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ABSTRACT. This work aims to extend and improve our previous study on mathematical and
numerical analysis of stationary Pasternak model. In this paper a dynamic response of Pasternak
model is considered. On the one hand we establish the existence and uniqueness of the solution
by using the Lax-Milgram theorem and the spectral theory thus the existence of a Hilbert basis
is shown and the spectral decomposition of any solution of the problem can be established and
on the other hand the finite element method is used to determinate the numerical results. Fur-
thermore, the influence of soil parametéts and K, on the displacement of the pile is studied
numerically at any time,,.
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1. INTRODUCTION

Deep foundations on piles, widely used in the construction of structures, are experiencing in-
creasing development. The progress made in dimensioning methods, technological innovations
in the construction of piles, the increasingly mediocre quality of the land left to builders and
the large dimensions of the structures are at the origin of this development. In practice, these
structures are dimensioned in order to take both axial and lateral forces and moments [1].

The behavior of piles, under vertical and lateral loads has been studied for several years with
full-scale tests 2], tests on centrifuge models [3], theoretical analyzes [4] as well as numerical
simulations.

Today, although complex, the study of the mechanical behavior of piles has already been the
subject of several research works[[5,16,/7,/8, 9/ 10, 11, 12]. These have resulted in modeling and
calculation methods used for the design of such structures. Among these calculation methods
we can cite that of finite differences and that of finite elements. Numerical methods by finite
elements or by finite difference make it possible to solve soil-pile interaction problems with
more rigor while including the effects of loadings on the interface, of the inclination of the
piles and of the stiffness of the soil. It also turns out that the analytical approach remains more
complex and has limits. Itis in this context that we were interested in the numerical calculation
of piles under lateral loads taking into account the soil-pile interaction. In our previous studies
[10,[11], we worked on stationary behavioral models of soil-pile interaction. However, this
study, on a dynamic model of soil-pile interaction, aims primarily to establish first the existence
and uniqueness of the solution of the problem posed from the Lax-Milgram theorem and the
spectral theory and then to present a rigorous numerical method based on the finite element
method and the Newmark method in order to determine the responses of the pile at each instant
by taking into account a large number of parameters relative to soils and piles.

2. PRESENTATION OF THE MODEL

The dynamic response of Pasternak model is defined as follows.
Find: v :  =]0,I[xR% — R such that:

(2.1)

( O%u(z,t *u(z,t O%u(z,t
m—a(tQ ) + L1, 824 ) -G, 8(22 ) + Kyu(z,t) = P(z,t), Vt > 0,Vz €]0,]
u(z,0) = up(z), ¥z €]0,(]
ou(z,0
% —w(2), V2 €0,

_ 0u(0,t)
u(0, 1) = Z7= =0, ¥ > 0
u(l,t) =0,Vt>0
il
o*u(l,t
= Eip’ vt > 0.

Where,u(z, t) is the longitudinal deflection of the beam in terms:af: is the space coordinate
measured along the length of the beamwint is the time in §); E, I, is the flexural rigidity

of the beam in §.m?); m is the mass per unit length of the beam ky (m); P(z,t) is the
applied external load per unit length itV(m); K, is the spring constant (the first parameter)
of the soil per unit beam length in terms df (m? ), andG, is the shear modulus (the second
parameter) of the soil in{/m?) [12]; H the head trenchant effort of the free pile iIN)Y We
see the description of the soil-pile interaction in the following figure 1.
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Figure 1: Pile under lateral loading.

First, we are interested in the existence and uniqueness of the solutions to the problem (2.1).

2.1. Existence of a Hilbert basis ofL?(Q2). Since the[(Z]1) problem can be associated with
an eigenvalue problem, we will solve it using a Hilbert basi€.éf2). Thus demonstrating
the existence of a Hilbert basis bf (©2) amounts to verifying the hypotheses of {ibeorem
7.2.8][14].

