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1. INTRODUCTION

The DTM was first presented by [1] during his researches on electrical circuits. The DTM
has been successfully implemented to solve linear and nonlinear problems in physics, chem-
istry, economics, mathematical science, engineering etc. The DTM has also been applied on
linear ordinary differential equations and nonlinear differential equations [2], [3], [4], [5]. Fur-
thermore, it is applied to partial, fractional, and algebraic differential equations [6], [7], [8].
The extended application of the DTM is due to its distinct features. One of them, the DTM
is applied directly without linearization, discretization or perturbation transform [4]. However,
the DTM is still suffering from some drawbacks such as, it converges over small time intervals
[6], [9], [10]. To overcome this issue, the MsDTM is utilized to enhance the convergence range
where it is implemented to solve linear and nonlinear systems of one or two ordinary differential
equations (ODEs) [11], [12], [9]. In this paper, the new technique is developed to find a general
technique to deal with the linear and nonlinear system of three ordinary differential equations
or more based on DTM and MsDTM. The new technique is applied to solve two nonlinear sys-
tems of nonlinear ODEs. The numerical results show that the new presented technique is an
effective tool to find an approximate analytical solution of linear and nonlinear systems and are
accurate as compared to other semi analytical and numerical method such as DTM, Adomian
Decomposition Method (ADM) and Runge-Kutta Method (RK4).

2. DIFFERENTIAL TRANSFORM METHOD (DTM)

Definition 2.1. [1], [14] If a function u (t) is analytical with respect to t in the domain of
interest, then

U (k)=
1

k!

[
dku (t)

dtk

]
t=t0

,(2.1)

is the transformed function of u(t).

Definition 2.2. [1], [14] The differential inverse transforms of the set {U(k)} n
k=0

is defined by

u (t)=
∞∑
k=0

U (k) (t−t0)k .(2.2)

Substituting (2.1) into (2.2), we deduce that

u (t)=
∞∑
k=0

1

k!

[
dku (t)

dtk

]
t=t0

(t−t0)k.(2.3)

From the above definitions (2.1) and (2.2), it is easy to see that the concept of the DTM is
obtained from the power series expansion. To illustrate the application of the proposed DTM to
solve systems of ordinary differential equations, we consider the nonlinear system

du (t)

dt
=f (u (t) , t) , t≥t0,(2.4)

where f(u (t) , t) is a nonlinear smooth function.
System (2.4) is supplied with some initial conditions

u(t0) =u0.(2.5)

The DTM establishes the solution of (2.4), which can be written as

u (t)=
∞∑
k=0

U (k) (t−t0)k,(2.6)
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whereU (0) , U (1) , U (2) , . . . are unknowns which are to be determined by the DTM. Applying
the DTM to the initial conditions (2.5) and (2.4) respectively, the transformed initial conditions
are obtained

U (0)=u0,(2.7)

with the recursion system

(1+k)U (k+1)=F (U (0) , . . . ,U (k) , k) , k= 0, 1, 2, . . . ,(2.8)

where F (U (0) , . . . ,U (k) , k) is the differential of f (u (t) , t) .
Using (2.7) and (2.8), the unknown U (k) , k= 0, 1, 2, . . . can be determined. Then, the differ-
ential inverse transformation of the set of values {U(k)} m

k=0
gives the approximate solution

u (t)=
m∑
k=0

U (k) (t−t0)k,(2.9)

where m is the approximation order of the solution. Equation (2.6) gives the exact solution of
problem (2.4)-(2.5).
If U (k) and V (k) are the differential transforms of u (t) and v(t) respectively, then the main
operations of the DTM are shown in the Table (2.1).

TABLE 2.1. Main Operation of DTM.

Function Differential transform
αu (t)±βv(t) αU (k)±βV (k)

u (t) v(t)
∑k

r=0 U (r)V (k−r)
u (t) v (t)w(t)

∑k
r=0

∑r
l=0 U (l)V (r−l)W (k−r)

dn

dtn
[u (t) ] (k+1) . . . (k+n)U(k+n)

eλt λeλt0
k!

sin(ωt) wk

k!
sin
(
ωt0+

πk
2

)
cos(ωt) wk

k!
cos
(
ωt0+

πk
2

)
Applying the DTM to the initial conditions (2.5) and (2.4) to obtain a recursion system for un-
knowns U (0) , U (1) , U (2) , . . ., the solution series are finally obtained from DTM, but it have
limited regions of convergence. Therefore, to improve the limitation of DTM, the multi-stage
version of this method is applied.

