
Aust. J. Math. Anal. Appl.
Vol. 18 (2021), No. 1, Art. 4, 10 pp.
AJMAA

SWEEPING SURFACES WITH DARBOUX FRAME IN EUCLIDEAN 3-SPACE E3

FATEMAH MOFARREH1∗, RASHAD ABDEL-BAKY 2, AND NADIA ALLUHAIBI 3

Received 6 June, 2020; accepted 18 October, 2020; published 11 January, 2021.

1 MATHEMATICAL SCIENCE DEPARTMENT, FACULTY OF SCIENCE, PRINCESS NOURAH BINT

ABDULRAHMAN UNIVERSITY, RIYADH 11546 SAUDI ARABIA .
fyalmofarrah@pnu.edu.sa ∗

2 DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF ASSIUT, ASSIUT 71516,
EGYPT.

rbaky@live.com

3 DEPARTMENT OF MATHEMATICS, SCIENCE AND ARTS COLLEGE, RABIGH CAMPUS, KING ABDULAZIZ

UNIVERSITY, JEDDAH, SAUDI ARABIA .
nallehaibi@kau.edu.sa

ABSTRACT. The curve on a regular surface has a moving frame and it is called Darboux frame.
We introduce sweeping surfaces along the curve relating to the this frame and investigate their
geometrical properties. Moreover, we obtain the necessary and sufficient conditions for these
surfaces to be developable ruled surfaces. Finally, an example to illustrate the application of the
results is introduced.

Key words and phrases:Darboux frame; Sweeping surface; Singularity.

2010Mathematics Subject Classification.Primary 53A04. Secondary 53A05, 53A17.

ISSN (electronic): 1449-5910

c© 2021 Austral Internet Publishing. All rights reserved.

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track
Research Funding Program.

∗Corresponding author.

https://ajmaa.org/
mailto: Author <fyalmofarrah@pnu.edu.sa>
mailto: <rbaky@live.com>
mailto: <nallehaibi@kau.edu.sa>
https://www.ams.org/msc/


2 F. MOFARREH AND R. ABDEL-BAKY AND N. ALLUHAIBI

1. I NTRODUCTION

Sweeping surface is a surface generated by the motion of the plane curve (the profile curve
or generatrix) while this movement of the plane in the space is in the same direction of the
normal to the plane. In geometrical modeling, sweeping is an essential and useful tool and
it has some applications in specially in geometric design. The idea depends on choosing a
geometrical object, that is called generator, and sweeping it along a spine curve, which is called
trajectory ([1]-[9]). In recent years, the properties of sweeping surfaces and their offsets surfaces
have been examined in Euclidean and non-Euclidean spaces (See for instance Refs. ([6]-[13])).
In view of the mentioned references , tubular surface, pipe surface, string, and canal surface
are considered as different names for the sweeping surfaces ([11]-[13]). So far as we know,
there is no previous studies in regard to curves lying in surfaces as the initial objects with the
consideration of singularities and convexity of sweeping surfaces. In order to extend the work in
[12], this study focuses on the geometrical properties of sweeping surfaces whose center curves
in surfaces in Euclidean 3-spaceE3. Furthermore, in kinematics, the sweeping surfaces, the
ruled surfaces, are introduced as one-dimensional line manifolds created by oriented moving
line in the space, playing an important role of the line trajectory. As a consequence, considering
the sweeping surfaces as a special ruled surfaces is important in both kinematics and differential
line geometry theory.

In this work , the differential geometry of the sweeping surface with Darboux frame is de-
veloped. We also show that the parametric curves on this surface are lines of curvature. Then
we study local singularities and convexity of a sweeping surface. In terms of this, we derived
the necessary and sufficient condition for a sweeping surface to become the developable ruled
surface. Additionally, an example of application is introduced and explained in detail.

