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1. INTRODUCTION

Let £ be a Banach space and B = {z € F : ||z|| = 1}, then E is said to be strictly
convex if for anyz,y € Bgr andx # y implies M < 1. E is also said to be uniformly
convex if for eache € (0, 2], there exist9 > 0 such that for any:,y € Bg, ||z — y|| > €
implies 244l < 1 — 4. It is known that a uniformly convex Banach space is reflexive and
strictly convex Thamodulus of convexityf F is the functiong : (0,2] — [0, 1] defined by

op(e) == mf{l—H

E is uniformly convexf and only if 6z(¢) > 0 for all € € (0, 2] andp-uniformly convexf
there is aC), > 0 such that z(¢) > C,e” for anye € (0, 2]. Clearly, every p-uniformly convex
Banach space is uniformly convex. For example, see [3, 36] for more details.

r+y

|:2y€Bre=l—yl}

[l + tyll — ||

A Banach space E is said to be smooth if the Illnﬁ exists for allx,y € Bg

and is said to be uniformly smooth if the limit i |s attalned uniformly foy € Bg. Itis well
known that Hilbert and the Lebesgug(l < p < 2) spaces are 2-uniformly convex and uni-
formly smooth.

The mapping/,(z) (p > 1) from E to 2¢" defined by
Jp(w) = {z" € B*: (z,2%) = ||[|||27]|, [|2"]| = [l«|"7"} Vo € E,

is called the generalised duality mappingp K 2, thenJ, = J is the normalised duality map-
ping. If E is smooth, strictly convex and reflexive, théh= J~!, whereJ* : E* — 2F is the
the normalized duality mapping afi*. Also, if £ is uniformly convex and uniformly smooth,
then.J is uniformly norm-to-norm continuous on bounded subsetg @ihd J—! = J* is also
uniformly norm-to-norm continuous on bounded subset&afLet £ be a reflexive, strictly
convex and smooth Banach space andIbe the duality mapping fromy into E*, then.J ! is
also single-valued, one-to-one, surjective, and it is the duality mappingffomto £. Some
other properties of the normalised duality mappings includes:

(1) For everyr € E, Jx is nonempty closed convex and bounded subsétof

(2) If E is smooth orE™* is strictly convex, thery is single-valued.

(3) If £ is strictly convex, thery is one-one.

(4) If E is reflexive, then/ is onto.

(5) If E is strictly convex, ther/ is strictly monotone, that iz — y; Jx — Jy) > 0; for all
x;y € E such thate # y.

For more properties of the normalized duality mapphgee for example [1, 35].

Let £ be a Banach space and et be the topological dual aF, let the duality pairing between

FE andE* be denoted., .). Let C' be a nonempty, closed and convex subset ain this paper,

we consider the following Variational Inequality Problem (VIP) introduced by Stampacchia
[23], which is to find a point € C' such that

(1.2) (A(x),x —x) >0, Vx € C,

whereA : E — E* is a single-valued mapping. The solution set of \[IP](1.1) shall be denoted
by VI(C, A). The VIP is considered invaluable and have been studied extensively due to its
applications to humerous problems arising in differential equations, mechanics, contact prob-
lems in elasticity, optimization and control problems, management science, operations research
and general equilibrium problems in economics and transportation. In both Hilbert and Banach
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spaces, variant iterative methods have been utilized to study and approximate solutions of VIP
(I.7) whenA has some monotonicity and Lipschitz continuity properties, (see, for example,
5,6,[9,10/ 11, 16, 17,18, 21,122,124 31| 32, 37] and the reference therein.)

An operatorA of C' into £* is said to be
(i) monotone if(z — y, A(x) — A(y)) > 0,Vx,y € C.
(i) a-inverse-strongly-monotone if there exists a positive real numiserch that

(& =y, A(z) = A(y)) = al|A(z) — A(y)|*, Va,y € C.

(iii) L-Lipschitz continuous if there exists a constdnt> 0 such that||A(z) — A(y)|| <
Lllx —y||,Vz,y € C.

Clearly, everyn-inverse-strongly-monotone mapping is monotone §Mpschitz continuous.
But, the converse is not true.

(iv) B-strongly monotone if there exists a positive real numbsuch that

(r —y, A(z) — Ay)) = Bllz - yl|*,Va,y € C.

