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1. I NTRODUCTION

The traveling wave theory was initiated in 1937 by Kolmogorov, Petrovskii, Piskunov [1] and
Fisher [2]. Currently the literature on traveling waves solutions for delayed reaction-diffusion
equations is extensive, for example see [3, 4, 6, 5, 7, 8, 9, 10]. The technique developed
by Wu and Zou [5], based on a monotonous convergence scheme together with the standard
upper-lower solutions technique to establish the existence of monotonous traveling waves for
non-linear reaction-diffusion equation systems with and without quasimonotonicity and with
discrete or distributed delay, it is widely used in [11, 12, 13, 14, 15, 16, 17, 18]. However, there
are few studies that use such a technique to prove the existence of traveling wavefronts that
move at minimum speed.

In this paper, we will investigate the existence of traveling wavefronts for the following partial
differential equation with discrete delay:

(1.1) ut(t, x) = ∆u(t, x) +
pu(t− τ , x)

1 + auq(t− τ , x)
− du(t, x),

wherex ∈ R, t ≥ 0, u ≥ 0, and all parameters are positive constants. The results obtained in
[19] describe the oscillatory behavior of solutions about the positive equilibrium of Eq. (1.1)
with Neumann boundary condition. Further, in [20] was investigated the existence of positive
periodic solutions of Eq. (1.1) by using the Krasnosel’skii fixed point theorem. Eq. (1.1)
without spatial dispersion, reduces to the following ordinary differential equation:

(1.2) u′(t) =
pu(t− τ)

1 + auq(t− τ)
− du(t).

Eq. (1.2) was first suggested in1977 by Mackey and Glass [21], to model the concentration of
cells in the circulating blood and whereτ is the time delay between the production of immature
stem cells in bone marrow and their maturation for release in the circulating blood stream. This
equation has been studied in [21, 22, 23, 24, 25, 26]. For example the numerical simulations of
Eq. (1.2) by Mackey and Glass [21] indicated that there is a cascading sequence of bifurcating
periodic solutions when the delay is increased, however when the delay is further increased the
periodic solutions becomes aperiodic and chaotic.

A traveling wavefront solution to Eq. (1.1) is a special type of bounded positive continuous
non-constant solutionu(t, x) having the formu(t, x) = φ(x + ct). The numberc > 0 is called
the wave speed of the propagation, andφ is aC2-smooth function called the wave profile and
satisfyingφ(−∞) = 0, φ(+∞) = k > 0. The existence of the traveling wavefronts in Eq. (1.1)
is equivalent to the presence of positive heteroclinic connections in an associated second order
non-linear differential equation:

φ′′(z)− cφ′(z) +
pφ(z − cr)

1 + aφq(z − cr)
− dφ(z) = 0, z ∈ R.

As far as the authors know, the existence of traveling wave fronts that propagate at the minimum
speed (c = c∗) for Eq. (1.1) has not been investigated. In this paper we give an alternative proof
to the one carried out in [25] for the existence of traveling wavefronts solutions forc > c∗.
Moreover, using the ideas of [5, 27], we extend this result by proving the existence of traveling
wavefronts moving at minimum speed and through the iterative procedure developed in [5], we
show numerical simulations that approximate the traveling wavefronts.

Let us state now the main result of this paper.

Theorem 1.1.There existsc∗ > 0 such that for everyc ≥ c∗, Eq. (1.1) has a positive monotone
traveling wavefrontu(t, x) = φ(x + ct), connecting0 with k = ((p− d)/ad)1/q , if one of the
following conditions holds:
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(a) 1 <
p

d
≤ q

q − 1
if q > 1

(b) 1 <
p

d
< +∞ if 0 < q ≤ 1.

The organization of this paper is as follows. In Section 2, we will introduce some notations,
and present one of the main theorems of Wu and Zou given in [5] that will be employed in
this paper. In section 3, we give an alternative proof to that developed in [25] to establish the
existence of traveling waves moving at speedc > c∗. In Section 4, we extend this result by
proving the existence of traveling waves moving at minimum speed. Finally, in Section 5 we
carried out numerical simulations to verify our theoretical results.