2. PRELIMINARIES

The general references are used ([14],[15]) in this work. Letα : I ⊆ R → E3 is the unit
speed curve; we will useκ(s) andτ(s) to define curvature and torsion ofα = α(s), in the

same order. Letα
′′
(s) 6= 0 for all s ∈ [0, L], which gives a straight line. At this research,α

′
(s)

defines the derivative ofα respecting tos the arc length parameter. At every point ofα(s), the
set{t, n, b} is named Serret–Frenet frame throughα(s), such thatt(s) = α

′
(s) defines a unit

tangent,n(s) = α
′′

(s)





α

′′
(s)








being the unit principal normal, alsob = t×n defines a unit binormal

vector. The derivative of the Serret–Frenet frame respecting to the arc length is given as:

(2.1)

 t
′

n
′

b
′

 =

 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

 t
n
b

 .

Let F be the regular surface, andα : I ⊆ R → F is the unit speed curve onF . At this
surface, the Darboux frame is{α(s); e1, e2, e3}; e1(s) is a unit tangent vector toα(s),
e3 = e3(s) is a unit normal to the surface restricted toα, ande2(s)= e3×e1 is the unit tangent
to the surfaceF . Then, the rotation matrix between Serret–Frenet frame and Darboux frame is

(2.2)

 t
n
b

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 e1

e2

e3

 .
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The variation of the Darboux frame throughα(s) is described using the following equations:

(2.3)

 e
′
1

e
′
2

e
′
3

 =

 0 κg κn

−κg 0 τ g

−κn −τ g 0

 e1

e2

e3

 ,

where

(2.4)
κn(s) = κ sin θ = κn(u),
κg(s) = κ cos θ,

τ g(s) = τ − θ
′
.


We callκg = κg(s) a geodesic curvature,κn = κn(s) a normal curvature, andτ g = τ + θ

′
a

geodesic torsion ofα(s), in the same order. Using these quantities, geodesics line of curvatures,
and asymptotic lines on the smooth surface can be characterized, as loci along whichκg = 0,
τ g = 0, andκn = 0, in the same order.

3. SWEEPING SURFACES WITH DARBOUX FRAME

In this section, we give the parametric representations of sweeping surfaces through the spine
curveα(s) of the surfaceF in the following: The sweeping surface associated toα(s), is the
envelope of the family of unit spheres, with the center on the curveα(s) ∈ F .

Remark 3.1. Clearly, ifα(s) is a straight line, thus the sweeping surface is just a circular cylin-
der, havingα(s) as symmetry axis. If, on the other hand,α(s) is a circle, then the corresponding
sweeping surface is a torus.

Now, it is easy to see that the contact between the spheres from the family and the sweeping
surface is a great circle of the unit sphere, lying in the subspaceSp{e2, e3}, of the spine curve
α(s). Let us denote byQ the position vector connecting the point from the curveα(s) with the
point from the sweeping surface. Then, clearly, we have

(3.1) M : Q = α(s) + x,

where the unit vectorx itself lies in the same subspaceSp{e2, e3}. Let us denote by the angle
ϑ between the vectorsx ande2. Then, as one can see immediately, we have

(3.2) x(ϑ)= cosϑe2 + sinϑe3,

which is the characteristic circles of sweeping surface. Combining Eqs. (3.1) and (3.2), we see
that we obtained a parameterization of the sweeping surface,

(3.3) M : Q(s, ϑ) = α(s) + cosϑe2(s) + sinϑe3(s).

This parametrization ofM excludes sweeping surfaces with stationary vectore1, because its
geometrical properties that is not very important and very easy to be studied.

3.1. The Properties of sweeping surfaces.Using the formulae in Eq. (3.3) , we calculate

(3.4)
Qϑ(s, ϑ) = − sinϑe2 + cosϑe3 + τ gQs(s, ϑ),
Qs(s, ϑ) = (1− κg cosϑ− κn sinϑ)e1,

}
and

(3.5) N(s, ϑ) :=
Qϑ ×Qs

‖Qϑ ×Qs‖
= cosϑe2 + sinϑe3.
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4 F. MOFARREH AND R. ABDEL-BAKY AND N. ALLUHAIBI

Eq.(3.5) shows that the surface normalN(s, ϑ) is included in the subspaceSp{e2, e3}, because
it is perpendicular toe1. Also Eqs. (3.4), it is easily checked that the coefficients of the first
fundamental formg11 = < Qs,Qs >, g12 =< Qs,Qϑ > andg22 =< Qϑ,Qϑ > are given by

(3.6) g11=(1− κg cosϑ− κn sinϑ)2 + τ 2
g, g12 = τ g, g22 = 1.