3. MULTI-STAGE DIFFERENTIAL TRANSFORM METHOD (MSDTM)

The MsDTM was first introduced by [11]. The MsDTM is utilized to enhance the conver-
gence over the interest interval. Due to the fact that the DTM failed to provide convergent
approximate analytical solutions over large time intervals, the MsDTM has been introduced in
[11], [12], [15] and [16]. The concept of MsDTM depends on dividing the main interval into
equally sub-intervals. Suppose that the main interval is [0, T ]. This interval is divided into
equally sub-intervals [ti−1 − ti], i = 1, 2, ..., N . The step size is h = T

N
and ti = ih. The

essential idea of the MsDTM is shown in the first step. By applying the DTM to Eq (2.2) over
the sub-interval [0, t1], the approximate solutions are obtained as follows:
u1(t) =

∑K
l=0 Ul(t− t1)l, where K is the order of the approximation for the power series.

The next step is applying the DTM to Eq (2.2) over the sub-intervals [ti−1, ti], where
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i = 2, ..., N − 1 by using the initial conditions
u
(i)
0 (t) =

∑K
k=0 U

(i)
k (t− ti−1)k.

The approximate solutions are obtained as the follows:
ui(t) =

∑K
l=0 Ul(t− ti)l,i = 2, 3..., N − 1.

The second step is repeated until i = N then, the approximate solution over [0, T ] is obtained
as follows:

u(t) =



u1(t) 0 ≤ t < t1,

u2(t) t1 ≤ t < t2,

.

.

.

un(t) tN−1 ≤ t ≤ T .

(3.1)

4. SOLVING NONLINEAR AND LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS

Assume a system of nonlinear ODES that has the following form:

du1(t)
dt

= f1(t, u1(t), u2(t), ..., un(t)),
du2(t)
dt

= f2(t, u1(t), u2(t), ..., un(t)),

.

.

.
dun(t)
dt

= fn(t, u1(t), u2(t), ..., un(t)),

(4.1)

subject to the initial conditions

u1(t0) = u1(0), u2(t0) = u2(0), ..., un(t0) = un(0).(4.2)

Based on the definitions of DTM which are presented previously, by applying DTM to both
sides of the system given in Eq (4.1) and Eq (4.2), the following is obtained:

(k + 1)U1(k + 1) = F1(k),

(k + 1)U2(k + 1) = F2(k),

.

.

.

(k + 1)Un(k + 1) = Fn(k).

(4.3)

Therefore, according to DTM the nth term approximations for (4.3) can be presented as

u1(t) =
∑n

k=1 U1(k)t
k

u2(t) =
∑n

k=1 U2(k)t
k

.

.

.

un(t) =
∑n

k=1 Un(k)t
k.

(4.4)
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The DTM is not valid over large intervals, hence, the MsDTM is applied. The main range [0, T ]
is divided into N equal sub-intervals, then, DTM is applied in every sub-intervals to obtain the
approximate solutions over [0, T ] as follows:

u(t) =



u1(t), 0 ≤ t ≤ t1
u2(t), t1 ≤ t ≤ t2
.

.

.

un(t), tN−1 ≤ t ≤ T .

(4.5)

5. NUMERICAL EXAMPLES

Example 1: Genesio nonlinear differential equation system

Consider Genesio nonlinear differential equation system [17]:


du1
dt

= u2,
du2
dt

= u3,
du3
dt

= −a.u3 − b.u2 − c.u1 + u21,

(5.1)

where, u1, u2, u3 are the state variable. The initial conditions are :


u1(0) = 0.2,

u2(0) = 0.3,

u3(0) = 0.1.