2. PRELIMINARIES

In this section, we introduce some important results, which will be used in our analysis.
As we know, Wu and Zou in [5] developed a quite general and applicable theory to coupled
reaction-diffusion systems with delay. For convenience, here we only present a simple version
of their result.

Consider the scalar reaction-diffusion equation with a discrete delay given by Eq. (2.1)

(2.1) ut(t, x) = ∆u(t, x) + f(u(t, x), u(t− τ , x)),

wherex ∈ R, t ≥ 0, u ≥ 0 andf is a continuous function. Substituting the wave profile
u(t, x) = φ(x+ ct) into Eq. (2.1) and denotingx+ ct by z, we obtain Eq (2.2)

(2.2) cφ′(z) = φ′′(z) + fc(φz),

wherefc : Xc = C([−cτ , 0],R) −→ R is defined byfc(yz) = f(ycz(0), y
c
z(−τ)) whereycz(s) =

yz(cs) = y(z + cs) for all s ∈ [−τ , 0]. We assume the following conditions onf :

• (F1) There existsk > 0 such thatfc(0̂) = fc(k̂) = 0, andfc(û) 6= 0 for 0 < u < k,
whereû denotes the constant function taking the valuesu on [−cτ , 0], i.e., û(s) = u,
s ∈ [−cτ , 0].

• (F2) (Quasimonotonicity). There existsβ ≥ 0 such that

fc(φz)− fc(ψz) + β[φz(0)− ψz(0)] ≥ 0,

with φz, ψz ∈ Xc and0 ≤ ψz(s) ≤ φz(s) ≤ k, s ∈ [−cτ , 0].

We look for traveling wavefronts for Eq. (2.1) in the following profile set:

Γ = {φ ∈ C(R,R) : φ is nondecreasing inR, φ(−∞) = 0, andφ(+∞) = k} .
Next we define upper and lower solutions for Eq. (2.2).

Definition 2.1. [5] A continuous functionρ ∈ C(R,R) is called an upper solution of Eq. (2.2)
if ρ′ andρ′′ exist almost everywhere inR, they are essentially bounded onR and if the following
inequality holds:

(2.3) ρ′′(z)− cρ′(z) + fc(ρz) ≤ 0, z ∈ R.
A lower solution for Eq. (2.2) is defined in a similar way by reversing the inequality in (2.3).

Now, we are in the position to state a scalar version of theorem 3.6 of [5].

Theorem 2.1. Assume that(F1) and(F2) holds. Suppose that Eq. (2.2) has an upper solution
φ̄ ∈ Γ and a lower solutionφ (which is not necessarily inΓ) satisfying:

• (S1)φ(z) 6≡ 0, z ∈ R
• (S2)0 < φ(z) ≤ φ̄(z) ≤ k, z ∈ R.

Then Eq. (2.2) has a solution inΓ . That is, Eq. (2.1) has a traveling wavefront with speedc.
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3. EXISTENCE OF TRAVELING WAVEFRONTS : CASE c > c∗

Substituting the wave profileu(t, x) = φ(x + ct) in Eq. (1.1), we obtain the second order
functional differential equation given by Eq. (3.1)

(3.1) φ′′(z)− cφ′(z) + fc(φz) = 0, z ∈ R,
with

(3.2) φ(−∞) = 0, φ(+∞) = k =

(
p− d

ad

)1/q

and

(3.3) fc(φz) =
pφz(−cr)

1 + aφqz(−cr)
− dφz(0).

From now on we will denote the left side of Eq. (3.1) as the differential Operator (3.4)

(3.4) Lφ = φ′′(z)− cφ′(z) + fc(φz).

Note that the following lemma 3.1 and 3.2 prove the hypotheses (F1) and (F2) respectively
onf .

Lemma 3.1. If p/d > 1, then there existsk > 0 such thatfc(0̂) = fc(k̂) = 0, andfc(û) 6= 0
for 0 < u < k, whereû(s) = u, s ∈ [−cτ , 0].

Proof. Clearlyk = ((p− d)/ad)1/q > 0, sincep/d > 1. So by computing the stationary states
of Eq. (3.1), we get the result.

Lemma 3.2. If (a) or (b) holds, then for allβ ≥ d, fc satisfies the quasimonotonicity condition.