To compute the second fundamental form ofM , we have to calculate the following

Qss =
[
−
(
κ

′
g cosϑ+ κ

′
n sinϑ

)
+ τ g(κg cosϑ− κn sinϑ)

]
e1

+
[
κg (1− κn sinϑ)−

(
κ2

g + τ 2
g

)
cosϑ− τ

′
g sinϑ

]
e2

+
[
κn (1− κg cosϑ)−

(
κ2

g + τ 2
g

)
sinϑ+ τ

′
g cosϑ

]
e3,

Qsϑ = (κg sinϑ− κn cosϑ)e1 + τ ge3,

Qϑϑ = − cosϑe2 − sinϑe3.


This gives the second fundamental form elements ash11 =< Qss,N >, h12 =< Qsϑ,N >,
andh22 =< Qϑϑ,N > are given by

(3.7)
h11 = (1− κg cosϑ− κn sinϑ)(κg cosϑ+ κn sinϑ) + τ 2

g,
h12 = τ g, h22 = −1.

}
The Gaussian and mean curvature of the sweeping surface at a regular point can be calculated,
respectively, as

(3.8) K(s, ϑ) :=
h11h22 − h2

12

g11g22 − g2
12

=
κg cosϑ+ κn sinϑ

1− κg cosϑ− κn sinϑ
.

and

(3.9) H(s, ϑ) :=
g22h11 − 2g12h12 + g11h22

2 (g11g22 − g2
12)

=
2 (κg cosϑ+ κn sinϑ)− 1

2 (1− κg cosϑ− κn sinϑ− 1)
.

Proposition 3.1. For the sweping surfaceM represented by Eq.(3.3) , the values ofK(s, ϑ),
andH(s, ϑ) are independent of the geodesic torsion of the spine curveα(s).

Proposition 3.2. For the sweping surfaceM represented by Eq.(3.3), then we state the follow-
ing:
(1) If α is a geodesic onF , then the Gaussian and mean curvature of the sweeping surfaceM
are:

K(s, ϑ) =
κn sinϑ

1− κn sinϑ
, andH(s, ϑ) =

2κn sinϑ− 1

2 (1− κn sinϑ− 1)
.

(2) If α is an asymptotic onF , then the Gaussian and mean curvature of the sweeping surface
M are

K(s, ϑ) =
κg cosϑ

1− κg cosϑ
, andH(s, ϑ) =

2κg cosϑ− 1

2 (1− κg cosϑ− 1)
.

On the other hand, from Eq.(3.3) it is easily checked that the isoparametric curve

(3.10) ζ(ϑ) := Q(ϑ, s0) = α(s0) + cosϑe2(s0) + sinϑe3(s0),

is a planar unit speed curve. The unit tangent vector toζ(ϑ) is

Tζ(ϑ) = − sinϑe2(s0) + cosϑe3(s0),
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and therefore the unit principal normal vector ofζ(ϑ) is calculated as

Nζ = e1(s0)×Tζ(u) = cosϑe2 + sinϑe3 = N(s0, ϑ).

Hence, the surface normalN(s0, ϑ) is parallel to the principal normalNζ , i.e., the curveζ(ϑ)
is a geodesic, and cannot be asymptotic curve onM .

Proposition 3.3. For the sweping surfaceM represented by Eq.(3.3), then thes-parameter
curves are asymptotic curves onM if and only if

(3.11) ϑ = tan−1

(
κn ± κg

√
κ2

n + κ2
g − σ

κg ± κn

√
κ2

n + κ2
g − σ

)
,

where

σ(s) =
1

2

[
1±

√
1− 4τ 4

g

]
.