(5.2)

When a = 1.2, b = 2.92, c = 6, system (5.1) gets chaotic.
By applying the differential transform on the both sides of system (5.1) the following is ob-
tained:


(k + 1)U1(k + 1) = DT [u2] = F1(k), k ≥ 0,

(k + 1)U2(k + 1) = DT [u3] = F2(k),

(k + 1)U3(k + 1) = DT [−1.2u3 − 2.92u2 − 6u1 + u21] = F3(k).

(5.3)

Then, the following is obtained:

F (0) =

 U02

U03

−1.2U03 − 2.92U02 − 6U01 + U01
2

 ,
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F (1) =

 U12

U13

−1.2U13 − 2.92U12 − 6U11 + 2U01U11

 ,

F (2) =

 U22

U23

−1.2U23 − 2.92U22 − 6U21 + U11
2 + 2U01U21

 ,

F (3) =

 U32

U33

−1.2U33 − 2.92U32 − 6U31 + 2U11U21 + 2U01U31

 ,

F (4) =

 U42

U43

−1.2U43 − 2.92U42 − 6U41 + U21
2 + 2U11U31 + 2U01U41

 .

.

.

.

Therefore, in a sequential pattern the following is obtained:

U(0) =

 0.2

−0.3
0.1

, F (0) =

 −0.3
0.1

−0.404

, U(1) = F (0)
0+1

=

 −0.3
0.1

−0.404

,

F (1) =

 0.1

2

−0.404

, U(2) = F (1)
1+1

=

 0.05

−0.202
0.9364

, F (2) =

 −0.201999999990.9363999999

−0.72384

,

U(3) = F (2)
2+1

=

 −0.067333333330.3121333333

−0.24128

, F (3) =

 0.3121333333

−0.24128
−0.2748266665

,
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U(4) = F (3)
3+1

=

 0.07803333332

−0.06032
−0.06870666662

, U(5) = F (4)
4+1

=

 −0.012064
−0.01374133332
−0.02710085334

.

.

.

.

Then, the approximate solution is obtained:

u(t) =
∑∞

k=0 U(k)t
k =

[
0.2−0.3t+0.05t2−0.067333333333t3+0.07803333332t4−0.012064t5+...

−0.3−0.1t−0.202t2−0.3121333333t3+0.06032t4−0.1374133332t5+...

0.1−0.404t+0.9364t2−0.24128t3−0.068706666662t4−0.02700853345+...

]
By applying the MsDTM to the system (5.1), the main interval [0, 7] is divided into 300 equal
sub-interval. Then, applying DTM over every sub-intervals, the following approximate solu-
tions over every equal sub-interval are obtained as follows:

u0(t) =

[
0.2+0.07803333332 t4−0.06733333333 t3+0.05 t2−0.3 t

−0.3−0.06032 t4+0.3121333333 t3−0.202 t2+0.1 t

0.1−0.06870666662 t4−0.24128 t3+0.9364 t2−0.404 t

]
,

0 ≤ t < 0.02333333333,

u1(t) =

[
0.199999999996307+0.0766068816850832 t4−0.0672664682657978 t3+0.0499984364295275 t2−0.299999981641494 t

−0.300000000007394−0.0619591151766338 t4+0.312210377489326 t3−0.202001804573596 t2+0.100000021300018 t

0.100000000032243−0.0717487413160875 t4−0.241139911517990 t3+0.936396753246393 t2−0.403999963248190 t

]
,

0.02333333333 ≤ t < 0.046666666667,

u2(t) =

[
0.199999997370445+0.0751413780003067 t4−0.0670609880639438 t3+0.0499872335944311 t2−0.299999701125753 t

−0.300000003077215−0.0636663605869019 t4+0.312449899312904 t3−0.202014871296198 t2+0.100000348744206 t

0.0999999951994727−0.0745447805935609 t4−0.240750416634325 t3+0.936375646132342 t2−0.403999438764385 t

]
,

0.046666666667 ≤ t < 0.07,

u3(t) =

[
0.199999978547386+0.0736353004110879 t4−0.0667092489688893 t3+0.0499560184208996 t2−0.299998454099613 t

−0.300000025215231−0.0654358857993379 t4+0.312863249668166 t3−0.202051561949169 t2+0.100001814877116 t

0.0999999640530241−0.0770855515088917 t4−0.240159588774862 t3+0.936323433790137 t2−0.403997362521667 t

]
,

0.07 ≤ t < 0.09333333333,

.

