset of the profil&(v) at distancef. Therfore the offset surfa&®; (s, ?) is a sweeping
surface, generated by spine curaés) and profile curvex,(4).

Through the reminder of this work we will study sweeping surfaces characterized-by),
andl — k4 cos ¥ — Ky, sin ¥ # 0. Therefore, the value of one principal curvature is

-3

dx  d*x||||dx
3.17 =|l— X —||||— =1.
.17 AR (PR ’ a9
The other principal curvature is easy to get
K(s,1) Kg cosV + K, sinv
3.18 G _
( ) X2 X1 1 — Kkgcost — Ky, sinv

To analyze the shape 6f (¥, s) we investigate the Gaussian curvatiéfés, ) in the follow-
ing: The curvature of the isoparametsicurves (u-constant) is

1Qs X Qssll K
(3.19) X 1Qs|I° 1 — Kkycosd — Ky sind
Furthermore, from Eqs$ (2.2) arld (B.5) we see that
(3.20) N(s, @) = cos ¢n + sin pb, with ¢ =9 — 6.

Herey is the angle froom to N in the orientation of the tangent plafig /). In addition, the
principal curvaturey, relates to the curvaturg(s, ¢/) via Meusnier's Theorem|[([14],[15]):

(3.21) Xo = X(s,7) cos p.
Therefore, the Gaussian curvatutés, 1) can be rewritten as
(3.22) K(s,9) = x(s,7) cos .

To fined curves onV/ that are generated by parabolic points ( where Gaussian curvature
vanishing). Those curves give the separation of the surface as elliptic parts (), locally
convex) and hyperbolic part&{( < 0, hence non-convex). In computer aided design, conditions
which insure convexity of the surface are essential in many applications (such as manufacturing
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of sculptured surfaces, or layered manufacturing). In the case of the sweeping surfdoe
convexity is controlled by the differential geometric properties as:

(3.23) K(s,9) =0< x(s,0)cosp = 0.

It can be seen that there are two potential cases that cause parabolic points:

Case (1)occurs in the case of(s,v) = 0. Using Eq. [(3.ID), it is clear that if(s) = 0. In
other words, the spine curve= «(s) is degenerate to a straight line. Therefore, an inflection
or flat point of the spine curve gives a parabolic cufve const.

Case (2) occurs in the case q@f = 7/2, this means thaW (s, J) || b, and sacos ¢ = 0. Hence,

the curven(s) is a line of curvature as well as an asymptotic of the sweeping surface. Also, for
existence of the parabolic points, the condition

(3.24) cosgo=0(:)19—0:g,
is satisfied. In fact we have the following:

Corollary 3.2. Consider a sweeping surfadé represented by E.(3.3) with spine and profile
curves have nonzero curvatures everywhere. If the noNal ) is never parallel to the prin-
cipal normaln(s) of the spine curvex(s), thenM has no parabolic points.

According to Propositiof 3|3, with attention 19 = 0, Eqs[(3.8) and (3.11) the expression
of the two parabolic curves is

Kntkgr/K2+K2—1 Kg+kna/K2+K2—1
Fl:P(S):a—n 9 n g e2+9 n n 9

2 2 2 2
nn+ng Hn—‘rl{g

€3,
(3.25)

Kn—FKgy/K2+KZ— Kg—Ftny/K2+KZ—

Iy:P(s) =a— AV o

2 1 .2 2 1 .2
K t+Rg K tRg

€s3.

Corollary 3.3. Consider a sweeping surfadé represented by E.(3.3) with spine and profile
curves have nonzero curvatures everywhere. Thereldrbas exactly two parabolic curves if
and only if the spine curve is an asymptotic curve.

3.2. Developable surfaces.This part discuss in what conditions the sweeping surfaces are
developable surfaces. Therefore, in the case of the profile cutegienerates to a straight line,
we have the following developable surface

(3.26) S :P(s,u) = as) + ues(s), ueR.
Similarly, from Eq.(3.8), we have the following developable surface
(3.27) St PH(s,u) = a(s) + uey(s), u € R.

It is possible to showP (s, 0) = a(s) (resp.P+(s,0) = a(s)), 0 < s < L, that is the surfacé
(resp.St) interpolate the curvex(s). Furthermore, since
(3.28) P, x P, :=— (1 — uky,) es(s),

thenS+ is the normal developable surface®flonga(s). Therefore, the surface (resp.S+)
interpolates the curve(s), anda(s) is a line of curvature of (resp.S+).

Proposition 3.5. Consider a sweeping surface represented by E(B.3) Thus we have the
following:

(1) The developable surfacésand S+ intersect alongx(s) at a right angle,

(2) The curvex(s) is a line of curvature or and S+.
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As an application of the developable surfa€eve can associate it with the Darbox frame
through the motion , so we can fined family of cylindrical cutter equations that is defined along
a(s) in the following:

(3.29) S;:P(s,u) = P(s,u) + fes(s),

where f defines cylindrical cutter radius. This surface is a developable surface offset of the
surfaceP (s, ). Then the equation of; is

(3.30) S;: P(s,u) = a(s) + ues(s) + fea(s).
The normal vector of cylindrical cutter is presented as

(3.31) Uy (s,0) = % = ey(s).
Also, from Eq/(3.3D), we have

(3.32) S :P(s,u) = P(s,u) — feq(s).
The derivation of Eq[(3.32) respect withs written as

(3.33) P.(s,u) = Py(s,u) — (fw) x es.

From EqJ[3.3B) it is clear that the vect®,(s,u) is perpendicular to the normal vectes.
Additionally, the vectok, is perpendicular to the tool axis vecw®r(s). As a consequence, the
envelope surface of the cylindrical cutter and the developable suPface:) have the common
normal vector and the length between the two surfaces is cylindrical cutter radilence, the
following conclusion is presented:

Proposition 3.6. Consider a developable surfac¢eas in Eq. (3.26) LetSy be the envelope
surface of cylindrical cutter at distancg. Therefor, the two surfaceS and S, are offset
developable surfaces.

3.3. Application. Now, as an application of our main results, we give the following example.

Example 3.1. Let F' be a surface define by

v v v
F:X(s,v) =(coss — —coss,sins — —sins, —),
(s,0) = ( 7 7 \/5)
wherel C R, andv € R. According to
X x X,
e3(s,v) = ——————, andes(s,0) = e3(s),
[1Xs % X |’
we get
es(s) = ( cos §, —=sin s, )
V2 \/_ V2

Moreover, we have
e (s) = (—sins,coss,0).
Sincee,(s) = e3(s) x e(s),

1
exs) = (— 75 085, sms )
Also, we can calculate
1 —1
Kg = —=, kp, = —=, andt, = 0.
V2 V2
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So, the parametric form of the sweeping surface family can be written as

—sin s cos S 0
M : Q(s,1) = (cos s,sin s, 0) + (0, cos ), sin 1) —\/Li cos s —\/Li sin s \/Li
L coss Lsinsg L
V2 V2 V2

The graphs of the surfacds, M, and F' U M are shown in Figd.|1,]2 arld 3; < ¢, s < 2.

Figure 1: The surface F. Figure 2: The surface M.

Figure 3: The surfacd’ U M.

4. CONCLUSION

This paper studied the Darboux frames that are associated with a curve on surface and the
sweeping surface that is generated by these frames. Moreover, the requirements of the surfaces
to be both sweeping and developable surfaces at the same time are investigated. It is clear that
there are many possibilities for extended studies. Analogously, the study in this paper can be

considered for 3-surfaces in 4-space and we plane to do it in the future work.
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