Consider the following problem:

d*u(z) d*u(z)
EyI, P Gy d22 + Kyu(z) = P(z) ,Vz €]0,1],
_du(0)
2.2) u(0) = ——= =0,
du(l)
dz
d3u(l) "
O = Epl,
We posew(z) = u(z) — 52"+ 74-2* and [2:2) becomes the following boundary problem:
(
d*w(z) d*w(z)
E, I, I Gp 122 + Kyw(z) = G(z) ,Vz €]0,1],
_ dw(0)
(2.3) ! w“’))— e
dw(l
=0
£
d
w(l) _o.
[ d2?
W GL2) = PL2) I3 ) G ot

First we prove thaf (2]3) admits a unique solution.

Lemma 2.1. According to the Lax-Milgram theorem the problé?3)admits a unique solution
w eV = {v e H*Q);v(0) = v'(0) = v'(I) = 0} verifying the following variational
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formulation:
(2.4) a(w,v) = L(v)Vve V
with

l 200(2) d? w
a(w,v):EpIp/O ddzg)ddzg)dz + G, / dd()

and

we define the spade?(2) provided with the scalar product:

(f,v) / f(2)v(2)dz for all f andv € L*(Q).

and the spac¥® with the reduced norm
Jwlly = [[w?||p2 forallw e V.
Proof. V is a closed subspace BF?((2) therefore it is a Sobolev space in addition
la(u, v)] < (Bpl, + Gl + K1) |[ullv|v]lv
impliesa is continuous([11], we also have
a(u,u) > Byl ||ully,
thena is coercive and. is linear by definition and the inequality
1L(v)| < PGz llvllv

shows it is continuous therefore the problem admits a unique solution according to Lax-Milgram
theorem.
0

So we can define our operator as follows:

L: L*(Q) — V

(2.5) o o L

with Lg the solution of the equatiof (2.3). In other words, the operatisrdefined by:

(2.6) Lg € V suchthau(Lg,v) = (g,v)12() forallv € V

Now, the objective is to show that the operafothus defined is linear continuous, self-adjoint,
compact and definite-positive.

Lemma 2.2. The operatorL defined in(2.3) is continuous linear, self-adjoint, compact and
definite-positive.

Proof. i) Linearity of £
The linearity ofC defined in[(2.b) is a consequence of Lenjma 2.1.
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i) Continuity of £
By takingv = Lg in (2.§), we obtain thanks to the coercivity @fand the continuous
injection of V into L?(©2) and fromL?(2) to L*(Q):

(2.7) E,L||Lg|l} < a(Lg, Lg) = (g9, Lg)rL>(@)
now
(9,L£9)120) < llgllz@ 1 £9llL2) < Pllgllz@ £l
and so we get

B L\ Lglly < Pllglle@llLallv
2

= ||L <
I12gllv < 5

l9llz2@)
hence the continuity df.
iil) Self-adjoint of £
By takingv = Lh with g, h € L%(Q) in (2.8), we obtain thanks to the symmetryaof
<g7 Eh)]LQ(Q) = (l(ﬁg, Eh)
= a(ﬁh,ﬁg) = <h>£9>]L2(Q)

iv) Compactness ofC
LetZ : V — L2(Q),g — Zg = g the injection operator andg the operator defined in
(2:3). So we haveT o £ defined fromL?(Q2) to value inL?(£2).

LgeV,VgeL*(Q) = Lg=(ToL)g, VgeL*Q)
and sincel is compact therC is compact as a compound of compact and continuous

operator.
V) L is definite-positive

it comes from the coercivity af, indeed:
(2.8) (9, Lg)r2() = a(Lyg, Lg) > EpL || Lglls > 0,0 # g € L*(Q)
O
The hypotheses of t{&heorem 7.2.8][14] are verified therefore the eigenvaluesdbrm a
sequencé); ).~ of real numbers strictly positive which tend to 0, and there exists a Hilbertian

basis(uy)r>1 of V formed by eigenvectors af. Therefore, we get the spectral decomposition
of any element of V.

