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ABSTRACT. In this paper, we consider the diffusive Mackey-Glass model with discrete delay.
This equation describes the dynamics of the blood cell production. We investigate the existence
of traveling wavefronts solutions connecting the two steady states of the model. We develop
an alternative proof of the existence of such solutions and we also demonstrate the existence of
traveling wavefronts moving at minimum speed. The proposed approach is based on the use
technique of upper-lower solutions. Finally, through an iterative procedure, we show numerical
simulations that approximate the traveling wavefronts, thus confirming our theoretical results.
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1. INTRODUCTION

The traveling wave theory was initiated in 1937 by Kolmogorov, Petrovskii, Pisklinov [1] and
Fisher [2]. Currently the literature on traveling waves solutions for delayed reaction-diffusion
equations is extensive, for example seel[3,14,16,15, 7, 8,19, 10]. The technique developed
by Wu and Zoul[5], based on a monotonous convergence scheme together with the standard
upper-lower solutions technique to establish the existence of monotonous traveling waves for
non-linear reaction-diffusion equation systems with and without quasimonotonicity and with
discrete or distributed delay, it is widely used/inl[11,[12,13/ 14, 15, 16, 17, 18]. However, there
are few studies that use such a technique to prove the existence of traveling wavefronts that
move at minimum speed.

In this paper, we will investigate the existence of traveling wavefronts for the following patrtial
differential equation with discrete delay:

pU(t -7, I)
14+ aui(t — 7, 2)
wherez € R, t > 0, v > 0, and all parameters are positive constants. The results obtained in
[19] describe the oscillatory behavior of solutions about the positive equilibrium of[Ed. (1.1)
with Neumann boundary condition. Further, in][20] was investigated the existence of positive

periodic solutions of Eq. [ (IJ1) by using the Krasnosel’skii fixed point theorem. Eq] (1.1)
without spatial dispersion, reduces to the following ordinary differential equation:

(1.2) u(t, ) = Au(t,x) + —du(t, x),

/ pu(t — T)
(1.2) u'(t) = T+ awi(t—7) du(t).
Eqg. (1.2) was first suggested 1877 by Mackey and Glass [21], to model the concentration of
cells in the circulating blood and whereas the time delay between the production of immature
stem cells in bone marrow and their maturation for release in the circulating blood stream. This
equation has been studied in[21] 22,23,24| 25, 26]. For example the numerical simulations of
Eqg. (1.2) by Mackey and Glass [21] indicated that there is a cascading sequence of bifurcating
periodic solutions when the delay is increased, however when the delay is further increased the
periodic solutions becomes aperiodic and chaotic.
A traveling wavefront solution to Eq[ (1.1) is a special type of bounded positive continuous
non-constant solution(t, x) having the formu(t, z) = ¢(x + c¢t). The number > 0 is called
the wave speed of the propagation, anid a C*-smooth function called the wave profile and
satisfyingg(—oo) = 0, ¢(+00) = k > 0. The existence of the traveling wavefronts in §q. (1.1)
is equivalent to the presence of positive heteroclinic connections in an associated second order
non-linear differential equation:
po(z —cr)

¢"(2) = e (2) + 1+ a¢?(z—cr)

As far as the authors know, the existence of traveling wave fronts that propagate at the minimum
speed ¢ = cx) for Eq. (1.1) has not been investigated. In this paper we give an alternative proof
to the one carried out in [25] for the existence of traveling wavefronts solutions forcx.
Moreover, using the ideas aofl[5,127], we extend this result by proving the existence of traveling
wavefronts moving at minimum speed and through the iterative procedure developed in [5], we
show numerical simulations that approximate the traveling wavefronts.

Let us state now the main result of this paper.

—dp(z) =0, zeR.

Theorem 1.1.There exists, > 0 such that for every > c¢,, Eq. [1.]) has a positive monotone
traveling wavefrontu(t, z) = ¢(x + ct), connecting) with k = ((p — d) /ad)" , if one of the
following conditions holds:
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(a)1<§gq%1ifq>1

(b)1<§<+ooif0<q§1.