The gradient method in which only one projection onto the feasible set is performed is a simple
method for finding the approximate solution of variational inequalities. This process is to start
with any zp = = € C and generate iteratively the subsequent term, according to the
formula

(12) Tnt+1 = HCJ71<an - TnA(xn))a n > 07

wherell, is the generalised projection mapping fratnonto C, J is the normalised duality
mapping andr,, is a sequence of positive numbers. However, the convergence of this method
requires a slightly strong assumption that operators are strongly monotone or inverse strongly
monotone([18].

Many authors have succeeded to remove the assumption of strongly monotone or inverse strongly
monotone in frame works of both Hilbert and Banach spaces by adapting the extrgradient
method proposed by Korpelevidh |21] for saddle point problems to variational inequality prob-
lems. More precisely, the Korpelevich’s extragradient method for a monotone and L-Lipschitz
continuous operatod : £ — E* is designed as follows:

To € E,
(1.3) Yn = Uod " H(Jz, — pA(zy)),
Tpy1 = U (Jx, — nA(yn)).

wherep € (0, %). If the solution seV/ 1(C, A) is nonempty then the sequenge,} generated

by process|(1]3) converges weakly to an elemeififiC, A) (May we point out here that the
original Korpelevich’s extragradient method was in the frame work of Hilbert spaces where the
generalised projection reduces to the metric projection and the normalised duality mapping

is the identity operator on the Hilbert space). In recent years, the extragradient method has
received great attention and many authors have come out with some improved version of it,
see, e.g.,/16,17,18, 9, 10,112,114, 15] 17, 20,26, 27| 30, 33, 34, 40, 41, 46] and the references
therein. The extragradient method has its own drawback due to the requirement to calculate two
projections onto the feasible g€t Since the projection onto a closed convex@as related to

a minimum distance problem, @ has a complex structure, this might be costly with respect to
the amount of computation time.

One of the notable iterative algorithm that have be used to overcome this drawback is the sub-
gradient extragradient method (see, €.¢. [8, 9, 10, 25]). In the subgradient extragradient method,
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the second projection in Korpelevich’s extragradient method is replaced by a projection onto a
half-space which is computed explicitly. Precisely, the subgradient extragradient method in
Banach spaces is given as follows:

xo € F,

Yn = HC'J_l(an - TnA(xn))a

T, ={weFE: (Jr, —1,A(xn) — Jyn,w — yn) <0},
Tpy1 = g, J N (T2 — 7 A(yn)).

Using this type of iterative algorithm (witd- = P, and.J the indentity operator), Censor et
al. [10], obtained a weak convergence result in Hilbert space.

(1.4)

Liu [25] presented a modified subgradient extragradient algorithm in Banach spaces for finding
a solution of the variational inequality (1.1) which is also a fixed point of a given relatively
nonexpansive mapping. His algorithm is as follows: For mappigs: £ — E and a closed

and convex subsét of £, define three iterative sequendes, }, {v.} and{z,} by:

( x9€ F,
Y = od Hx, — T, A(2)),
T,={w e E: (w—y, Jr, — 1,Ax,) — Jy,) <0},
Wy, = 1_[Tn J_l(xn - TnA<yn))7
zn = J HanJzo + (1 — ay,) Jwy,),
(T = J B, T, + (1= 8,)TS(z,)).
Under the condition thatl is monotone and Lipschitz, he obtained a strong convergence result

in 2-uniformly convex and uniformly smooth Banach spaces, whasea relatively nonexpan-
sive mapping.

(1.5)

We observe here that the results of Liul[25] requires the prior knowledge of the Lipschitz con-
stant of the cost operatof, which is sometimes very difficult to compute. This raises a very
natural and important question of the possibility of an iterative algorithm for approximating a
common solution of variational inequality (1.1) and a fixed point problem for a relatively non-
expansive mapping which does not depend on the prior knowledge of the Lipschitz constant of
the cost operatod. This question has been answered in the frame work of Hilbert spaces, for
example see Thong and Hieu [39].

Motivated by the works of Thong and Hieu [39] and Liu [25], we contribute to the ongoing
research by proposing a self adaptive iterative method without linesearch which is independent
of the Lipschitz constant of the cost operator for finding a solution of variational inequality (1.1)
which is also a common fixed point of an infinite family of relatively nonexpansive mappings
in the frame work 2-uniformly convex and uniformly smooth Banach spaces.