3. VARIATIONAL FORMULATION OF THE PROBLEM

We obtain the following variational formulation of the problem {2.1), fird) :]0,7[— V'
such that:

(3.1) { & u(t), v)rzg) + a(ul(t), v) = (P(t),v)2@), W EV, 0<t < T
t

with
V = (v e H@)0(0) = 1/(0) = v () = 0k
P(t) :]0, T[—> ]LQ(Q);

a(u(t),v) = EpIp/ u(z, t)0"(2) dz + Gp/ﬂu’(z,t)v’(z) dz + Kp/ﬂu(z,t)v(z) dz;

Q
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L(v) = (P(t), v)12(0) = /Q P(z,t)0(2)d Eipva)

Remark 3.1. We denote by.(z, t) the valueu(t)(z), P(z,t) the valueP(t)(z).

3.1. Semi- discretization in space.Let V,, be the number of interior points of the discretization
andh = 3 +1 the discretization step. We construct an internal variational approximation by
introducmg a subspack, of V' of finite dimension.V;, will be a finite element subspadg

on the discretization. The semi-discretization [of (3.1) is therefore the following variational

approximation: We look foru, (¢) function of|0, 7°[ with values inV}, such that:

(3.2) { ;th (un(t), va)rze) + alun(t), vn) = (fa(l), va)r2), Yo, € Vi, 0 <t < T
uh(t = 0) Uo,h; d(;;h (t = O) = U1,p

whereu, ;, € V} is an approximation of the initial date andu, ;, € V;, is also an approximation
of the initial datau.

We introduce the basisv®, z1)) of V;, ([L1]) forall 1 <i < N, + 1 andl < j < N,.We are
looking forwy(t) in the form

Np+1 Np,
= Z Urw® (2) + Z(U]h)'z(j)(z).
i=1 j=1

We denote by/" the vector of coordinates af, in the same way we have:

Nj,+1

Np
woalt) = S UPu(:) + 3 (U2=0()
i=1 j=1

Nj,+1

uin(t) = Z U;,hw j +Z 1h ])
i=1

where, U%" denotes the vector of coordinatesqf, andU Lk denotes the vector of coordinates
of uy 5. and [3.2) becomes forall< i < N, + 1andl < j < N,

(3.3) { Slt; {(up(t), w (f)>L2(Q) + a(up(t),w ) (fu(t), w >L2 @ V0 <t<T
| g (un(t), 29)120) + aun(t), 29) = (fu(t), 2)12), V0 <t < T

hence, the variational approximatidn (3.2) is equivalent to the following linear system of ordi-
nary differential equations with constant coefficients:

M EE + U = B
(3.4) { a )

Uh( ) UO h’ dg; (O) — Ul’h
the mass matrix is defined by:

Mll M12
Mh - ( M21 M22 )

with
M™ = (0, w1 < ienrs M = (29, w1 ciemn<ienn;
M = ((w(z)a N1 cicnprnngieny MP2 = (29, 29)) 14 5<n,.-

The stiffness matrix is defined by:
Kll K12
’Ch = ( K21 K22 >
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with
K™ = (a(w®, w9)) 1< jen 13 K2 = (a(z,w9)) 1 e npn<icnn+1i
K = (a(w, 29)) 1 ciem11<j2m; K2 = (a(z9, 29)14 52w, -

and the matrix of the second member is defined by:

1
- ()
with B! = (L(w™))1<i<n,+1 andB* = (L(z7)),<;<n,

3.2. Total discretization in space-time. We decompose the time intervil 7'] into N time
stepAt = L, we sett,, = nAt forn € {0,1..., N} and we denote by the approximation

of U"(t,). To calculate numerically approximate solutions ¢f ((3.4)) we use the following
Newmark time-stepping method:

MhUn+1 + IChU ntl — Bn+1
(3.5) Uly = U+ At (1= )02 + 8072,
Uly = Ul + AU} + B2 (1 - 20)070 + 2607, )

Where, the real parameterandd will be fixed as follows) < ¢ < 1' 0<p<i 5 [14], At is

the time-step fixed later. So inserting the formulafr, , into MU b+ IChUnJrl = B! at
timet, ., we obtain from|[(3.5) the following schema:

Uk | = (My + 0(A1)2E,) (B,';+1 — Ku[U" + At 4 B0 29)17;;])
(3.6) U, = Ut + At (( — &) TN + (5Uf;+1>
Ut,, = Ut + AT 4 B2 ((1 — 200 + 29U;;+1)
and the acceleration
(3.7) U = M3 (Bl — KnU3Y)
follows from the equatiooM , U +-/C, U = Bl KnovingU”, U, U" we findU", ,, U*, U .