Proof. Let φz, ψz ∈ Xc be, such that0 ≤ ψz(s) ≤ φz(s) ≤ k, s ∈ [−cτ , 0]. Then

fc(φz)− fc(ψz) = p

(
φz(−cτ)

1 + a[φz(−cτ)]q
− ψz(−cτ)

1 + a[ψz(−cτ)]q

)
− d (φz(0)− ψz(0)) .

We consider the functiong(y) = py/(1 + ayq). We notice thatg′(y) = p[1 + ayq(1− q)]/(1 +
ayq)2 ≥ 0, for all y ∈ R, since0 < q ≤ 1, in the case thatq > 1, g′(y) ≥ 0, for all
y ∈ [0, (aq − a)−1/q] and0 < k ≤ (aq − a)−1/q, becausep/d ≤ q/(q − 1). So the functiong is
non-decreasig. Thereforefc(φz)− fc(ψz) + d[φ(z)− ψ(z)] ≥ 0.

In order to build a upper and lower solution, we linearize Eq. (3.1) around the equilibria0
and we obtain Eq. (3.5)

(3.5) ψ0(λ, c) = λ2 − cλ− d+ pe−λcτ .

We also linearize Eq. (3.1) around the equilibriak = ((p− d)/ad)1/q and we obtain Eq. (3.6)

(3.6) ψ1(µ, c) = µ2 − cµ− d+ p1e
−µcτ

wherep1 = d[p− q(p− d)]/p > 0, when (a) or (b) is satisfied.

Proposition 3.3. There existsc∗ > 0 such that forc > c∗, the equationψ0(λ, c) = 0 has two
positive real roots,0 < λ1 < λ2 andψ0(λ, c) > 0 for all λ ∈ R \ [λ1, λ2].

Proof. We notice that the functionψ0(λ, .) is concave up, since∂2ψ0/∂λ
2 = 2 + pc2τ 2e−λcτ >

0. We also have thatψ0(0, c) = p − d > 0, ψ0(+∞, c) = +∞, so if we chooseλ = c/2 we
have

ψ0

( c
2
, c

)
=

( c
2

)2

− c
( c

2

)
− d+ pe−λ

c
2
τ < p− d− c2

4
,

thus, ifψ0(c/2, c) < 0, thenc > 2
√
p− d. Hencec∗ < 2

√
p− d.
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Proposition 3.4. For anyc > 0, the equationψ1(µ, c) = 0 has two real rootsµ1 < 0 < µ2 and
ψ1(µ, c) > 0 for all µ ∈ R \ [µ1, µ2].

Proof. We notice that the functionψ1(µ, .) is concave up, since∂2ψ1/∂µ
2 > 0. We also have

thatψ1(0, c) = −dq(p− d)/p < 0 andψ1(±∞, c) = +∞. Therefore the result is obtained.

Proposition 3.5. For anyc > c∗ andη ≥ η0 > 0. The Function(3.7)

(3.7) φ̄(z) =


k(η − µ1)

λ1 − µ1 + η
ezλ1 si z < 0

k − λ1k

λ1 − µ1 + η
ez(µ1−η) si z ≥ 0,

whereη0 =
2µ1 − c+

√
(c− 2µ1)

2 + 4p1e−µ1cτ

2
, is upper solution of Eq. (3.1).

Proof. First notice that̄φ ∈ Γ, sinceφ̄ is nondecreasing,̄φ(−∞) = 0 andφ̄(+∞) = k, besides
φ̄(z) → k(η − µ1)/(λ1 − µ1 + η) whenz → 0 andφ̄ was built differentiable. Second, let us
prove the inequality (2.3). In effect, letz < 0 be, then

Lφ̄ ≤ φ̄
′′
(z)− cφ̄

′
(z) + pφ̄(z − cτ)− dφ̄(z)

=
k(η − µ1)e

zλ1

λ1 − µ1 + η
(λ2

1 − cλ1 − d+ pe−λ1cτ )

=
k(η − µ1)e

zλ1

λ1 − µ1 + η
ψ0(λ1, c) = 0.