2. PRELIMINARIES

Let E be a smooth Banach space, Alber [2], introduced the following Lyapunov functional
¢: F x E — R defined as:

o(w;y) = [lell* — 2(z; Jy) + [yl

for all z;y € E. Observe that, in a Hilbert spadé, o(z;y) = ||z — y||* forall z;y € H. Itis
clear from the definition o that for allz; y; z; w € F,

(2.1) (Nl = lyl1)* < ¢(asy) < (=]l + llyl)*.
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(2.2) P(z,y) = d(z,2) + ¢(2,y) + 2(z — 2, Jz = Jy).

24)  o(z,y) = (z,Jx— Jy) + {y — . Jy) < ||z|l[|Jz — Jyl| + [ly — 2|l[|y]]-
If £ is additionally assumed to be strictly convex, then

(2.5) ¢(z,y) = 0if and only if x = y.

Lemma 2.1. (see[29]) Let E be a uniformly convex and smooth Banach space ang:|gt
and{y,} be two sequences &. If ¢(z,,y,) — 0 and either{z, } or {y,} is bounded, then
Tp —Yn — 0.

Lemma 2.2. (see[32]) Let £ be a 2-uniformly convex and smooth Banach space. Then, for
everyr,y € E, ¢(x,y) > c1||z —y||?, wherec; > 0 is the 2-uniformly convexity constant Bf

The following mappind’ : £ x E* — R was studied in Alber [2]:
(2.6) V(z,a") = ||2[]* — 2(z, 2") + ||27[%,
forall x € E andx* € E*. Clearly, V(z,z*) = ¢(z,J ' (z*)) for all z € F andz € E*.

For eachr € E, the mappingy defined byg(z*) = V(x,z*) for all z* € E* is a continuous,
convex function from&™ into R.

Lemma 2.3. (see[2]) Let E be a reflexive, strictly convex and smooth Banach space aid let
be as in(2.6). Then

Vie,a?) + 2007 (2%) — 2,y") < V(e,a* +y"),
forall z € EFandz*, y* € E*.

Let C' be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach spacé#’, then for eachr € F (see Alberl[[2]), there exists a unique elemert C' such
thato(z, ) = mingec ¢(y, z). The mappindle : £ — C, defined byl (z) = z, is called the
generalized projection mapping fromontoC andz is called the generalized projection.of

If £ is a Hilbert space, then the generalized projectigncoincides with the metric projection

Pe.

Lemma 2.4. (se€[16,129) LetC' be a nonempty closed and convex subset of a smooth Banach
spaceF andz € E. Then,z = Il (x) ifand only if (z — y, Jx — Jz) > 0, Yy € C.

Lemma 2.5. (se€]16,/29) Let £ be a reflexive, strictly convex and smooth Banach spacé€; let
be a nonempty closed and convex subsétaind letz € E. Theng(y, e (x))+o(Tle(x), ) <

o(y,z),Vy € C.

LetC be a nonempty closed and convex subset of a smooth, strictly convex and reflexive Banach
spaceE’ andT be a mapping front' into itself. A pointz € C'is said to be a fixed point of

T if Tr = x. We denote the set of fixed points @f by F(T). A pointp € C'is said to

be an asymptotic fixed point df if there exists{x,,} in C which converges weakly tp and
limy, o0 | |2, — T2,|| = 0. We denote the set of all asymptotic fixed points of TAT).

Definition 2.1. ([29,[32]) A mappingl” of C into itself is said to be relatively nonexpansive if
the following conditions are satisfied:

(i) F(T) is nonempty;

(i) o(u,Tx) < ¢(u,x),Yu € F(T),z € C,

(iiy F(T) = F(T).
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Lemma 2.6. (see[29]) Let E be a strictly convex and smooth Banach space(lée a closed
convex subset af’, and letT" be a relatively nonexpansive mapping framnto itself. Then
F(T) is closed and convex.

An operatorA of C' into £* is said to be hemicontinuous if for all y € C, the mappingf
of [0, 1] into E* defined byf(t) = A(txz + (1 — t)y) is continuous with respect to the wéak
topology of E*.

Lemma 2.7. (see[16]) Let C' be a nonempty, closed and convex subset of a Banach space
FE and A a monotone, hemicontinuous operator@finto £*. ThenVI(C,A) = {u € C :
(v—u,A(v)) >0, Yv € C}.

It is obvious from Lemma 2|7 that the SET(C, A) is a closed and convex subset(af

Lemma 2.8. (see[28]) Let {a,} be a sequence of real numbers such that there exists a sub-
sequencgn;} of {n} such thata,, < a,,;, for all i € N. Then there exists a nondecreasing
sequencegmy} of N such thatlim,_.., m; = oo and the following properties are satisfied by
all (sufficiently large) numbek € N:

Uy, < A1 a0d @ < gy 41
In fact,m;, = max{j < k:a; <aj1}.