3.3. Parameters of the simulation. the calculation of the coefficients of the matrickes,, ),
and By, is carried out in the same way as ih ([11] ). The parameters of simulation [13, 12] are
as follows:

Table 3.1: Parameters of the soil-pile interaction

I(m) | E,L,(MN.m?) | K,(kN/m?) | G,(kN/m?) | m(kg/m) | P(kN/m)
20 3000 100 37393 48.2 200
20 3000 552 186966 48.2 200
20 3000 1103 373933 48.2 200
40 3000 87 63059 48.2 200
40 3000 437 315296 48.2 200
40 3000 874 630591 48.2 200

And we choosd” = 1s, dt = 0.01s, § = 0.6 andfd = 0.4 for the Newmark Scheme.
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4. NUMERICAL RESULTS

The following pictures display differents shapes of deformation of the pile with respect to
several parameters, and K, of the soil at any time,,.
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Figure 2: Behaviour of the Pile Figure 3: Behaviour of the Pile
of Iengthl = 20m at to5,t50, t75, t100 of Iengthl = 20m at to5,t50, t75, t100
for G, = 37393 and K, = 100 for G, = 186966 and K, = 552
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Figure 4: Behaviour of the Pile
of Iengthl = 20m at to5,t50, t75, t100
for G, = 373933 and K, = 1103
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Figure 5: Behaviour of the Pile Figure 6: Behaviour of the Pile
of Iengthl = 40m at ts5,t50, t75, t100 of Iengthl = 40m at tss,t50, t75, t100
for G, = 63059 and K, = 87 for G, = 315296 and K, = 437
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Figure 7: Behaviour of the Pile
of Iengthl = 40m atto5,t50, t75, t100
for G, = 630591 and K, = 874

5. DISCUSSION OF THE RESULTS

As we know the soil-structure interaction (SSI) of the Pasternak model is essentially based
on the two mechanical parameters which are: Pasternak shear méguusl the Pasternak
reaction coefficienfs,. The parametric study of our (SSI) model was emphasized on the vari-
ability of these parameters and the length of the sheetom figures P}, [3 ar{d 4, it can be seen
that the horizontal deflection of the pile depends on the paramgteasidG,, at any timet,,.

Indeed, the deflections vary in a decreasing way according to the values of Kp and Gp. These
displacements are more influenced by the shear mod&judVe deduce from this that for the
behavioral model, more the shear layer is incompressible (the values of the paraifeiers

G, very large) less the pile moves in the soil mass. From figurels 5, pland 7, for a more flexible
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pile (/ very large) and for incompressible shear lay€&rs ery large), we obtain for smaller
values ofK,, the same deflection forms but with greater amplitudes at anyttjiia the previ-

ous studies [10, 11] we have established in the case of the stationary model of pile under lateral
load that to reduce the deformations of the pile it is necessary to increase both the parameters
G, and K, of the soil. In this work, we also establish that at each moment by increasing the
parameters of the soil the deformation of the pile decreases.

Finally, we can keep that in order to reduce the deformation of the pile under latteral load and a
trenchant effort on the free head, we must take into account soil parameters.

6. CONCLUSION

In this work, we use on the one hand mathematical analysis results to prove the existence and
unigueness of the solution and on the other hand we use finite element method to determine an
approximate solution to partial differential equation. Moreover, numerical simulations show us
the pious deformation and the influence of soil parameters on the structure in relation to time.
We also observe that when soil paramet&fs G, increase then the displacement of the pious
decreases even if the number of iteratiovisn time increases. It turned out from our study
that a variability in the parameters of the shear layer (in particular the shear modulus) has a
considerable influence on the displacements over time. This work confirms and reinforces the
previous results obtained in the analysis of the deflection of the stationary Pasternak model.
Finally, the authors believe that the present investigations could help engineers and researchers
in studying and designing shell structures and a more suitable foundation model for obtaining
the optimal dynamic response.
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