On the other hand, ifz ≥ 0 then we have

Lφ̄ ≤ φ̄
′′
(z)− cφ̄

′
(z) +

pk

1 + akq
− dφ̄(z)

= − λ1ke
z(µ1−η)

λ1 − µ1 + η
[(µ1 − η)2 − c(µ1 − η)] +

pk

1 + akq
− d

(
k − λ1k

λ1 − µ1 + η
ez(µ−η)

)
= −λ1Ke

z(µ1−η)

λ1 − µ1 + η
[(µ1 − η)2 − c(µ1 − η)− d] +

pk

1 + akq
− dk

= − λ1ke
z(µ1−η)

λ1 − µ1 + η
[ψ1(µ1, c) + η2 + η(c− 2µ1)− p1e

−µ1cτ ]

= − λ1ke
z(µ1−η)

λ1 − µ1 + η
[η2 + η(c− 2µ1)− p1e

−µ1cτ ],

note thatυ(η) = η2 + η(c− 2µ1)− p1e
−µ1cτ ≥ 0, for all η ≥ η0 > 0, sinceη0 is root forυ(η)

thenLφ̄ ≤ 0. Therefore the result is obtained.

Now, for us to build a lower solution of Eq. (3.1), we choseε > 0 such thatε < λ1 <
λ1 + ε < λ2. Then we provide the following proposition.

Proposition 3.6. For anyc > c∗ andM > 1. The Function(3.8)

(3.8) φ(z) =


k(η − µ1)

λ1 − µ1 + η
(1−Meεz)eλ1z si z < 1

ε
ln

(
1
M

)
0 si z ≥ 1

ε
ln

(
1
M

)
,

whereM > −apk0e
−λ1cτ(q+1)(1 + e−εcτ )q+1

ψ0(λ1 + ε, c)
, withk0 = k(η−µ1)

λ1−µ1+η
; is lower solution of Eq. (3.1).
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Proof. Forz ≥ ln(1/M)/ε is easy to see thatLφ ≥ 0. Now letz < ln(1/M)/ε be, and we note
that 1

1+aφq
z(−cτ) ≥ 1− aφqz(−cτ) for q > 0. Then

Lφ ≥φ′′(z)− cφ′(z) + pφ(z − cτ)[1− aφq(z − cτ)]− dφ(z)

=k0e
zλ1 [λ2

1 −M(λ1 + ε)2ezε]− cezλ1 [λ1 −M(λ1 + ε)ezε]

+ pe(z−cτ)λ1 [1−Me(z−cτ)ε][1− ak0(e
(z−cτ)λ1(1−Me(z−cτ)ε))q]− dezλ1(1−Mezε)

=k0e
zλ1 [(λ2

1 − cλ1 − d+ pe−λ1cτ )−Mezε((λ1 + ε)2 − c(λ1 + ε) + pe−(λ1+ε)cτ )

− ak0pe
zλ1qe−λ1cτ(q+1)(1−Meε(z−cτ))q+1)].

Furthermore(1−Me(z−cτ)ε)q+1 < (1 + e−εcτ )q+1, since1−Me(z−cτ)ε > 0, then

Lφ ≥k0e
zλ1 [(λ2

1 − cλ1 − d+ pe−λ1cτ )−Mezε((λ1 + ε)2 − c(λ1 + ε)− d+ pe−(λ1+ε)cτ )

− ak0pe
zλ1qe−λ1cτ(q+1)(1 + e−εcτ )q+1]

=k0e
zλ1 [ψ0(λ1, c)−Mezεψ0(λ1 + ε, c)− ak0pe

zλ1qe−λ1cτ(q+1)(1 + e−εcτ )q+1]

and choosing0 < ε < λ1q, we have

Lφ ≥k0e
z(λ1+ε)

[
−Mψ0(λ1 + ε, c)− ak0pe

−λ1cτ(q+1)(1 + e−εcτ )q+1
]

=k0e
z(λ1+ε)(−ψ0(λ1 + ε, c))

[
M +

ak0pe
−λ1cτ(q+1)(1 + e−εcτ )q+1

ψ0(λ1 + ε, c)

]
.

We note thatψ0(λ1 + ε, c) < 0 thenLφ ≥ 0. Therefore the result is obtained.