Lemma 2.9. (see[43]) Let {a,,} be a sequence of nonnegative real numbers satisfying the
following relation:
An+1 S (1 - an>an + anéna n Z no,
where {a,,} C [0,1] and {0,,} is a sequence of real numbers satisfying -, o, = oo,
lim,, .., v, = 0 andlim sup é,, < 0. Thenlim,,_,, a,, = 0.

Lemma 2.10. (see[44]) Let E be a uniformly convex Banach space andrlet 0. Then there
exists a continuous strictly increasing convex functjori0, 2r| — R such thaty(0) = 0 and

Itz + (1= t)yll* < tll2ll* + A = )llylI* — 11 = t)g([lx = yl]).
forall z,y € B.(0) andt € [0, 1], whereB,(0) = {z € E : ||z]| < r}.

3. MAIN RESULTS

In this section, we will always assume the following conditions.

Al. E is a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly
convexity constant; andC' is a nonempty closed convex subsetbf
A2. The mappingd : £ — E* is monotone and Lipschitz continuous 6rwith Lipschitz
constantZ > 0.
A3. T; : E — E ( For each j > 1) is a relatively nonexpansive mapping.
A4 VI(C,A) N (N2 F(Ty)) # 0.
We now present a viscosity type subgradient extragradient algorithm for finding a point in the
solution set of a variational inequality problem which is also a common fixed point of a infinite
family of relatively nonexpansive mappings in 2-uniformly convex Banach spaces which are
uniformly smooth. We further state and prove a strong convergence result with the proposed
algorithm.

Algorithm 3.1. Initialization: Givenr, > 0, i € (0, ¢1), and arbitraryx, € E.
Step 1.Computey,, = Il JH(Jz, — T, A(zy)).
Step 2.Computez,, = Iy, J ' (Jx, — 7,A(y,)), Wwhere

T,={weFE:(w—y,Jr, — 7,A(x,) — Jy,) < 0}.
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Step 3.Computer,, 1 = J (v + B, Jz0 + D221 7, i I Tj(20))
and

- plln — ynll .
(31) Tn+l = { i { HA(J:”) _ A(yn)H 7Tn}7 if A('xn> 7£ A<yn)7

Tn, Otherwise.

Lemma 3.2. The sequencér,, } generated by3.1)is a nonincreasing sequence and

lim 7,, = A > min {7’0, %}

n—oo

Proof. See the proof of Lemma 3.1 in [45§.

Lemma 3.3. Let{z,}, {y,} and{z,} be the sequences generated in Algorithn} 3.1 are
VI(C,A)N (N5, F(Ty)). Then,

(32 ou.z) < Bluwa) = (1= L) oy ) = (1= )6l n).

C1Tn+1 C1Tn+1

Proof.

S, z,) < S(u, T (T2 = 70 A(Yn))) = G20, T (20 — T2 A(Yn))
= qb(u, In) + (rb(xm J_I(an - TnA(yn))) + 2<u — Tn, TnA<yn)>
—0(2n, Tn) — A(2n, J_I(an — TnA(Yn))) — 2(zn — T, TnA(Yn))
(3.3) = ¢(u,n) — G20, Tn) — 27n(2n — u, A(Yn))-
SinceA is monotone, we haver,, (A(y,) — A(u), y, —u) > 0. Therefore, addingr,, (A(y,) —
A(u),y, — u) to the right hand side of (3.3), we obtain
O(u, 2n) < O(u,mn) — Azn, n) — 27020 — w, A(Yn)) + 270 (A(Yn) — A(w), Yo — w)
= o(u, ) — &(zn, Tn) + 270 (A(Yn), Yn — w)
—27, (A(u), yp — ) — 27, {20 — u A(yn)>
¢(u, ) — (Zm Tn) + 270 (Yn — 20, A(Yn)
- ¢(u> ajn) - (Zn7 mn) + 27—n<yn — Zn, A )
But by the Cauchy Schwartz inequality and the definitiom,gfwe have

27—n<yn — Zn; A(yn) - A(xn» < 27—n||A(yn) - A(In)HHyn - Zn”

Tn
< Hyn_anHyn_ZnH
n+1
HUTn HUTnp
< Hyn_anz Hyn_anQ
Tn+1 n+1
Tn Tn
(3.5) < T ) + Gz ).
C1Tn+1 C1Tn+1

Again, by the definition of/;,, we have
(zn — Yn, Jxp — TR A(x) — Jyn) <0,
which implies
27 (A(@n), Yn — 20) < 2(Tyn — JTpy 20 — Yn)

(36) ¢(Zm xn) - ¢(Zn> yn) - ¢(yn> l'n)
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It then follows from [[3.4),[(3}5) andl (3.6) that

P(u, zn) < d(u, 2n) — G20, Tn) + Cllj_t:_l A(Yn, Tn) + ij_zzl
(3.7) —0(2n,Yn) = O(Yn, Tn) — 270 (A(U), yn — u).