Proof. The s- parameter curves are asymptotic curves onM if and only if

< N,Qss >= 0 ⇔ (κg cosϑ+ κn sinϑ)2 − (κg cosϑ+ κn sinϑ)− τ 2
g = 0.

It follows that

(3.12) sinϑ =
κn ± κg

√
κ2

n + κ2
g − σ2

κ2
n + κ2

g

, and cosϑ =
κg ± κn

√
κ2

n + κ2
g − σ2

κ2
n + κ2

g

,

we therefore obtain Eq.(3.11) which leads to the end of the proof

3.1.1. Singularity and lines of curvature. Singularities and lines of curvature are very impor-
tant to understand the properties and they are studied as in the following:M has singular points
if and only if their first derivatives are linearly dependent, that is,

(3.13) Qϑ ×Qs= (1− κg cosϑ− κn sinϑ)N = 0.

SinceN is a nonzero unit vector, then1− κg cosϑ− κn sinϑ = 0, that is,

(3.14) sinϑ =
κn ± κg

√
κ2

n + κ2
g − 1

κ2
n + κ2

g

, and cosϑ =
κg ± κn

√
κ2

n + κ2
g − 1

κ2
n + κ2

g

.

Hence there exist two singular points on every generating circle. Joining them gives two curves
that contain all the singular points of a sweeping surface. Using Eq. (3.3), the two singular
curves are

(3.15)

C1 : γ(s) = α +
κg+κn

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e2 +

κn+κg

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e3,

C2 : γ(s) = α +
κg−κn

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e2 +

κn−κg

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e3.


From the above analysis the following conclusions can be reached:

Corollary 3.1. The sweeping surfaceM represented by Eq. (3.3), has no singular points if the
condition

1− κg

κg ± κn

√
κ2

n + κ2
g − 1

κ2
n + κ2

g

− κn

κn ± κg

√
κ2

n + κ2
g − 1

κ2
n + κ2

g

6= 0,

is satisfied.
According to theorem of line of curvature, it is well known that for the generating circles to

be lines of curvature it must beNϑ = λ(ϑ)Qϑ, whereλ(ϑ) is a differentiable function ofϑ.
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6 F. MOFARREH AND R. ABDEL-BAKY AND N. ALLUHAIBI

Using algebraic manipulations, it is founded that the generating circles are lines of curvature if
and only if

τ g(1− κg cosϑ− κn sinϑ) = 0.

for all the values ofs, andϑ. Clearly, there are two major cases, we present them as:
Case (1)happens ifτ g 6= 0, and1− κg cosϑ− κn sinϑ = 0. Therefore, two singular points on
the generating circle occur at

(3.16) ϑ = tan−1

(
κn ± κg

√
κ2

n + κ2
g − 1

κg ± κn

√
κ2

n + κ2
g − 1

)
.

Case (2) occurs whenτ g = 0, and1− κg cosϑ− κn sinϑ 6= 0. Therefore, from Eqs.(3.6) and
(3.7) it can be found thatg12 = h12 = 0. Thus, theϑ-ands curves ofM are lines of curvature.

Surfaces whose parametric curves are lines of curvature have several applications in geomet-
ric designs ([2]-[4]). In the case of sweeping surfaces, one has to compute the offset surfaces
Qf (s, ϑ) = Q(s, ϑ) + f N(s, ϑ) of a given surfaceQ(s, ϑ) at a certain distancef . In conse-
quence of this equation, the offsetting operation for sweeping surface is reduced to the offsetting
of planar profile curve, which is easier. Hence, the following proposition is given:

Proposition 3.4. Consider a sweeping surfaceM represented by Eq.(3.3). Let xf (ϑ) be the
planar offset of the profilex(ψ) at distancef . Therfore the offset surfaceQf (s, ϑ) is a sweeping
surface, generated by spine curveα(s) and profile curvexf (ϑ).