In order to apply Theorem 2.1, first note that the condition(S1)is immediate by the definition
of φ and it is also easy to verify the condition(S2). Then, for the casec > c∗, we obtain our
main result on the existence of monotone traveling wavefronts for Eq. (1.1).

4. EXISTENCE OF TRAVELING WAVEFRONTS : CASE c = c∗

In this section we will prove the existence of a traveling wavefront at minimum speedc = c∗.
In order to do that, we construct a lower and a upper solution for Eq. (3.1).

Remark 4.1. There exist a minimum speedc∗ = c∗(τ , p, d) > 0 and a corresponding number
λ∗ = λ(c∗) > 0 satisfying Eq. (4.1)

(4.1) pτe
2−c2τ−

√
(c2τ−2)2+4c2τ(dτ+1)

2 + 1 =
c2τ − 2 +

√
(c2τ − 2)2 + 4c2τ(dτ + 1)

c2τ
.

We notice that(λ∗, c∗) is solution the system

h1(λ, c) = h2(λ, c)

h′1(λ, c) = h′2(λ, c),

whereh1(λ, c) = pe−λcτ , h2(λ, c) = d + cλ − λ2, since and(λ∗, c∗) is the tangent point ofh1

andh2 and∂ψ0/∂c < 0 then Eq. (3.5) has a double rootλ∗. See Figure 1.
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Figure 1: The graphs ofh1 andh2 for c < c∗, c = c∗ andc > c∗, respectively.

Proposition 4.1. For c = c∗ andη∗ ≥ η0 > 0. The Function(4.2)

(4.2) φ̄∗(z) =


k(η∗ − µ1)

λ∗ + 2(η∗ − µ1)
(2− λ∗z)e

zλ∗ si z < 0

k − λ∗k

λ∗ + 2(η∗ − µ1)
ez(µ1−η∗) si z ≥ 0,

whereη0 is the same as that given in the Proposition 3.5, is upper solution of Eq.(3.1).

Proof. First notice that̄φ∗ ∈ Γ, sinceφ̄∗ is nondecreasing,̄φ∗(−∞) = 0 and φ̄∗(+∞) = k,
alsoφ̄∗(z) →

2k(η∗−µ1)
λ∗+2(η∗−µ1)

whenz → 0 andφ̄∗ was built differentiable. Second, let us prove the
inequality (2.3). In effect, letz < 0 be, then

Lφ̄∗ ≤ φ̄
′′
∗(z)− cφ̄

′
∗(z) + pφ̄∗(z − cτ)− dφ̄∗(z)

=
k(η∗ − µ1)

λ∗ + 2(η∗ − µ1)
[−λ3

∗ze
λ∗z − c∗(λ∗e

λ∗z − λ2
∗ze

λ∗z) + p (2− λ∗(z − c∗τ)) e
λ∗(z−c∗τ)

− d(2− λ∗z)e
λ∗z]

=
k(η∗ − µ1)e

λ∗z

λ∗ + 2(η∗ − µ1)

[
−λ3

∗z − cλ∗ + c∗λ
2
∗z + p (2− λ∗(z − c∗τ)) e

−λ∗c∗τ − d(2− λ∗z)
]

=
k(η∗ − µ1)e

λ∗z

λ∗ + 2(η∗ − µ1)

[
−λ∗z(λ2

∗ − cλ− d+ pe−λ∗cτ )− cλ∗ − 2d+ 2pe−λ∗cτ

+pλ∗c∗τe
−λ∗c∗τ

]
=

k(η∗ − µ1)e
λ∗z

λ∗ + 2(η∗ − µ1)

[
(2− λ∗z)(λ

2
∗ − cλ− d+ pe−λ∗cτ )− λ∗(2λ∗ − c∗ − pc∗τe

−λ∗c∗τ )
]

=
k(η∗ − µ1)e

λ∗z

λ∗ + 2(η∗ − µ1)
[(2− λ∗z)ψ0(λ∗, c∗)− λ∗ψ

′
0(λ∗, c∗)] .

Observe thatλ∗ is double root of Eq. (3.5), thenψ0(λ∗, c∗) = ψ′0(λ∗, c∗) = 0, thereforeLφ̄ ≤ 0.
On the other hand, ifz ≥ 0, then we have similarly how it was done in the Proposition 3.5.
Therefore the result is obtained.