Obviously, fromu € VI(C, A), we have(A(u), y, — u) > 0, Thus, we have fronj (3 7) that

A (2n, Yn) + (20, 1)

(38)  olu.2) < $luswn) = (1= L) élyn ) = (1= )6l ).

C1Tn+1 C1Tn+1

Theorem 3.4.Let{a,},{3,} and{v, ;}52,, be sequences chosen(ih 1) such that

(I) lirnn—wo a, =0,

(“) Z'fozozl ap = 00,
(i) 0<a<p,,> 2 7,; <b<land

(V) an+ B, + 2350 Ty = 1.
Suppose the conditions A1-A4 hold, then the sequéngegenerated by Algorithn{B.1]) con-
verges strongly to = Iy r(c,a)n(ree, F(1;)) V-

Proof. First, we show thafx, } is bounded.
Then From Lemma 3|2, we have

lim <1— HTn ):1—ﬂ>0.

n—00 C1Tn+1 C1

This implies that there exisig € N such thafl — 0—1‘% > 0,Vn > ng. Thus from Lemm3,
we havep(p, z,) < ¢(p, z,,), ¥n > ny. Therefore, for allh > ny, we have

¢(p7 xn—i—l) = ¢< ) ‘]_l(anJU + 671‘]2” + Z fYn,]J,IYJ<Zn))>
J=1

< angb(pa U) + ﬁnqb(p, Zn) + Z 7n,j¢(p’ Tj(zn))

j=1

By 0) + B (b, 20) + 3 V(s 20)

=1

@ d(p,v) + (1 — ) d(p, 21)
an¢(p> U) + (1 - an)¢(pa $n)
max{@(p, v), (p, zn)}

IN

IN N

(3.9) max{p(p,v), d(p, Tn,)}-

Hence the sequende(p, z,,)} is bounded and consequently, we have that} is bounded.
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We now continue with the rest of the proof. From Lenjmg 2.3, we have

¢(p7 'Tn+1) = V(p, anJU + ﬁnJZn + Z’yn,]J(ZjJ(ZTL))

J=1

V(pa apJu+ ﬁn(]zn + Z’yn,y]l-rj(zn) - an(Jv - ‘]p))

<
j=1
—(J YanJv+ 8,2, + Z’waTj(zn) —p, —ap(Jv — Jp))
j=1
- v<p’ anjp + ﬁn‘]z” + nyn,jjjjj(z?ﬁ) + O‘n<xn+1 - D Jv — Jp>
j=1
— ¢<p> J YanJp + B,z + ZvnjjJTj(zn)D + ap(Tps1 — p, Jv — Jp)
j=1
S an¢(p>p) + ﬁn(pa Zn) + Zvn,jgb(pa iT’](Zn)) + an<$n+1 - p, J’U — Jp>
j=1
S 5n(p7 zn) + Z’}/nd(lﬁ(p, Zn) + Oén<xn+1 —p, Jv — Jp>
j=1
- (1 - an)¢(p7 Zn) + an<xn+1 — P, Jv — Jp>
(310) S (1 - Oén)¢(p7 xn) + an<xn+1 - D Ju — Jp>, vn 2 ng.

Let us now consider two cases.
Case 1:Assume that there exists € N such that)(p, z,,11) < é(p, x,,) for all n > ny. Then

{é(p, x,)} converges andim,, ...(¢(p, zp41) — ¢(p,x,)) = 0. Setw,, = J—1<1f—gn,]zn +
%Jﬂ(zn)) Then

l—ap

T = J o Jv+ (1 — ay)Jwy).