.

.

u299(t) =

[
183.556022510499+0.130441579544786 t4−3.30203799243174 t3+30.7037722821109 t2−124.077801920598 t

−639.271069198469−0.217459449481631 t4+6.59033468910472 t3−73.4136819556440 t2+356.788299809543 t

−848.685075146366−0.508821821063691 t4+13.3296831569203 t3−128.826982675661 t2+544.318383715572 t

]
,

6.976666667 ≤ t ≤ 7.
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FIGURE 1. Comparison between MsDTM, DTM and RK4 Solution of Component u1
for the System (5.1)

FIGURE 2. Error of Component u1 using MsDTM and DTM for the System (5.1)

FIGURE 3. Comparison between MsDTM, DTM and RK4 Solution of Component u2
for the System (5.1)
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FIGURE 4. Error of Component u2 using MsDTM and DTM for the System (5.1)

FIGURE 5. Comparison between MsDTM, DTM and RK4 Solution of Component u3
for the System (5.1)

FIGURE 6. Error of Component u3 using MsDTM and DTM for the System (5.1)

The results in Figures 1, 3 and 5 show that the approximate solution of the MsDTM is in an
excellent agreement with the RK4 solution for the three components u1, u2 and u3 respectively
along the interest interval. Unfortunately, the approximate solution of the DTM diverges along
the interest interval, certainly for t > 1, for all the components. It can be observed that the
MsDTM rigorously converged throughout the interest interval.
Figures 2, 4 and 6 show a comparison between the MsDTM error and the DTM error for the
components u1, u2 and u3 respectively for the system (5.1). In this case, the exact solution is
not available, hence, the MsDTM error or the DTM error is the difference between the MsDTM
approximate solution or the DTM solution and the RK4 solution. It can be seen clearly that the
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MsDTM error is very small compared to the DTM error for all components over the interest
interval. The results in these figures indicate that the proposed method expands the domain of
convergence to contain the entire interval, unlike the DTM method which is only valid over the
interval [0, 1]. System (5.1) was also solved by the Modified DTM (MDTM) in [17], which
is obtained from DTM by applying the Laplace transform and Pade’ approximant. The results
obtained by MDTM is not in good agreement with the MsDTM results where, the MDTM abso-
lute error for the three components u1, u2 and u3 in this system were 2×10−6, 1×10−5, 7×10−5
respectively over the interval [0, 0.5]. But, the results obtained by the proposed method show
that the MsDTM error for the three components u1, u2 and u3 were 5×10−7, 1×10−6, 2×10−6

respectively, over the interval [0, 7]. This comparison confirms that the MsDTM is a more ac-
curate and a more reliable method than the MDTM and DTM for solving a system of nonlinear
ODEs.

Example 2: A Novel Four-Scroll Chaotic System

Consider a chaotic nonlinear differential equation system [18]:
du1
dt

= a(u2 − u1) + bu2u3,
du2
dt

= −10u32 − u2 + 4u1u3,
du3
dt

= −cu3 − u1u2,
(5.4)

where, u1, u2, u3 are state variable, as a = 3, b = 14, c = 3.9, the system (5.4) gets
chaotic. The initial conditions are : 

u1(0) = 0.2,

u2(0) = 0.4,

u3(0) = 0.2.

(5.5)

By applying the DTM on both sides of system (5.4) the following is obtained:

(5.6)


(k + 1)U1(k + 1) = DT [3(u2 − u1) + 14u2u3] = F1(k), k ≥ 0,

(k + 1)U2(k + 1) = DT [−10u32 − u2 + 4u1u3] = F2(k),

(k + 1)U3(k + 1) = DT [−3.9u3 − u1u2] = F3(k),

Subsequently, the following is obtained:

F (0) =

[
14U02U03 − 3U01 + 3U02

−10U02
3 + 4U01U03 − U02

3.9U03 − U01U02

]
,

F (1) =

[
14U02U13 + 14U12U03 − 3U11 + 3U12

−30U02
2U12 + 4U01U13 + 4U11U03 − U12

3.9U13 − U11U02 − U01U12

]
,

F (2) =

[
14U02U23 + 14U22U03 + 14U12U13 − 3U21 + 3U22

−30U02
2U22 − 30U02U12

2 + 4U01U23 + 4U21U23 + 4U11U13 − U22

3.9U23 − U21U02 − U11U12 − U01U22

]
,

F (3) =

[
14U02U33 + 14U32U3 + 14U12U23 + 14U22U13 − 3U31 + 3U32

−30U02
2U32 − 60U02U12U22 − 10U12

3 + 4U01U33 + 4U31U03 + 4U11U23 + 4U21U13 − U32

3.9U33 − U31U2 − U21U12 − U11U22 − U1U32

]
,
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F (4) =

[ 14U02U43+14U42U03+14U12U33+14U32U13+14U22U23−3U41+3U42

−30U02
2U42−60U02U12U32−30U02U22

2−30U12
2U22+4U01U43+4U41U03+4U11U33+4U31U13+4U21U23−U42

3.9U43−U41U2−U31U12−U21U22−U11U32−U01U42

]
.

Therefore, in a sequential pattern the following is obtained:

U(0) =

 0.2

−0.3
0.1

, F (0) =

 0.2

−0.3
0.1

, U(1) = F (0)
0+1

=

 −1.920.650

0.45

,

F (1) =

 6.73000000000000042

−2.81300000000000017
1.04899999999999993

, U(2) = F (1)
1+1

=

 3.365

−1.4065
0.5245

,

F (2) =

 −14.39150000100000077.31615000100000046

4.58435000099999978

, U(3) = F (2)
2+1

=

 −4.7971666672.438716667

1.528116667

,

F (3) =

 14.6157633279999999

−26.8930850079999999
−0.854968332400000030

, U(4) = F (3)
3+1

=

 3.653940832

−6.723271252
−0.2137420831

,

F (4) =

 −20.704652089999999777.0201730499999968

14.1406092099999992

, U(5) = F (4)
4+1

=

 −4.14093041815.40403461

2.828121842

.

Then, the approximate solution is obtained:

u(t) =
∑∞

k=0 U(k)t
k =

[
0.2−1.92t+3.365t2−4.797166667t3+3.653940832t4−4.140930418t5+...

−0.3−0.65t−1.4065t2+2.438716667t3−6.723271252t4+15.40403461t5+...

0.1+0.45t+0.5245t2+1.528116667t3−0.2137420831t4+2.8281218425+...

]
.

By applying the MsDTM to the system (5.4), the main interval [0, 3] is divided into 300 equal
sub-intervals. Then, applying DTM over every sub-interval, the following approximate solu-
tions over every equal sub-intervals are obtained:

u0(t) =

[
0.2−11.51223334 t4+9.1728 t3−3.172 t2+1.72 t

0.4+35.06703332 t4−8.847733333 t3+3.52 t2−0.88 t

0.2−0.6051958332 t4+2.1345 t3+1.109 t2+0.7 t

]
,

0≤ t < 0.01,

u1(t) =

[
0.199999998944319−9.85563570242039 t4+9.14034348484780 t3−3.17167900725179 t2+1.71999848469451 t

0.400000002323328+29.6536368018110 t4−8.74347566115410 t3+3.51897731056318 t2−0.879995017809122 t

0.199999999973078−0.331094876221447 t4+2.12916461095784 t3+1.10905260997900 t2+0.699999736030373 t

]
,

0 ≤ t < 0.01,

u2(t) =

[
0.200000084141058−8.37973113102058 t4+9.05232396181441 t3−3.16963696155721 t2+1.71997678451631 t

0.399999754336612+25.3044758359338 t4−8.48564798392580 t3+3.51302885326647 t2−0.879931987110542 t

0.200000013626711−0.0968173633937595 t4+2.11522786356339 t3+1.10937519384165 t2+0.699996302150300 t

]
,
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0.02 ≤ t < 0.03,

u3(t) =

[
0.200000635490251−7.04669761585337 t4+8.91944253265202 t3−3.16460320561409 t2+1.71989099491291 t

0.399998318456393+21.7879465152591 t4−8.13645093460079 t3+3.49985014298699 t2−0.879708094180930 t

0.200000096714031+0.104687243838486 t4+2.09517677404955 t3+1.11013345088378 t2+0.699983390217885 t

]
,

0.03 ≤ t < 0.04,

.

