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ABSTRACT. Differential equations are basic tools to describe a wide variety of phenomena in
nature such as, electrostatics, physics, chemistry, economics, etc. In this paper, a technique is
developed to solve nonlinear and linear systems of ordinary differential equations based on the
standard Differential Transform Method (DTM) and Multi-stage Differential Transform Method
(MsDTM). Comparative numerical results that we are obtained by MsDTM and Runge-Kutta
method are proposed. The numerical results showed that the MsDTM gives more accurate ap-
proximation as compared to the Runge-Kutta numerical method for the solutions of nonlinear
and linear systems of ordinary differential equations.

Key words and phrases: Non-autonomous System, Linear systems, Nonlinear systems, Ordinary differential equations, Dif-
ferential Transform Method, Multi-stage Differential Transform Method.

2010 Mathematics Subject Classification, 34A34.

ISSN (electronic): 1449-5910
© 2020 Austral Internet Publishing. All rights reserved.

*Corresponding author.


https://ajmaa.org/
mailto: KHALIL AL AHMAD <abumohmmadkh@hotmail.com>
mailto: <zarita@usm.my>
mailto: <farahaini@usm.my>
https://www.ams.org/msc/

2 K. A. AHMAD, Z. ZAINUDDIN, F. A. ABDULLAH

1. INTRODUCTION

The DTM was first presented by [1]] during his researches on electrical circuits. The DTM
has been successfully implemented to solve linear and nonlinear problems in physics, chem-
istry, economics, mathematical science, engineering etc. The DTM has also been applied on
linear ordinary differential equations and nonlinear differential equations [2]], [3]], [4]], [S]. Fur-
thermore, it is applied to partial, fractional, and algebraic differential equations [6]], [7], [8].
The extended application of the DTM is due to its distinct features. One of them, the DTM
is applied directly without linearization, discretization or perturbation transform [4]. However,
the DTM is still suffering from some drawbacks such as, it converges over small time intervals
[61], [9]], [10]. To overcome this issue, the MsDTM is utilized to enhance the convergence range
where it is implemented to solve linear and nonlinear systems of one or two ordinary differential
equations (ODEs) [[11]], [12], [9]. In this paper, the new technique is developed to find a general
technique to deal with the linear and nonlinear system of three ordinary differential equations
or more based on DTM and MsDTM. The new technique is applied to solve two nonlinear sys-
tems of nonlinear ODEs. The numerical results show that the new presented technique is an
effective tool to find an approximate analytical solution of linear and nonlinear systems and are
accurate as compared to other semi analytical and numerical method such as DTM, Adomian
Decomposition Method (ADM) and Runge-Kutta Method (RK4).

2. DIFFERENTIAL TRANSFORM METHOD (DTM)
Definition 2.1. [1]], [14] If a function w (¢) is analytical with respect to ¢ in the domain of
interest, then

@.1) U(k):l[

d*u (t)]
|,

is the transformed function of ().

Definition 2.2. [11, [14] The differential inverse transforms of the set {U(k)} ", is defined by
(2.2) Z U (k) (t—to)"
Substituting (2.1)) into (2.2)), we deduce that

(2.3) Z { s ]t:to(t—to)k.

From the above definitions and @]), it is easy to see that the concept of the DTM is
obtained from the power series expansion. To illustrate the application of the proposed DTM to
solve systems of ordinary differential equations, we consider the nonlinear system

P (wt). ). 124,

where f(u (t),t) is a nonlinear smooth function.
System (2.4)) is supplied with some initial conditions

(2.5) u(to) =uo.
The DTM establishes the solution of (2.4]), which can be written as

2.4)

2.6) ZU (t=to)",

AJMAA, Vol. 17 (2020), No. 2, Art. 7, 18 pp. AJMAA


https://ajmaa.org

SOLVING NON-AUTONOMOUS NONLINEAR SYSTEMS OF ODEs 3

where U (0),U (1),U (2),... are unknowns which are to be determined by the DTM. Applying
the DTM to the initial conditions (2.5)) and (2.4) respectively, the transformed initial conditions
are obtained

(2.7) U (0) =uo,
with the recursion system
(2.8) (1+k)U (k+1)=F (U (0),...,U (k) k), k=0,1,2,.

where F'(U (0),...,U (k) , k) is the differential of f (u(t),t).
Using (2.7) and (2.8)), the unknown U (k) , k=0, 1,2, ... can be determined. Then, the differ-
ential inverse transformation of the set of values {U (k)} o gives the approximate solution

(2.9) ZU (t—to)",

where m is the approximation order of the solutlon. Equation (2.6) gives the exact solution of

problem (2.4)-2.5).