Remark 4.2. In proposition 3.6, the construction of the lower solution for Eq. (3.1) depends
on the existence of someε > 0, such thatε < λ1 < λ1 + ε < λ2, whereλ1 andλ2 are the
two positive real roots of Eq (3.5), however such construction does not apply to the case where
λ1 = λ2 = λ∗ is a double root.
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Proposition 4.2. For c = c∗ and0 < b < λ∗q. There existsN > 0 such that the Function(4.3)

(4.3) φ∗(z) =

{
N(b−1ebz−1 − z)eλ∗z si z < b−1

0 si z ≥ b−1,

is lower solution of Eq.(3.1).

Proof. First notice thatφ∗ was built differently andφ∗(z) → 0 whenz → b−1 . Second, for the
casez ≥ b−1 the result is easily obtained. Let us prove it in the casez < b−1. Then we have

Lφ∗ ≥φ
′′
∗(z)− cφ′∗(z) + pφ∗(z − cτ)[1− aφq∗(z − cτ)]− dφ∗(z)

=Neλ∗z[(b−1ebz−1(λ∗ + b)2 − 2λ∗ − λ2
∗z)− c(b−1ebz−1(λ∗ + b)− zλ∗ − 1)

+ pe−λ∗cτ (b−1eb(z−cτ)−1 − z + cτ)(1− aN qeλ∗q(z−cτ)(b−1eb(z−cτ−)1 − z + cτ)q)

− d(b−1ebz−1 − z)]

=Neλ∗z[b−1ebz−1((λ∗ + b)2 − c(λ∗ + b)− d)− z(λ2
∗ − cλ∗ − d)− 2λ∗ + c

+ pe−λ∗cτ (b−1eb(z−cτ)−1 − z + cτ)(1− aN qeλ∗q(z−cτ)(b−1eb(z−cτ−)1 − z + cτ)q)]

=Neλ∗z[b−1ebz−1((λ∗ + b)2 − c(λ∗ + b)− d)− z(λ2
∗ − cλ∗ − d)− 2λ∗ + c

+ pe−λ∗cτ (b−1eb(z−cτ)−1 − z + cτ)(1− aN qeλ∗q(z−cτ)(b−1eb(z−cτ−)1 − z + cτ)q)]

=Neλ∗z[b−1ebz−1((λ∗ + b)2 − c(λ∗ + b)− d)− z(λ2
∗ − cλ∗ − d)− 2λ∗ + c

+ pe−λ∗cτb−1eb(z−cτ)−1 − pe−λ∗cτz + pe−λ∗cτcτ

− paN qe−λ∗cτ (b−1eb(z−cτ)−1 − z + cτ)q+1eλ∗q(z−cτ)]

=Neλ∗z[b−1ebz−1((λ∗ + b)2 − c(λ∗ + b)− d+ pe−cτ(λ∗+b))− z(λ2
∗ − cλ∗ − d+ pe−λ∗cτ )

− (2λ∗ − c− pe−λ∗cτcτ)− paN qe−λ∗cτ (b−1eb(z−cτ)−1 − z + cτ)q+1eλ∗q(z−cτ)]

=Neλ∗z[b−1ebz−1ψ0(λ∗ + b, c∗)− zψ0(λ∗, c∗)− ψ′0(λ∗, c∗)

− paN qe−λ∗cτ(q+1)(b−1eb(z−cτ)−1 − z + cτ)q+1eλ∗qz]

=Neλ∗z[b−1ebz−1ψ0(λ∗ + b, c∗)− paN qe−λ∗cτ(q+1)(b−1eb(z−cτ)−1 − z + cτ)q+1eλ∗qz]

=Ne(λ∗+b)z
[
b−1e−1ψo(λ∗ + b, c∗)− paN qe−λ∗cτ(q+1)(b−1eb(z−cτ)−1 − z + cτ)q+1

.e(λ∗q−b)z
]

Note that the functionξ(z) = (b−1eb(z−cτ)−1 − z + cτ)q+1e(λ∗q−b)z is positive for allz < b−1,
lim

z→−∞
ξ(z) = 0 sinceb < λ∗q andξ(b−1 + cτ) = 0. Then letξ∗ = max

z<b−1
ξ(z) and so we obtain

Lφ∗ ≥ Ne(λ∗+b)z
[
b−1e−1ψo(λ∗ + b, c∗)− paN qe−λ∗cτ(q+1)ξ∗

]
andLφ∗ ≥ 0 if we chooseN q ≤ ψ0(λ∗+b,c∗)

bpaξ∗e
1−λ∗cτ(q+1) . Therefore the result is obtained.