.

.

u299(t) =

[
515.558374219336+3.91683354980570 t4−51.9557323424376 t3+262.150658420283 t2−596.228835868634 t

−96.4882700648167−0.841385314803319 t4+10.7724485134852 t3−52.3394069006767 t2+114.889350009676 t

−17.7593398054183+0.728853480642598 t4−5.54176231131966 t3+11.9051373771224 t2+0.476251600743609 t

]
,

2.99 ≤ t ≤ 3.

FIGURE 7. Comparison between MsDTM, DTM and RK4 Solution of Component u1
for the System (5.4)

FIGURE 8. Error of Component u1 using MsDTM and DTM for the System (5.4)
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FIGURE 9. Comparison between MsDTM, DTM and RK4 Solution of Component u2
for the System (5.4)

FIGURE 10. Error of Component u2 using MsDTM and DTM for the System (5.4)
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FIGURE 11. Comparison between MsDTM, DTM and RK4 Solution of Component
u3 for the System (5.4)

FIGURE 12. Error of Component u3 using MsDTM and DTM for the System (5.4)
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FIGURE 13. u1 − u2 Phase Portrait using MsDTM and DTM for the System (5.4)

FIGURE 14. u1 − u3 Phase Portrait using MsDTM and DTM for the System (5.4)
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FIGURE 15. u2 − u3 Phase Portrait using MsDTM and DTM for the System (5.4)

FIGURE 16. u1 − u2 − u3 Phase Portrait using MsDTM and DTM for the System (5.4)

Figures 7, 9 and 11, show that the curves of the MsDTM approximate solution, the DTM
approximate solution and the RK4 solution for the three components, u1, u2 and u3 respectively
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for system (5.4), where t ∈ [0, 3] is the time interval, N = 300 is the number of subintervals,
K = 4 is the order of the approximation and h = 0.01 is the time step. The results in these
figures show that the MsDTM approximate solution is in excellent agreement with the RK4
solution for the three components, u1, u2 and u3 respectively along the interest interval. On
the other hand, the DTM approximate solution diverges along the interest interval for t > 0.4,
t > 0.4, and t > 0.5 respectively. It is clear that the MsDTM is an effective method to enlarge
the domain of convergence for a system of nonlinear ODEs. The error of the MsDTM and the
error of the DTM are plotted in Figures 8, 10 and 12 for the three components u1, u2 and u3
respectively. It can be observed that the MsDTM error is very small compared to the DTM error
for all components. The results in these figures indicate the MsDTM is more accurate and more
reliable.

Figures 13, 14 and 15, show that the phase portrait of the MsDTM approximate solution and
the phase portrait of the DTM approximate solution in 2-D views with respect to u1−u2, u1−u3
and u2 − u3 respectively. The results confirm that the MsDTM is a more accurate and a more
powerful device for solving a system of several nonlinear ODEs. Figure 16 shows a comparison
between the MsDTM approximate solution and the DTM approximate solution in 3-D views.
It can be seen easily the clear diverge between the MsDTM approximate solution and the DTM
approximate solution in 3-D views. This confirms the MsDTM is a more accurate and a more
efficient. System (5.4) was also solved using the RK4 method [18]. The results obtained by
RK4 were analyzed and its fundamental properties like dissipativity, symmetry and invariance,
equilibria, Lyapunov exponents and Kaplan-Yorke dimension were examined. Similarly, the
proposed method gives the same phase portraits in 2-D views and 3-D views as shown Figures
13, 14, 15 and 16. This indicates the proposed method is in good agreement with the RK4
method.

6. CONCLUSION

In this paper, a new proposed technique, the MsDTM, is applied to solve nonlinear systems of
ODES. Comparison between DTM and MsDTM shows that MsDTM can solve nonlinear sys-
tems of ODEs more accurately without linearization, discretization or perturbation transform.
The analytical approximate solutions obtained by MsDTM are valid over larger time intervals
than the standard DTM.
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