Now, since{z,} and{z,} are bounded, there exists> 0 such that{z,},{z,} € B.(0).
Therefore, by Lemmp 2.10, there exists a continuous, strictly increasing and convex function
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g : [0,7] — Rwith g(0) = 0 such that

oorw0) = oo (g 4 ZEm )

1—oa, 1—a,
2 B Zy 1 Tnj 2
— _Un g, ==t i g
Il + || 2t o+ ST )
/8,” Z: f)/n,'
ol )2 ZE )
ﬁ 2 Zoil’yn 2
< 2 n J 5J T
| | |
B 251 g (H
- - 7 T n) = n )
—a 1-a. gl ||JT(zn) — J =
—21f (P T2n) 2 —Zlfjl;"’j<p,JTj<zn>>
’yn 1771 2 ZoilfYn 2
- (=B ZE - ZE
( 1—oa, 1—oa, PI| 1—a, :
Z':l’yn,' 2
o ZE2) 2 EE )
B 22je1 Tng <H
- “ : T n) n >
o 1_a, gl ||JT(zn) — J =
200: ’Yn,' Zoi fyn,'
= (1= S op, z) + S0, Ty(z)
B 251 g <H
- - 7 T} n) n >
—a 1_a. g\ [|JT;(2n) — J2
(3.11) < 0p ) = T ([T ) — T ).

Therefore, from[(3]8) andl (3.]L1), we have
¢(p7 xn—l—l) S an¢(p7 U) + (1 - Oén>¢(p, wn)

< and(p,) + 6(p, 2) — Zf_”"” )

@6 (p,v) + (0, a) = (1= 27 () = (1= 27620, 1)

7—n+1 7—n+1
>
B, j=1 Tn,;j )
l—a, 1—a, '

(HJT %) — Jzn

IN

(3.12) g(HJTj(zn) —J2,

which implies

(1 - )(b(yn’ Zn) + (1 - 4 )¢(Zmyn>

Tn+1 Tn+1

l1—a, 1—aq,

(3.13) +

o(|[ 130 = 7,

) < (D, v) + 60, 22) = (P, ns1).
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Hence, sincéim,, ., (1 — ﬂ) = (1 — ﬂ) > 0, we have

ATntl c1
(3.14) nhﬂrgo | JTj(2n) — J2n|| = 0.

and

(3.15) im ¢ (y,, zn) = lim ¢z, yn) = 0.

From (3.15%), we get

(3.16) Tim [[y, — | = 0

and

(3.17) Tim [[gn — 2| = 0.

(3.18) |0 = 2nll < |z = ynll + |lyn — 2nl| = 0,7 — oo

Furthermore, sincd ! is uniformly norm to norm continuous, we have frdm (3.14) that
(3.19) lim ||Tj(z,) — zn|| = 0.

Therefore, from[(2J4)[ (3.14) and (3]19), we get

Oz Ty(zn)) = Az Jz0 = JT5(20)) + (Ty(za) = 20, T 20)
(3.20) < NlzallllTz = ITy )+ 1T520 = 2allIIT3 ()] = 0,n — oo.

Hence,

O(Zn, Tpy1) = gb(zn, J N anJv + BTz, + Z 'wa?}-(zn))

j=1
(3.21) < @z ) + Bz ) + Y A 0n Ty2)) — 0, — o,
j=1

which implieslim,, . ||z, — zn41]| = 0. Thus, from [(3.1B), we have
(3.22) 20 — T || < lwn — 20| + |20 — Toga || = 0,n — o0
Since the sequende:,, } is bounded, there exists a subsequefge } of {z,,} such that

limsup(z,+1 — p, Jv — Jp) = klim (T, —p, Jv — Jp).

n—oo

andzx,, — ¢ forsomeq € E.

Next, we show thay € VI(C, A) N (N2, F(T})). Letz € C. Sincey, = IgJ ' (Jz, —
T, A(x,)), then by Lemma 2]4, we have

(Y — , Jay — T A(xy) — Jyn) > 0,Vn > 0.

Thus,
<xn -, TnA(xn» = <In — Yn, TnA(xn» + <yn -, TnA(xn»
= (Tp — Yn, TnA(T0)) — (Yn — &, Jxp, — TR A(Tn) — JYn)
Y — 2, Jxy — JYp))
< <xn — Yn, TnA(xn» + <yn -z, Jx, — Jyn)>
(3.23) < TallA@a)[[|zn = yall + [[J20 = Jyallllyn — ||
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SinceA(z,,) is bounded)im,, ., ||z, — y»|| = 0 and.J is norm to norm uniformly continuous,
we have from[(3.23) thatm sup(z,, — =, 7,,A(z,,)) < 0. Thus, from the monotonicity ofl, we

n—oo

have that

(¢ —z,7,A(z)) = limsup(z, —z,7,A(z))

n—oo

(3.24) < limsup(x, — z,7,A(z,)) < 0,Vx € C.