The organization of this paper is as follows. In Secfipn 2, we will introduce some notations,
and present one of the main theorems of Wu and Zou givenl in [5] that will be employed in
this paper. In section| 3, we give an alternative proof to that developédlin [25] to establish the
existence of traveling waves moving at speed cx. In Sectior] #, we extend this result by
proving the existence of traveling waves moving at minimum speed. Finally, in Sé¢tion 5 we
carried out numerical simulations to verify our theoretical results.

2. PRELIMINARIES

In this section, we introduce some important results, which will be used in our analysis.
As we know, Wu and Zou in [5] developed a quite general and applicable theory to coupled
reaction-diffusion systems with delay. For convenience, here we only present a simple version
of their result.

Consider the scalar reaction-diffusion equation with a discrete delay given by Eq. (2.1)
2.1) w(t,x) = Au(t,z) + f(ult,2), ut —7,2)),
wherex € R, ¢t > 0, w > 0 and f is a continuous function. Substituting the wave profile
u(t,z) = ¢(x + ct) into Eq. [2.1) and denoting + ct by z, we obtain Eq[(Z]2)

(2.2) c'(2) = ¢"(2) + fe(8.),
Wherefc : Xc = C([_CTa OLR) — Riis defined byf6<yz) = f(yg(0)7 y;(_T)) Wherey;:(S) =
y.(cs) = y(z + cs) for all s € [—7,0]. We assume the following conditions g
e (F1) There exists: > 0 such thatf.(0) = f.(k) = 0, and f.(a) # 0for 0 < u < k,
whereu denotes the constant function taking the valuem [—c7, 0], i.e., u(s) = u,
s € [—cr,0].
¢ (F2) (Quasimonotonicity). There exists> 0 such that
with ¢, v, € X.and0 < ¢,(s) < ¢,(s) < k, s € [—cT,0].
We look for traveling wavefronts for Eq. (2.1) in the following profile set:
I'={¢ € C(R,R) : ¢ is nondecreasing iR, ¢(—oc0) = 0, andp(+o0) = k}.

Next we define upper and lower solutions for Hg. {2.2).

Definition 2.1. [5] A continuous functiorp € C(R,R) is called an upper solution of Eq. (2.2)
if o’ andp” exist almost everywhere iR, they are essentially bounded Brand if the following
inequality holds:

(2.3) p'(2) = cp'(2) + fe(p,) <0, z€R.

A lower solution for Eq.[(2.2) is defined in a similar way by reversing the inequalify i (2.3).

Now, we are in the position to state a scalar version of theorem 3.6 of [5].

Theorem 2.1. Assume thaffF1) and (F2) holds. Suppose that Eq. (2.2) has an upper solution
¢ € I and a lower solutior) (which is not necessarily ifi) satisfying:

e S1)¢p(2) £0, z€R

o (S2)0 < ¢(2) < d(z) <k, ze€R.
Then Eq.[(2.2) has a solution In. That is, Eq.[(2]1) has a traveling wavefront with speed
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3. EXISTENCE OF TRAVELING WAVEFRONTS : CASE ¢ > ¢,

Substituting the wave profile(t, ) = ¢(z + ct) in Eq. (1.1), we obtain the second order
functional differential equation given by Eq. (B.1)

(3.1) ¢"(2) — cd'(2) + fe(¢.) =0, z€R,
with
p—d 1/q
32) 6-00) =0, alroc) =k = (221)
and
(33) Jo(6.) = %}_)) — 9. (0).
From now on we will denote the left side of EQ. (3.1) as the differential Opefatdr (3.4)
(3.4) Ly =¢"(2) = cd/(2) + fu(8.).

Note that the following lemmia 3.1 afd B.2 prove the hypotheSgEsdnd E2) respectively
onf.