Through the reminder of this work we will study sweeping surfaces characterized byτ g = 0,
and1− κg cosϑ− κn sinϑ 6= 0. Therefore, the value of one principal curvature is

(3.17) χ1 :=

∥∥∥∥dxdϑ × d2x

dϑ2

∥∥∥∥∥∥∥∥dxdϑ
∥∥∥∥−3

= 1.

The other principal curvature is easy to get

(3.18) χ2 =
K(s, ϑ)

χ1

= − κg cosϑ+ κn sinϑ

1− κg cosϑ− κn sinϑ
.

To analyze the shape ofM(ϑ, s) we investigate the Gaussian curvatureK(s, ϑ) in the follow-
ing: The curvature of the isoparametrics-curves (u-constant) is

(3.19) χ :=
‖Qs ×Qss‖
‖Qs‖3 =

κ

1− κg cosϑ− κn sinϑ
.

Furthermore, from Eqs (2.2) and (3.5) we see that

(3.20) N(s, ϕ) = cosϕn + sinϕb, with ϕ = ϑ− θ.

Hereϕ is the angle fromn to N in the orientation of the tangent planeT (M). In addition, the
principal curvatureχ2 relates to the curvatureχ(s, ϑ) via Meusnier’s Theorem ([14],[15]):

(3.21) χ2 = χ(s, ϑ) cosϕ.

Therefore, the Gaussian curvatureK(s, ϑ) can be rewritten as

(3.22) K(s, ϑ) = χ(s, ϑ) cosϕ.

To fined curves onM that are generated by parabolic points ( where Gaussian curvature
vanishing). Those curves give the separation of the surface as elliptic parts (K > 0, locally
convex) and hyperbolic parts (K < 0, hence non-convex). In computer aided design, conditions
which insure convexity of the surface are essential in many applications (such as manufacturing
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of sculptured surfaces, or layered manufacturing). In the case of the sweeping surfaceM , the
convexity is controlled by the differential geometric properties as:

(3.23) K(s, ϑ) = 0 ⇔ χ(s, ϑ) cosϕ = 0.

It can be seen that there are two potential cases that cause parabolic points:
Case (1)occurs in the case ofχ(s, ϑ) = 0. Using Eq. (3.19), it is clear that ifκ(s) = 0. In
other words, the spine curveα = α(s) is degenerate to a straight line. Therefore, an inflection
or flat point of the spine curve gives a parabolic curveϑ = const.
Case (2) occurs in the case ofϕ = π/2, this means thatN(s, ϑ) ‖ b, and socosϕ = 0. Hence,
the curveα(s) is a line of curvature as well as an asymptotic of the sweeping surface. Also, for
existence of the parabolic points, the condition

(3.24) cosϕ = 0 ⇔ ϑ− θ =
π

2
,

is satisfied. In fact we have the following:

Corollary 3.2. Consider a sweeping surfaceM represented by Eq.(3.3) with spine and profile
curves have nonzero curvatures everywhere. If the normalN(s, ϑ) is never parallel to the prin-
cipal normaln(s) of the spine curveα(s), thenM has no parabolic points.

According to Proposition 3.3, with attention toτ g = 0, Eqs.(3.3) and (3.11) the expression
of the two parabolic curves is

(3.25)

Γ1 : P(s) = α− κn+κg

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e2 +

κg+κn

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e3,

Γ2 : P(s) = α− κn−κg

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e2 +

κg−κn

√
κ2

n+κ2
g−1

κ2
n+κ2

g
e3.


Corollary 3.3. Consider a sweeping surfaceM represented by Eq.(3.3) with spine and profile
curves have nonzero curvatures everywhere. Therefore,M has exactly two parabolic curves if
and only if the spine curve is an asymptotic curve.