If U (k) and V (k) are the differential transforms of w (t) and v(t) respectively, then the main
operations of the DTM are shown in the Table (2.1)).

TABLE 2.1. Main Operation of DTM.

Function Differential transform
u(t) £pu(t) | aU (k) =6V (k)
u(t) v(t) > U (r) V (k=)
w (0) v (O w(t) | Sy Sy U OV (=) W(k—r)
57;[“ (t)] (Ak:j;l) oo (k4n) U(k+n)
sin(wt) wk—fsin (wio+%)
cos(wt) wk—:ccos (wio+7F)

Applying the DTM to the initial conditions and to obtain a recursion system for un-
knowns U (0),U (1),U (2),.. ., the solution series are finally obtained from DTM, but it have
limited regions of convergence. Therefore, to improve the limitation of DTM, the multi-stage
version of this method is applied.

3. MULTI-STAGE DIFFERENTIAL TRANSFORM METHOD (MSDTM)

The MsDTM was first introduced by [11]. The MsDTM is utilized to enhance the conver-
gence over the interest interval. Due to the fact that the DTM failed to provide convergent
approximate analytical solutions over large time intervals, the MsDTM has been introduced in
(L1, [12]], [15] and [[16]]. The concept of MsDTM depends on dividing the main interval into
equally sub-intervals. Suppose that the main interval is [0,7]. This interval is divided into
equally sub-intervals [t;_1 — t;],7 = 1,2,...,N. The step size is h = % and t; = ih. The
essential idea of the MsDTM is shown in the first step. By applying the DTM to Eq (2.2)) over
the sub-interval [0, ], the approximate solutions are obtained as follows:

uy(t) = F 1—o Ui(t — t1)", where K is the order of the approximation for the power series.

The next step is applying the DTM to Eq (2.2)) over the sub-intervals [¢;_1, ¢;], where
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1 =2,..., N — 1 by using the initial conditions
7 K )
uy (8) = S U (t = tia)"
The approximate solutions are obtained as the follows:
u;(t) = S5 Ut — )i = 2,3..., N — 1.
The second step is repeated until i = N then, the approximate solution over [0, 7] is obtained

as follows:
.

U,l(t) 0<t< t1,
UQ(t) t1 <t <t
G.1) u(t) =
(un(t) tyo <t<T.

4. SOLVING NONLINEAR AND LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS

Assume a system of nonlinear ODES that has the following form:

du1(t) _ fl(t Ul( ) u2(t),...,un(t)),

S50 — (1 (1) 1), 1),
(@.1) \

\dun(t) fn(t Ul( ) UQ(t), 7un(t))’

subject to the initial conditions
(42) Ul(to) = ul(O), Ug(to) = 'LLQ(O), ceey Un(to) = Un(O)

Based on the definitions of DTM which are presented previously, by applying DTM to both
sides of the system given in Eq (4.1)) and Eq (4.2)), the following is obtained:

((k+ 1)U, (k+1) = Fy(k),
(k+1)Us(k + 1) = Fy(k),

(4.3)
| (k+ 1)U (k + 1).: Fu (k).

Therefore, according to DTM the n'* term approximations for (4.3)) can be presented as

un(t) = S0 (k)
ug(t) = D iy Ua(k)t"

(4.4)
A1) = S, U (Rt
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The DTM is not valid over large intervals, hence, the MsDTM is applied. The main range [0, 7]
is divided into N equal sub-intervals, then, DTM is applied in every sub-intervals to obtain the
approximate solutions over [0, 7’| as follows:

uy (t), 0<t<t

us(t), t <t<ty
4.5) u(t) =

U, (1), tnog <t<T.

5. NUMERICAL EXAMPLES

Example 1: Genesio nonlinear differential equation system

Consider Genesio nonlinear differential equation system [[17]:

o U2,

dug __
(51) d_t2 = Us,

dus __

Ws — —q.ug — bauy — cuy + ul,

where, 11, us, ug are the state variable. The initial conditions are :

(51 (O)
(5.2) u5(0)
Ug(O)

Il
e o 9
= W b

Whena =12, b=292, c¢c=6, system (5.1) gets chaotic.
By applying the differential transform on the both sides of system (5.1) the following is ob-
tained:

(k+ 1)U (k+1) = DT[uy] = Fi(k), k>0,
(5.3) (k+ 1)Uz (k + 1) = DT[us] = Fz(k),
(k 4+ 1)Us(k + 1) = DT[~1.2uz — 2.92uy — 6uy + u?] = F3(k).