Lemma 3.1. If p/d > 1, then there existé > 0 such thatf,(0) = f.(k) = 0, and f.() # 0
for 0 < u < k, whered(s) = u, s € [—cT,0].

Proof. Clearlyk = ((p — d)/ad)"/? > 0, sincep/d > 1. So by computing the stationary states
of Eq. (3.1), we get the resuli.

Lemma 3.2.If (a) or (b) holds, then for al > d, f. satisfies the quasimonotonicity condition.
Proof. Let¢,, v, € X, be, suchthad <1,(s) < ¢,(s) < k, s € [~cr,0]. Then

([ bdeen .(er)
o0 = £ = (2= O ) d0.0) - v.00).

We consider the function(y) = py/(1 + ay?). We notice thay'(y) = p[1 + ay?(1 — q)]/(1 +
ay?)? > 0, forally € R, sinced < ¢ < 1, in the case that > 1, ¢'(y) > 0, for all
y € [0, (ag — a)~9 and0 < k < (aq — a)~'/%, because/d < q/(q — 1). So the functiory is
non-decreasig. Therefore(¢,) — fe(v,) + djp(z) — ()] > 0. n

In order to build a upper and lower solution, we linearize Eq.]|(3.1) around the equilibria
and we obtain Eq[ (3]5)

(3.5) VoA, €) = A2 — A —d + pe ™.
We also linearize Eq[(3.1) around the equilibtia= ((p — d)/ad)/? and we obtain Eq[(3].6)
(3.6) Uy, ¢) = p° — e — d + pre™"T

wherep, = d[p — q(p — d)]/p > 0, when (a) or (b) is satisfied.

Proposition 3.3. There existg, > 0 such that forc > ¢,, the equation),(A, c¢) = 0 has two
positive real roots) < A\; < A andyy(A,c) > 0forall A € R\ [\, \o].

Proof. We notice that the functioti, (), .) is concave up, sinc@,/0\* = 2 + pc?12e T >
0. We also have that,(0,c) = p —d > 0, ¥y(+00,c) = +0o0, so if we choose\ = ¢/2 we

have
2

c ()2 & a\er c
%(5’0)_(2) _C<2)_d+pe Vpmde o
thus, ify,(c/2,¢) < 0, thenc > 2y/p — d. Hencec, < 2y/p —d. 1
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Proposition 3.4. For anyc > 0, the equation), (, ¢) = 0 has two real rootg:; < 0 < u, and
Yy(p,c) > 0forall e R\ [py, pol-

Proof. We notice that the functiog, (1, .) is concave up, sinc@®y, /0u® > 0. We also have
thati,(0,c) = —dq(p — d)/p < 0 andvy), (+o0, ¢) = +oo. Therefore the result is obtaineg.

Proposition 3.5. For anyc > ¢, andn > 1, > 0. The Function(3.7)
k=) o

- 3 n siz<0
(3.7) o(z) =M
k— —efmmm) §iz >,
A=+
241, — )2 + dpremer _
wheren, = =t V(e 2M1) T+ 2pe , is upper solution of Eq.l).

Proof. First notice that) € T', since¢ is nondecreasing;(—oc) = 0 andp(+o00) = k, besides
o(z) — k(n—py) /(M — py + 1) whenz — 0 and¢ was built differentiable. Second, let us
prove the inequality (2]3). In effect, let< 0 be, then

Ly < 3'(2) - ¢6'(2) + pdlz — o7) — d(2)

k _ 2
— (TI :U'l)e ()\% _ C)\l _ d_i_pef)qm-)

AL —py 1
k‘(n—ul)e‘”l

= ———y(A,c) =0.
M— 7 YoM, )

On the other hand, # > 0 then we have

Li<d(2) -+ 2 a)

1+ ak?
= —%[(m —m)* = el = )] + 5 fikq —d (k - Alf;mez““”))
= Ry e ) =+ -
= —%[%(m, ¢) + 17" + e = 211) — pre”T]
= —%W +n(c = 2uy) — pre 1],

note thatv(n) = n* + n(c — 2uy) — pre "1™ > 0, for allp > n, > 0, sincen, is root foruv(n)
thenLz < 0. Therefore the result is obtaines.