Lemma 4.3. φ∗(z) andφ̄∗(z), satisfy the condition(S2).

Proof. Note that

lim
z→−∞

φ̄∗(z)

φ∗(z)
= lim

z→−∞

K(η∗−µ1)(2−λ∗z)
λ∗+2(η∗−µ1)

ezλ∗

N(b−1ebz−1 − z)eλ∗z
=

K(η∗−µ1)λ∗
λ∗+2(η∗−µ1)

N
.

Then, if we chooseN < K(η∗−µ1)λ∗
λ∗+2(η∗−µ1)

, there existsT � 1 such thatφ∗(z) < φ̄∗(z) for

all z ∈ (−∞,−T ]. It is easy to prove that̄φ∗ is an increasing function this implies that
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min
z∈[−T,b−1]

φ̄∗(z) = φ̄∗(−T ). Let m0 = max
z∈[−T,b−1]

(b−1ebz−1 − z)eλ∗z. If we chooseN satisfy-

ingNm0 < φ̄∗(−T ), then we have

φ∗(z) < Nm0 < φ̄∗(−T ) < φ̄∗(z).

Therefore, ifN ≤ min
{

k(η∗−µ1)λ∗
λ∗+2(η∗−µ1)

, φ̄∗(−T )
m0

}
, hypothesis(S2) is satisfied.

In order to apply Theorem 2.1, we note that the condition(S1) is immediate by the definition
of φ∗. Then, for the casec = c∗, we obtain our main result on the existence of monotone
traveling wavefronts for Eq. (1.1).

5. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations. We find that these numerical results
confirm our theoretical results shown in section 3 and section 4. The computational results
reported in this section, to numerically approximate the traveling wavefront, are based on the
following monotonous iteration scheme that arise from the results given in [5].

(5.1)φn+1(z) =
p

d(α2 − α1)

[∫ z

−∞
eα1(z−s)H(φn(s))ds+

∫ +∞

z

eα2(z−s)H(φn(s))ds

]
, n ∈ N

φ0(z) = φ̄(z) (or φ̄∗(z)),

whereH(φn(z)) = φn(z−cr)
1+aφq

n(z−cr) andα1 < 0 < α2 are roots ofx2 − cx− 1 = 0.

Now to approximate the traveling wavefront that moves at minimum speedc = c∗, we take
some particular values for the parametersa = e−1, τ = 1, p = e andd = 1 thenc∗(τ , p, d) = 1.
See Figure 2 and Figure 3.
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Figure 2: First10 iterations forq = 1.
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Figure 3: First10 iterations forq = 1.5.

Now we approach the traveling wave fronts that move at a speed greater than the minimum
c > c∗. In particular we choose the same previous values for thea = e − 1, τ = 1, p = e and
d = 1 parameters. See Figure 4 and Figure 5.

-16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ(z)

φ1(z)

φ2(z)

φ3(z)

φ4(z)

φ5(z)

φ6(z)

φ7(z)

φ8(z)

φ9(z)

φ10(z)

Figure 4: First10 iterations forc = 2 andq = 1.
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Figure 5: First10 iterations forc = 3 andq = 1.5.

AJMAA, Vol. 18 (2021), No. 1, Art. 2, 12 pp. AJMAA

https://ajmaa.org


TRAVELING WAVEFRONTS FOR THEDIFFUSIVE MACKEY-GLASS EQUATION 11

REFERENCES

[1] A. N. KOLMOGOROV, I. G. PETROVSKII and N. S. PISKUNOV, Study of a diffusion equation
that is related to the growth of a quality of matter and its application to a biological problem,Byul.
Mosk. Gos. Univ. Ser. A Mat. Mekh, 1 (1937), pp. 26.