Then, the following is obtained:

Uoa
F(O) = U03 )
—1.2Up3 — 2.92Uyq — 6Uy; + Uy, 2
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Uiz
F(1) = Uts
—1.2U;53 — 2.92U,5 — 6U;1 + 2Uy1 U141

U22
F(2) = Uss
—1.2Us3 — 2.92Us9 — 6Usy + Uy12 + 2Up1Usy

Usa
F(3) = Uss
—1.2U33 — 292U32 — 6U31 + 2U11U21 + 2U01U31

U42
F(4) = Uss
—1.2U43 — 2.92U45 — 6Uyq + Uy 2 + 2U11Usy + 2Up Uy

Therefore, in a sequential pattern the following is obtained:

0.2 —0.3 —0.3
_ _ _ FO) _
U@)=| —03 |, FO)=| 01 |, U1 =29 =1 o1 |,
|01 —0.404 —0.404
0.1 0.05 —0.20199999999
F(1) = 2 |, U@2) =" =1 -0.202 |, F(2)=| 0.9363999999 |,
| —0.404 0.9364 —0.72384
—0.06733333333 0.3121333333
U3)=52 =1 03121333333 |, F(3) = —0.24128 |,
—0.24128 —0.2748266665
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0.07803333332 —0.012064
U(4) =19 = —0.06032 : U(5) =14 = | —0.01374133332
—0.06870666662 —0.02710085334

Then, the approximate solution is obtained:
0.2—0.3¢+0.05¢—0.067333333333t3+0.07803333332t 1 —0.012064t% + ..

ut) =30 Uk)tF = | —0.3-0.16-0.2022-0.312133333363+0.06032¢4—0.1374133332¢3 4.
0.1—0.404¢-0.9364¢2 —0.24128t3 —0.068706666662¢4 —0.0270085334%+..

By applying the MsDTM to the system (5.1]), the main interval [0, 7] is divided into 300 equal
sub-interval. Then, applying DTM over every sub-intervals, the following approximate solu-
tions over every equal sub-interval are obtained as follows:

0.2+0.07803333332 ¢4 —0.06733333333 £3+0.05 12—0.3 ¢
up(t) = | —0.3-0.06032¢4+0.312133333313-0.202£24+0.1¢ | ,
0.1—0.06870666662 t*—0.24128 t340.9364 t2—0.404 ¢

0 <1 <0.02333333333,

0.199999999996307+0.0766068816850832 t* —0.0672664682657978 t>+0.0499984364295275 t2 —0.299999981641494 ¢
Uq (t) == —0.300000000007394—0.0619591151766338 t*+0.312210377489326 t> —0.202001804573596 t240.100000021300018 ¢

0.100000000032243—0.0717487413160875 t* —0.241139911517990 t3+0.936396753246393 t2 —0.403999963248190 ¢

0.02333333333 < t < 0.046666666667,

0.199999997370445+0.0751413780003067 t* —0.0670609880639438 ¢>+0.0499872335944311 t2 —0.299999701125753 ¢
U9 (t) == —0.300000003077215—0.0636663605869019 t*+0.312449899312904 t3 —0.202014871296198 2 40.100000348744206 t

L 0.0999999951994727—0.0745447805935609 t+-0.240750416634325 3 40.936375646132342 t2 —0.403999438764385 ¢ i

0.046666666667 < t < 0.07,

0.199999978547386+0.0736353004110879 t* —0.0667092489688893 ¢>+0.0499560184208996 t> —0.299998454099613 ¢

U3 (t) == —0.300000025215231—0.0654358857993379 t*+0.312863249668166 t> —0.202051561949169 t240.100001814877116 ¢

L 0.0999999640530241—0.0770855515088917 t%-0.240159588774862 % 40.936323433790137 t2 —0.403997362521667 ¢ i

0.07 <t < 0.09333333333,

183.556022510499+0.130441579544786 t* —3.30203799243174 ¢ +430.7037722821109 t2 —124.077801920598 ¢
'U,Qgg (t) - —639.271069198469—0.217459449481631 t*+6.59033468910472 > —73.4136819556440 t2+356.788299809543 t 5

—848.685075146366—0.508821821063691 t*413.3296831569203 t3 —128.826982675661 t>+544.318383715572 ¢

6.976666667 <t < 7.
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I

== NsDTM approximate solution
* + » *RK4 solution
= = DTM approximate solution

FIGURE 1. Comparison between MsDTM, DTM and RK4 Solution of Component 1

for the System (5.1)
5.x 107 160
0
12 5 100
—5.% 107" t DTM error in ul
60
MsDTMerrorinul -1.x 107
-15x% 10" 0
01234567
-2.%x 107" !