Now, for us to build a lower solution of Eq[ (3.1), we chase> 0 such that: < \; <
A1 + € < A2. Then we provide the following proposition.

Proposition 3.6. For anyc > ¢, and M > 1. The Function(3.8)

k(n — ) A ; 1 1
—————(1— Me*)e* siz< =In (=
(3.8) d(z) =4 N _#1+77( e)e z<iln(5)
0 Siz > %ln (%) ,
L —A1er(g+1) 1 —ecT\q+1 ) . .
whereM > — 2% e J(H;L: ) , Withky = A’“(ﬁ;u“fn; is lower solution of Eq.l).
o\N1 , C ! !
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Proof. Forz > In(1/M) /e is easy to see thdt, > 0. Now letz < In(1/M) /e be, and we note

that _r— = 1 — agi(—cr) for ¢ > 0. Then

Lg Z?"(z) — c?’(z) + pp(z — er)[1 — a¢?(z — cr)] — do(z)
=koe™ A2 — M(\ +€)%e™] — ce™ A} — M(\; + £)e™]
+ peteMN (1 MeE=D|[1 — ako(eF—M (1 — Me—eD2))1] — de?i (1 — Me™)
—koe* M [(A2 — ey — d + pe MT) — Me* (A 4 ) — ¢(\ + ) + pe” M1 Fo)m)

. akopez)\lqef)\lcT(qul)(l . Mes(zfcr))qul)].
Furthermorg1l — Me*=¢)2)at! < (1 4 ¢7¢7)7*1 sincel — Mel>=¢7)c > 0, then

Ly >koe™ [(\2 — cAy — d + pe ™) — Me* (A1 +€)2 — (M +€) — d + pe~Ca+9)er)
. akopez)qqe—)qm'(q-l-l)(l + e—acr)q+1]
—kgeM [Vo(A1, ) — Me*hg(A +¢,¢) — akopedlqe_’\l”(q“)(l 4 emEemyTH

and choosin@ < ¢ < \1q, we have

LQ zkoez()qus) [—Miﬂo()\l + £, C) . akopef)\lcf(qul)(l + efsc‘r)q+1]
akope—)\lcT(q+1)(1 +6—€cr)q+1

%()\1 + s, C)

We note that), (A, + ¢,¢) < 0thenLy > 0. Therefore the result is obtainesl.

Zk‘o€z(/\1+€)(_¢o()\1 +e,0) | M+

In order to apply Theorein 2.1, first note that the condi{®h)is immediate by the definition
of ¢ and it is also easy to verify the conditigs2) Then, for the case > c., we obtain our
main result on the existence of monotone traveling wavefronts fo EQ. (1.1).

4. EXISTENCE OF TRAVELING WAVEFRONTS : CASEc = ¢,

In this section we will prove the existence of a traveling wavefront at minimum speed..
In order to do that, we construct a lower and a upper solution for[EG. (3.1).

Remark 4.1. There exist a minimum speed = c.(7,p,d) > 0 and a corresponding number
A = A(cy) > 0 satisfying Eq.[(4.]1)

—2r\/(Zr—2)2 142 (dr 2r— 92+ 2r — 2 1+ 4e2r(dr + 1
(4.1) p’T€2 (2P (ar 1) +1:cr \/(CT : ) Ar(dr )
c2r

We notice that \,, ¢.) is solution the system

whereh; (), ¢) = pe 7, hy(\,¢) = d + e\ — A2, since and )\, ¢,) is the tangent point of;
andh, anddi,/dc < 0 then Eq. [(3:5) has a double robt. Sed Figure]l.
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hl()\, C)

ha(A, €)

/\1 )\2

Figure 1: The graphs of; andh, for ¢ < c,, ¢ = ¢, ande > ¢,, respectively.