Sincez,, — ¢ and lim ||z, — y,|| = 0, we havey,, — ¢. Noting thatC' is closed and convex
andy, € C,Vn > 0, then from Lemma 2|7 an@ (3.24), we conclude thatVI(C, A).

Furthermore, from the definition of relatively nonexpansive mapping, |(3.18)[and (3.19), we
haveq € F(T}), j =1,2,--- . Thatisq € N3, F(T}). Henceg € VI(C, A) N (N2, F(T})).

Now, from Lemmad 2.4, we have
lim sup(z,+1 — p, Jv — Jp) = klim (Tp, —p, Jv—Jp) = {(q—p, Jv—Jp) <O0.

n—oo

Therefore, applying Lemnja 2.9 0 (3]10), we obtain that, ... ¢(p, z,) = 0, which implies

|z, — p|| — 0,n — oo. Thatisz, — p = Wy e an(nee, F 1)) v-

Case 2.There exists a subsequeniceg,, } of {x,} such that

(b(p; xm) < ¢(p, xni+1> Vi € N.

From Lemmd 28, there exists a nondecreasing sequen¢®f N such thafim; .., n; = oo
and the following inequalities hold for alle N :

(325) ¢(p7 xm) < ¢(pv mnz+1)
and
(326) ¢(p> *Tl) < ¢(p7 xnﬂrl)'

Thus from [3.1B), we have
Tn Tn
(1 - L>¢(ynl7'xnz) + (1 - L) ¢(znl7 yn)

C1Tn+1 C1Tn+1

ﬁnl ijl fynhjg(H(]Tj(znl) - Jan

3.27
( )+1—anl 1 — ay,

) S anz¢(pv U) + ¢(pa xm) - gb(p? xnz+1)'

Hence, sincéim,, ... (1 - &) = (1 — ﬂ) > 0, we have

ClTnk+1 (&)
(3.28) llim || JTj(2n,) — J2zn,|| = 0.
and
(3.29) H O (Y, ) = 10 G (201, Y, ) = 0.

Using similar argument as in case 1, we obtain

lim sup(x,,,+1 — p, Jv — Jp) < 0.

l—o0

Furthermore, from (3.10), we have

¢(p7 xn;—i—l) S (1 - anl)¢(p7 xnl) + anl <xnl+1 _p7 JU - ‘]p>7 VZ 2 nO'
It therefore follows from[(3.25) that

(330) ¢(p7 xnl—&-l) S (1 - anl)¢(pa xnl-&-l) _I_ anl<$nl+1 - p? JU - Jp)
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Combining [3.26) and (3.30), we obtain

¢<p7 .Z’l) S <'rnl+1 - D, Ju — Jp>7
which giveslim sup,_, . ¢(p, z;) = 0 and thus; — p. 1

4. APPLICATIONS

4.1. Constrained Minimization Problem. In this subsection, we give an application of our
result to constrained minimization problem.
Consider the constrained convex minimization problem:

(4.2) min{ f(z) : x € C},

whereC' is a closed convex subset of a 2-uniformly convex and uniformly smooth Banach
spaceF and f : F — R is a real valued convex function. Assume tlfats continuously
Fréchet differentiable with Lipschitz continuous gradient:

(4.2) IVf(z) = Vi)l < Lllz —yll,

forall x,y € E, whereL is a positive constant. It is well known that the minimization problem
(4.7) is equivalent to the following variational inequality problem:

4.3) reC, (Vf(x),x—ax*) >0, Vo e C.
Moreover, the gradient of a convex and continuouséchet differentiable function is monotone.
Letting A = V f, we obtain from Algorithnji 3]1, the following algorithm for finding a solution
of (4.7) which is also a common fixed point of an infinite family of relatively nonexpansive
mappings.
Algorithm 4.1. Initialization: Givenr, > 0, i € (0, ¢1), and arbitraryx, € E.
Step 1.Computey,, = o J Y (Jx, — 7,V f(z,)).
Step 2.Computez, = I, J 1 (Jz, — 7,V f(y,)), where
T,=4{w € E: {(w—y, Jr, — 1,V [f(r,) — Jy,) <0}
Step 3.Computer,, 1 = J (v + B, Jzn + D22 7, i T5(20))
and

. wl|zn — yal| :
(4.4) =4 mn { T F () =V f ] T p A V() # V().