FIGURE 2. Error of Component u1 using MsDTM and DTM for the System 1)

/""\
- /- \

/ \
—sz-\;":-"-’?: 6\?
_1- \

= W[sDTM approximate solution
REK4 solution

= = DTM approximate solution

FIGURE 3. Comparison between MsDTM, DTM and RK4 Solution of Component uz
for the System (5.1)
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0 .
1 2 3 4 6 7
t

2.x10°° -1o
MsDTM error in u2 g

l.x 107" -20

DTM error in u2

d -30
-LLx10°

-40
-2 % 10°%

MsDTM approximate solution * * * * RK4 solution
= = DTM approximate solution

FIGURE 5. Comparison between MsDTM, DTM and RK4 Solution of Component ug
for the System (5.1)

-6
7.% 10 _s0

) -6
MsDTM errorinu3 4.x 107" DTM error in u3 - 100

2% 107"
0 -150

—2. % 10°"®
2. =200

FIGURE 6. Error of Component u3 using MsDTM and DTM for the System (/5.1

The results in Figures [I] [3and [5] show that the approximate solution of the MsDTM is in an
excellent agreement with the RK4 solution for the three components w1, us and ug respectively
along the interest interval. Unfortunately, the approximate solution of the DTM diverges along
the interest interval, certainly for ¢ > 1, for all the components. It can be observed that the
MsDTM rigorously converged throughout the interest interval.

Figures [2] 4] and [6] show a comparison between the MsDTM error and the DTM error for the
components 1y, uy and u; respectively for the system (5.1I). In this case, the exact solution is
not available, hence, the MsDTM error or the DTM error is the difference between the MsDTM
approximate solution or the DTM solution and the RK4 solution. It can be seen clearly that the
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MsDTM error is very small compared to the DTM error for all components over the interest
interval. The results in these figures indicate that the proposed method expands the domain of
convergence to contain the entire interval, unlike the DTM method which is only valid over the
interval [0, 1]. System (5.1)) was also solved by the Modified DTM (MDTM) in [17], which
is obtained from DTM by applying the Laplace transform and Pade’ approximant. The results
obtained by MDTM is not in good agreement with the MsDTM results where, the MDTM abso-
lute error for the three components 1, u; and u3 in this system were 2 x 1076, 1x 1075, 7x 107°
respectively over the interval [0, 0.5]. But, the results obtained by the proposed method show
that the MsDTM error for the three components ., 1, and uz were 5 x 1077, 1 x 1075, 2 x 1076
respectively, over the interval [0, 7]. This comparison confirms that the MsDTM is a more ac-
curate and a more reliable method than the MDTM and DTM for solving a system of nonlinear
ODEs.

Example 2: A Novel Four-Scroll Chaotic System

Consider a chaotic nonlinear differential equation system [18]]:

% = a(ug — uy) + bugus,
(54) % = —10U% — U + 4U1U3,
dus

dt —CU3 — UjUg,

where, uy, us, ug are state variable, asa = 3, b = 14, ¢ = 3.9, the system (5.4) gets
chaotic. The initial conditions are :

U1 (O) = 02,
(5.5) u3(0) = 0.4,
u3(0) = 0.2.

By applying the DTM on both sides of system (5.4) the following is obtained:

(k+1D)Ui(k +1) = DT[3(uz — u1) + ldusus] = Fi(k), k>0,
(5.6) (k+ 1)Us(k + 1) = DT[—10u3 — uy + duqus] = Fy(k),

(k+ 1)Us(k + 1) = DT[—3.9u3 — uyus] = F3(k),
Subsequently, the following is obtained:

F(0) =

—10 U023 + 4Up1Ugs — Up2
3.9Up3 — Up1Uo2
[ 14Up2U13 + 14U12Up3 — 3U11 + 3 U112 ]