Proposition 4.1. For ¢ = ¢, andn, > 1, > 0. The Function(4.2)

k(n* — lul) zZA i
(2 —A2)e™ siz<0
(4.2) B.(z) = { Mt 20, X*%l)

_ A=) gj g > (),
A4 2(1, — )

wherer), is the same as that given in the Proposition 3.5, is upper solution of&EH)

Proof. First notice thats, < T, since¢, is nondecreasingp,(—oo) = 0 and¢,(+o0) = k,
alsog, (2) — ;29— whenz — 0 andg, was built differentiable. Second, let us prove the
inequality [2.8). In effect, let < 0 be, then

Lj, < 6.(2) = cd(2) + pd,(z — e1) — dd,(2)
k. —m)

As +2(n, — 1q)

—d(2 = \2)eM]

_ k@, — )t

As +2(n, — 1q)

_ k(. — )t

A+ 2(n, = )

+p)\*c*7'e_A*C*T]

_ k(.= m)e

As +2(n, — 1q)

_ k(n, — py)er*

A+ 2(n, = )

Observe thad, is double root of Eq[(3]5), thef, ()., ¢.) = ¢4(As, ) = 0, thereforeLy < 0.

On the other hand, i > 0, then we have similarly how it was done in the Proposifior} 3.5.
Therefore the result is obtainegl.

[—X\32eM* — e, (MM — AN22eM7) 4+ p (2 — N\ (2 — 7)) M)

X2 — e+ e X2+ p(2— M(2 — ) e M7 —d(2 — A\,2)]

[—Xz(A2 — e = d + pe ™) — e, — 2d + 2pe” M7

s Z

(2= A2)(AF — X — d 4+ pe ) — Au(2A, — ¢x — peaTe 7))

(2 = Me2) o (Aus ) = At (Ass )]

Remark 4.2. In propositior] 3.5, the construction of the lower solution for Eq. |(3.1) depends
on the existence of some> 0, such that < \; < A\ + & < Ay, where); and )\, are the

two positive real roots of Eq (3.5), however such construction does not apply to the case where
A = X\ = \, IS adouble root.
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Proposition 4.2. For ¢ = ¢, and0 < b < \.q. There existsV > 0 such that the Functiof4.3)

N e —2)eM* siz < b
4.3 =
(4.3) ¢,(2) {O siz>bt,
is lower solution of Eq(3.1).

Proof. First notice thatp was built differently andy (z) — 0 whenz — b~ . Second, for the
caser > b~ ! the result is easily obtained. Let us prove it in the caseb—!. Then we have

Ly ZQ:(Z') - CQ’*(Z) +pg (2 —er)[l - agﬁq(z —c7)] — dg, (2)

=NeM*[(b71e* 1 (N, +b)2 — 2\, — A22) — (b7 T (N 4 D) — 2A, — 1)

+pe” )\*CT(b 1_b(z—cr)— z+cr)( _ gNieralz—er (b 1pb(z—er—)1 —Z+C7)q>
d(b 1 _bz—1 Z)]

=NeM* bt (N, + ) —c(M\+b)—d) —2z(M2—ch, —d) — 2\, +c
+pe—A*CT(b—leb(z er)-1 _ + CT)(l . aqu)\*q(z—CT)(b—leb(z—CT—)l a4 CT)q)]

=NeM* b e (N, + ) —c(A b)) —d) —2(\2—ch, —d) — 2\ +c

(

_i_pef)\*m' bfleb(z cT)— — 4 CT)(l . aqu/\*q(szT) (bfleb(zfa'f)l — a4+ CT)q)]
=NeM* bt (A 4+ 0)2 — (M +D) —d) — 2(A\2 — e\, —d) —2)\, + ¢
+pe—A*CTb leb z—er)—1 pe—A*CTZ + pe” AxcT cT