3.2. Developable surfaces.This part discuss in what conditions the sweeping surfaces are
developable surfaces. Therefore, in the case of the profile curvex degenerates to a straight line,
we have the following developable surface

(3.26) S : P(s, u) = α(s) + ue3(s), u ∈ R.
Similarly, from Eq.(3.3), we have the following developable surface

(3.27) S⊥ : P⊥(s, u) = α(s) + ue2(s), u ∈ R.
It is possible to showP(s, 0) = α(s) (resp.P⊥(s, 0) = α(s)), 0 ≤ s ≤ L, that is the surfaceS
(resp.S⊥) interpolate the curveα(s). Furthermore, since

(3.28) Ps ×Pu := − (1− uκn) e2(s),

thenS⊥ is the normal developable surface ofS alongα(s). Therefore, the surfaceS (resp.S⊥)
interpolates the curveα(s), andα(s) is a line of curvature ofS (resp.S⊥).

Proposition 3.5. Consider a sweeping surfaceM represented by Eq.(3.3) Thus we have the
following:
(1) The developable surfacesS andS⊥ intersect alongα(s) at a right angle,
(2) The curveα(s) is a line of curvature onS andS⊥.
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As an application of the developable surfaceS we can associate it with the Darbox frame
through the motion , so we can fined family of cylindrical cutter equations that is defined along
α(s) in the following:

(3.29) Sf : P(s, u) = P(s, u) + fe2(s),

wheref defines cylindrical cutter radius. This surface is a developable surface offset of the
surfaceP(s, u). Then the equation ofSf is

(3.30) Sf : P(s, u) = α(s) + ue3(s) + fe2(s).

The normal vector of cylindrical cutter is presented as

(3.31) Uf (s, 0) =
Ps ×Pu∥∥Ps ×Pu

∥∥ = e2(s).

Also, from Eq.(3.30), we have

(3.32) S : P(s, u) = P(s, u)− fe2(s).

The derivation of Eq. (3.32) respect withs is written as

(3.33) Ps(s, u) = Ps(s, u)− (fω)× e2.

From Eq.(3.33) it is clear that the vectorPs(s, u) is perpendicular to the normal vectore2.
Additionally, the vectore2 is perpendicular to the tool axis vectore1(s). As a consequence, the
envelope surface of the cylindrical cutter and the developable surfaceP(s, u) have the common
normal vector and the length between the two surfaces is cylindrical cutter radiusf . Hence, the
following conclusion is presented:

Proposition 3.6. Consider a developable surfaceS as in Eq. (3.26). LetSf be the envelope
surface of cylindrical cutter at distancef . Therefor, the two surfacesS and Sf are offset
developable surfaces.

3.3. Application. Now, as an application of our main results, we give the following example.

Example 3.1.LetF be a surface define by

F : X(s, v) = (cos s− v√
2

cos s, sin s− v√
2

sin s,
v√
2
),

whereI ⊆ R, andv ∈ R. According to

e3(s, v) =
Xs ×Xv

‖Xs ×Xv‖
, ande3(s, 0) = e3(s),

we get

e3(s) = (
1√
2

cos s,
1√
2

sin s,
1√
2
).

Moreover, we have
e1(s) = (− sin s, cos s, 0).

Sincee2(s) = e3(s)× e1(s),

e2(s) = (− 1√
2

cos s,− 1√
2

sin s,
1√
2
).

Also, we can calculate

κg =
1√
2

, κn =
−1√

2
, andτ g = 0.
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So, the parametric form of the sweeping surface family can be written as

M : Q(s, ψ) = (cos s, sin s, 0) + (0, cosψ, sinψ)

 − sin s cos s 0
− 1√

2
cos s − 1√

2
sin s 1√

2
1√
2
cos s 1√

2
sin s 1√

2

 .

The graphs of the surfacesF ,M , andF ∪M are shown in Figs. 1, 2 and 3;0 ≤ ψ, s ≤ 2π.

Figure 1: The surface F. Figure 2: The surface M.

Figure 3: The surfaceF ∪M.

4. CONCLUSION

This paper studied the Darboux frames that are associated with a curve on surface and the
sweeping surface that is generated by these frames. Moreover, the requirements of the surfaces
to be both sweeping and developable surfaces at the same time are investigated. It is clear that
there are many possibilities for extended studies. Analogously, the study in this paper can be
considered for 3-surfaces in 4-space and we plane to do it in the future work.
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