14Up2Ugs — 3Ug1 + 3Up2
7

F(]_) = —30U02%U12 + 4Uo1U13 + 4U11Ups — Ui2 5
3.9U13 — U11Uo2 — Uo1Ui2
14Up2Us23 + 14U22Uo3 + 14U12U13 — 3U21 + 3U22
F(2) = | —30U02%Ua2 — 30U02U122 + 4Up1Uz23 + 4U21Uss + 4U11 U1z — Uz ] )
3.9U23 — U21Up2 — U11U12 — Up1Uaz

14Ug2Us3 + 14U32U3 + 14U12U23 + 14U22U13 — 3U31 + 3U32
)

F(3) =

—30U022Us2 — 60Ug2U12Ua2 — 10U122 4 4Uo1Uss + 4Us1Uo3 + 4U11Uss + 4U21U13 — Usz
3.9U33 — U31Uz — U21U12 — U11U22 — U1Us2
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14U02U43+14U42U03+14U12U33+14U32U13+14U22U23 —3U41+3U42

F(4) =

—30U022Usz —60Up2U12Usz —30Up2 Uz —30U122 U +4Uo1 Usg +4Us1 Ugs+4 U1 Uss +4Us31 U13+4U21 Uag —Usz

3.9U43—Uq1U2—-U31U12—U21U22-U11Uz2—Up1Us2
Therefore, in a sequential pattern the following is obtained:

0.2 0.2 ~1.92
_ _ _ FO) _
Uo)=| -03 |, F(0)=| —03 U(1) =59 =1 0.650 |,
0.1 0.1 0.45
[ 6.73000000000000042 T [ 3.365
F(1) = | —2.81300000000000017 |, U@2) =2 — | —1.4065 |,
1.04899999999999993 | 0.5245
[ —14.3915000010000007 ] [ —4.797166667
F(2)= | 7.31615000100000046 |, U(3) =52 = | 2438716667 |,
| 4.58435000099999978 | | 1.528116667
14.6157633279999999 3.653940832
F(3) = | —26.8930850079999999 |, U@) =59 = | —6.723271252 |,
| —0.854968332400000030 —0.2137420831
[ —20.7046520899999997 —4.140930418
F(4)= | 77.0201730499999968 |, U5) =S4 = | 15.40403461
14.1406092099999992 2.828121842

Then, the approximate solution is obtained:

0.2—1.92t+3.365t%—4.797166667t3+3.653940832¢* —4.140930418t5 ..
u(t) = 300 U(k)tF = | —0.3-0.65t—1.40652+2.438716667% —6.723271252¢4 +15.4040346 165+
0.1+0.45¢+0.5245¢2+1.52811666 7> —0.2137420831¢* +2.8281218425+ ...
By applying the MsDTM to the system , the main interval [0, 3] is divided into 300 equal
sub-intervals. Then, applying DTM over every sub-interval, the following approximate solu-
tions over every equal sub-intervals are obtained:

0.2—11.51223334¢449.1728 t3—3.172t2+1.72¢
uo(t) = | 0.4+35.06703332 14—8.8477333331343.52¢2—0.88¢ |
0.2—0.6051958332 t*+2.1345t3+1.109 t24-0.7 ¢
0<t < 0.01,
i 0.199999998944319—9.85563570242039 t4+9.14034348484780 t3-3.17167900725179 t2+1.71999848469451t
’U,l(t) — 0.400000002323328+29.6536368018110t4—8.74347566115410t3+3.51897731056318t2—0.879995017809122t y
L 0.199999999973078—-0.331094876221447 t4+2.12916461095784 t3+1.10905260997900 t2+0.699999736030373 t

0<t<0.01,

0.399999754336612+25.3044758359338 t* —8.48564798392580 ¢343.51302885326647 t2 —0.879931987110542 ¢

'U/Q(t) =

0.200000084141058—8.37973113102058 t*+9.05232396181441 ¢° —3.16963696155721 t2+1.71997678451631 t ]
Y

| 0.200000013626711—0.0968173633937595 t*42.11522786356339 t°41.10937519384165 t2+0.699996302150300 ¢
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0.02 <t <0.03,

0.200000635490251—7.04669761585337 t*+8.91944253265202 > —3.16460320561409 ¢t2+1.71989099491291 ¢
’I,L3 (t) == 0.399998318456393+21.7879465152591 t* —8.13645093460079 ¢>43.49985014298699 t2 —0.879708094180930 t 5

0.200000096714031+0.104687243838486 t*+2.09517677404955 t3+1.11013345088378 t240.699983390217885 t