_ paquf/\*C‘r(bfleb(zfcr)fl R CT)qule/\*q(zfcr)]
=NeM=[b1eb* (A, + )2 — c(A, +b) — d+ pe~e A _ (A2 _ X, — d -+ pe=™T)
— 2\, — ¢ — peTer) — paqu—A*cr(b—leb ser)=l _ oy CT)q+1€)\*q(z—CT)]
=NeM 071 g (A + b, ) — 29 (As, €)= YA, )
_ paquf)\*CT(qul)(bfleb(zfm')fl — 2+ cr)itleM
—NeM=[b e Lypo (N, + b, c,) — paqu—/\*cr(qH)(b—1eb(z—cr)—1 — 2+ cr)TH M
— Ntz [bfleﬂl/}o()\* tbe)— paquf)\*CT((fFl)(b*leb(27c7')fl — 2+ er)ett
'e()\*q—b)z}

Note that the functiog(z) = (b~1e?==¢)1 — » 4 cr)atler 4702 js positive for allz < b1,
lim &(z) = 0sinceb < A\.gandé(b~! +cr) = 0. Then leté, = max ¢(z) and so we obtain
Z——00 z2<0b™
Lé Z Ne()x*-l-b)z |:b 1 —177Z) (A +b C*) paqu—A*CT(q-‘rl)g*}

andL, > 0if we chooseN? < bp;goél_—fbc(@ Therefore the result is obtainegl.

Lemma4.3.¢ (z) and ¢, (), satisfy the conditioS2).
Proof. Note that

= K(ny—p1)(2=X2) o K (1n,—#1) A
lim ¢*(Z) — 1 A t+2(n,—py) _ 22 —p)
20 ?*(Z) 20 N(b—lebz—l _ Z)e)\*z N .

Then, if we chooseV < AKSZ(—‘” there existsI” > 1 such thatg (z) < b, (z) for

all 2 € (—oo,—T]. Itis easy to prove thap, is an increasing function this implies that
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min _ ¢,(z) = ¢,(~T). Letmg = max (b~ 'e* ! — 2)eM*. If we chooseN satisfy-
ze[-Tp-1] T z€[-T,b™1]
ing Nmy < ¢,.(=T), then we have

6.(2) < Nmo < 6,(~T) < 6,(2).

Therefore, ifN < min{ LU P D N o } hypothesi{S2)is satisfied s

In order to apply Theorein 2.1, we note that the condi(®h)is immediate by the definition
of ¢ . Then, for the case = c,, we obtain our main result on the existence of monotone
travellng wavefronts for Eq[ (1].1).

5. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations. We find that these numerical results
confirm our theoretical results shown in sectign 3 and se€fion 4. The computational results
reported in this section, to numerically approximate the traveling wavefront, are based on the
following monotonous iteration scheme that arise from the results given in [5].

(5.1)
z +oo
bunl®) = ooy [ | e m st [ e, s)ds | n e

Bo(2) = 0(2) (01 ,(2)),

whereH (¢,,(z)) = % anda; < 0 < ay are roots oft> — cx — 1 = 0.
Now to approximate the traveling wavefront that moves at minimum speed.,, we take

some particular values for the parameters e—1, 7 = 1, p = eandd = 1thenc,(7,p,d) = 1.

Sed Figure |2 ard Figure 3.

Figure 2: First10 iterations forq = 1.
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1
0.9 _
sl )
T dulz)
0.7 62(2)
T 3(2)
p p— ()
0.5 @5(2)
LT 06(2)
M — #1(2)
0.3 F—— ¢g(2)
0.2 do(2)
— ¢w(2)

0.1

0 L

-15 12 9

Figure 3: First 10 iterations forg = 1.5.

Now we approach the traveling wave fronts that move at a speed greater than the minimum
¢ > ¢,. In particular we choose the same previous values fouthee — 1, 7 = 1, p = e and
d = 1 parameters. See Figure 4 and Figure 5.
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Figure 4: First10 iterations forc = 2 andgq = 1.
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Figure 5: First 10 iterations forc = 3 andgq = 1.5.
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