[2] R. A. FISHER, The wave of advance of advantageous genes,Annals of eugenics, 7 (1937), pp.
355–369.

[3] K. W. SCHAAF, Asymptotic behavior and traveling wave solutions for parabolic functional-
differential equations,Transactions of the American Mathematical Society, 302 (1987), pp. 587–
615.

[4] S. MA, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,
Journal of Differential Equations, 171(2001), pp. 294–314.

[5] J. WU and X. ZOU, Traveling wave fronts of reaction diffusion systems with delay,Journal of
Dynamics and Differential Equations, 13 (2001), pp. 651–687.

[6] J. WU and X. ZOU, Erratum to traveling wave fronts of reaction-diffusion systems with delays,
Journal of Dynamics and Differential Equations, 20 (2008), pp. 531–533.

[7] X. ZOU and J. WU, Existence of traveling wave fronts in delayed reaction-diffusion systems via
the monotone iteration method,Proceedings of the American Mathematical Society, 125 (1997),
pp. 2589–2598.

[8] T. FARIA and S. TROFIMCHUK, Positive travelling fronts for reactionâĂŞdiffusion systems with
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structure. I Travelling wavefronts on unbounded domains.Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences, 457(2001), pp. 1841-1853.

[15] S. A. GOURLEY, Travelling front solutions of a nonlocal Fisher equation,Journal of mathematical
biology, 41 (2000), pp. 272-284.

[16] X. ZOU, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type,
Journal of computational and Applied Mathematics, 146(2002), pp. 309-321.

[17] G. LIN and Y. HONG, Travelling wave fronts in a vector disease model with delay.Applied math-
ematical modelling, 32 (2008), pp. 2831-2838.

[18] S. A. GOURLEY, Wave front solutions of a diffusive delay model for populations of Daphnia
magna,Computers and Mathematics with Applications, 42 (2001), pp. 1421-1430.

[19] X. WANG and Z. LI, Dynamics for a type of general reaction-diffusion model,Nonlinear Analysis:
Theory, Methods and Applications, 67 (2007), pp. 2699-2711.

AJMAA, Vol. 18 (2021), No. 1, Art. 2, 12 pp. AJMAA

https://ajmaa.org


12 C. RAMIREZ-CARRASCO AND J. MOLINA -GARAY

[20] D JIAN, J. WEI and B. ZHANG (2002). Positive periodic solutions of functional differential equa-
tions and population model,Electronic Journal of Differential Equations, 2002(2002), pp. 13.

[21] M. C. MACKEY and L. GLASS, Oscillation and chaos in physiological control system,Science,
197, pp. 287-289.

[22] K. GOPALSAMY, Stability and oscillations in delay differential equations of population dynamics
(Vol. 74). Springer Science and Business Media, (2013).

[23] E. LIZ, V. TKACHENCKO and S. TROFIMCHUK, A global stability criterion for scalar functional
differential equations,SIAM Journal on Mathematical Analysis, 35 (2003), pp. 596-622.

[24] P. X. WENG and Z. P. DAI, Global attractivity for a model of hematopoiesis,Journal of South
China Normal University (Natural Science), (2001), pp. 1.

[25] Z. LING and L. ZHU, Traveling Wavefronts of a Diffusive Hematopoiesis Model with Time Delay,
Applied Mathematics, 5 (2014), pp. 2712.

[26] O.ARINO, M. L. HBID and E. A. DADS (Eds.),Delay differential equations and applications,
Springer Science and Business Media, (2002).

[27] A. GOMEZ and N. MORALES, Approximation to the minimum traveling wave for the delayed dif-
fusive Nicholson’s blowflies equation.Mathematical Methods in the Applied Sciences, 40 (2017),
pp. 5478-5483.

AJMAA, Vol. 18 (2021), No. 1, Art. 2, 12 pp. AJMAA

https://ajmaa.org

	1. Introduction
	2. Preliminaries
	3. Existence of traveling wavefronts: Case c>c*
	4. Existence of traveling wavefronts: Case c=c*
	5. Numerical Simulations
	References