Tn, Otherwise.

4.2. Convex Feasibility Problem. Let {C}}32,, be nonempty closed and convex subsets'of
such that2, C; # ). The convex feasibility problem (CFP) is to finde M52, C;. Obviously
F(Ilg,) = Cjforall j > 1. Thus, if setT; = Il¢, in Algorithm|3.1, we obtain the following
Algorithm:
Algorithm 4.2. Initialization: Givenr, > 0, 1 € (0, ¢;), and arbitraryz, € E.
Step 1.Computey,, = Il J H(Jz, — 7, A(zy)).
Step 2.Computez,, = Iy, J ' (Jx, — 7,A(y,)), Wwhere

T,={w € FE: (w—1yn, Jr, — T,A(x,) — Jyn) < 0}.

Step 3.Computer,, ; = J Y(a,Jv + 3, ]2, + > 0o Ve (24))
and

. |20 — ynl| :
min s T (s it A(z, A(yn )
(4.5) Tnsl = {HA(xn) — Ay } (n) 7 Alyn)
Thns Otherwise.
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Therefore from Theorein 3.4, we obtain a strong convergence result for approximating a com-
mon solution of a variational inequality problem and a convex feasibility problem.

4.3. Equilibrium Problem. Let C be a closed and convex subset of a Banach spaaed let
f: C x C — R be a bifunction. The equilibrium problem for a bifunctigns to find

(4.6) x € Csuch that f(z,y) > Oforally € C.

The set of solutions above is denoted By ( f, C), that is

4.7) x € EP(f,C)iff f(z,y) > 0Vy € C.

To solve the equilibrium problen (4.6), the bifunctignis usually assumed to satisfy the fol-
lowing conditions:

(B1) f(z,x) =0, forall z € C;

(B2) f is monotone, that isf (z,y) + f(y,x) <0, forall z,y € C;

(B3)forallz,y, » € C,limsup,, f(tz + (1 —t)z,y) < f(2,9);

(B4) forallz € C, f(z,.) is convex and lower semicontinuous.

Lemma 4.3. ([38], Lemma 2.8) Let” be a nonempty closed convex subset of a uniformly
smooth, strictly convex and reflexive Banach spéceet f be a bifunction fronC' x C — R
satisfying(A1) — (A4). For r > 0 andz € E, define a mappin@’ : E — C as follows:

1
(4.8) Trf:{26C:f(z,y)+;<y—z,Jz—Jx>ZOVyEC’}

for all x € E. Then, the following hold:

(1) T/ is single-valued;
(2) T/ is a firmly nonexpansive-type mapping, that is, foraly € E

(3) F(T}) = Ep(f,0),
(4) EP(f,C) is closed and convex arid is a relatively nonexpansive mapping.

Letting Th = T; in Algorithm, we obtain the following Algorithm:

Algorithm 4.4. Initialization: Givenr, > 0, i € (0, ¢1), and arbitraryx, € E.
Step 1.Computey,, = Il JH(Jz, — 7, A(zy)).
Step 2.Computez,, = Iy, J ' (Jx, — 7,A(y,)), Wwhere

T,=4{w € E: {(w—y,, Jr, — T, A(x,) — Jy,) < 0}.

Step 3.Computer,,1 = J (e Jv + 8,2 + 300, 7, i JT (20))
and

. pllzn = yall .
@10) e ) P T T AG) # A

Tn, Otherwise.

Thus from Theorer 3]4, we obtain a strong convergence result for approximating a common
solution of an infinite family of equilibrium problems which also solves a variational inequality
problem.
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5. CONCLUSION

We introduce a subgradient extragradient algorithm with self adaptive variable step sizes with-
out line search which does not require a prior knowledge of the Lipschitz constant for the ap-
proximation of a solution of variational inequality problem which is also a common fixed point
of an infinite family of relatively nonexpansive mappings in 2-uniformly convex Banach spaces
which are uniformly smooth. Using the proposed algorithm, we stated and proved a strong
convergence result and give some applications in 2-uniformly convex Banach spaces which are
uniformly smooth. The result of this paper extends the work of Thong and Hieu [39] from
Hilbert spaces to 2-uniformly convex Banach spaces which are uniformly smooth. In our future
project, we hope to introduce a new inertial accelerated version of Algofithm 3.1 for finding a
solution of variational inequality problem which is also a common fixed point of a family of
relatively nonexpansive mappings in 2-uniformly convex Banach spaces which are uniformly
smooth.
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