0.03 <t <0.04,

515.558374219336+3.91683354980570 t* —51.9557323424376 5 4262.150658420283 t2 —596.228835868634 t
U299 (t) = —96.4882700648167—0.841385314803319 t4410.7724485134852 t> —52.3394069006767 t>+114.889350009676 ¢ y

—17.7593398054183+0.728853480642598 t* —5.54176231131966 ¢>411.9051373771224 t2+0.476251600743609 ¢

299 <t <3

g
&
"; 4
2
0 "“\
2 1 2 3

== NsDTM approximate solution
* + » 2 RK4 solution
= = DTM approximate solution

FIGURE 7. Comparison between MsDTM, DTM and RK4 Solution of Component

for the System (5.4)
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FIGURE 8. Error of Component %1 using MsDTM and DTM for the System 1)
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FIGURE 9. Comparison between MsDTM, DTM and RK4 Solution of Component us
for the System (5.4)
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FIGURE 10. Error of Component uy using MsDTM and DTM for the System (5.4))
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FIGURE 11. Comparison between MsDTM, DTM and RK4 Solution of Component

ug for the System (5.4)
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FIGURE 12. Error of Component u3 using MsDTM and DTM for the System 1i
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u, - i, Phase portrait in MsDTM and DTM
g

== MsDTM approximate solution
= = DTM approximate solution

FIGURE 13. wuj — ugy Phase Portrait using MsDTM and DTM for the System 1}

u, -, Phase portrait in MsDTM and DTM
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FIGURE 14. u; — ug Phase Portrait using MsDTM and DTM for the System 1)
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u, -, Phase portrait in MsDTM and DTM
8-

== MsDTM approximate solution
= = DTM approximate solution

FIGURE 15. wuy — ug3 Phase Portrait using MsDTM and DTM for the System (5.4))

u, - #,-#5 Phase portrait in MsDTM and DTM

FIGURE 16. u; — us — ug Phase Portrait using MsDTM and DTM for the System (5.4))

Figures [7} [0 and [I1] show that the curves of the MsDTM approximate solution, the DTM
approximate solution and the RK4 solution for the three components, w1, us and ug respectively
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for system (5.4), where ¢ € [0, 3] is the time interval, N = 300 is the number of subintervals,
K = 4 is the order of the approximation and A = 0.01 is the time step. The results in these
figures show that the MsDTM approximate solution is in excellent agreement with the RK4
solution for the three components, w1, us and ug respectively along the interest interval. On
the other hand, the DTM approximate solution diverges along the interest interval for ¢ > 0.4,
t > 0.4, and t > 0.5 respectively. It is clear that the MsDTM is an effective method to enlarge
the domain of convergence for a system of nonlinear ODEs. The error of the MsDTM and the
error of the DTM are plotted in Figures and [12] for the three components w1, us and us3
respectively. It can be observed that the MsDTM error is very small compared to the DTM error
for all components. The results in these figures indicate the MsDTM is more accurate and more
reliable.

Figures [[3] [[4]and [T5] show that the phase portrait of the MsDTM approximate solution and
the phase portrait of the DTM approximate solution in 2-D views with respect to u; —usg, u; —us
and us — ug respectively. The results confirm that the MsDTM is a more accurate and a more
powerful device for solving a system of several nonlinear ODEs. Figure(16|shows a comparison
between the MsDTM approximate solution and the DTM approximate solution in 3-D views.
It can be seen easily the clear diverge between the MsDTM approximate solution and the DTM
approximate solution in 3-D views. This confirms the MsDTM is a more accurate and a more
efficient. System (5.4) was also solved using the RK4 method [[18]. The results obtained by
RK4 were analyzed and its fundamental properties like dissipativity, symmetry and invariance,
equilibria, Lyapunov exponents and Kaplan-Yorke dimension were examined. Similarly, the
proposed method gives the same phase portraits in 2-D views and 3-D views as shown Figures
[13] [14] [15] and [16] This indicates the proposed method is in good agreement with the RK4
method.

6. CONCLUSION

In this paper, a new proposed technique, the MsDTM, is applied to solve nonlinear systems of
ODES. Comparison between DTM and MsDTM shows that MsDTM can solve nonlinear sys-
tems of ODEs more accurately without linearization, discretization or perturbation transform.
The analytical approximate solutions obtained by MsDTM are valid over larger time intervals
than the standard DTM.
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