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ABSTRACT. We consider a mathematical model which describes the dynamic evolution of a
thermo elasto viscoplastic contact problem between a body and a rigid foundation. The me-
chanical and thermal properties of the obstacle coating material near its surface. A variational
formulation of this dynamic contact phenomenon is derived in the context of general models
of thermo elasto viscoplastic materials. The displacements and temperatures of the bodies in
contact are governed by the coupled system consisting of a variational inequality and a para-
bolic differential equation. The proof is based on a classical existence and uniqueness result on
parabolic inequalities,differential equations and fixed point arguments.
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1. I NTRODUCTION

Dynamic or quasistatic contact phenomena for elastic-plastic or viscoplastic materials with
heat flow appear in many engineering problems [1, 5, 7] and are intensively studied in literature
(see references in [1, 2, 3, 4, 8, 10, 12, 14, 17, 21, 22]). General model of thermo-elastic-
viscoplastic material is characterized by a rate–type constitutive equation with internal variables
modeling their impact on the behavior of real bodies in contact under plastic deformation. The
considered internal state variables include, among others, spatial display of dislocations, the
work hardening of materials, the temperature or the damage field [3].

The existence of solutions to these contact problems is studied in monographs [11, 13] and
papers [1, 3, 9, 12, 15, 16, 18, 19].

The paper is concerned with the analysis and numerical modeling of the rolling contact be-
tween a rigid wheel and an elasto-viscoplastic rail lying on a rigid foundation. The contact
phenomenon includes also a heat generation and flow through the contact surface [6, 18]. The
obstacle is assumed to be covered with functionally graded coating material which properties
depending on the spatial variables according to the power law. In the paper the nonhomogeneous
plastically graded model of the coating layer rather than elastic one as in [7, 20] is assumed. The
existence of solutions for this hyperbolic, parabolic coupling of the boundary value problems is
presented in the context of general models of thermoelastic-viscoplastic materials.

The paper is organized as follows. First in Section 2 we formulate the dynamic frictionless
contact problem for a body with a normal compliance. Moreover, we introduce some notations
and preliminaries which will be used in the next. In Section 3 and by using the monotonicity
arguments and fixed point theorem we establish the existence of the solution of the problem
considered.

2. M ECHANICAL PROBLEM AND VARIATIONAL FORMULATION

Consider a dynamic frictionless contact problem for a body occupying a bounded domain
Ω ⊂ R2 with a Lipschitz continuous boundaryΓ. This boundary is divided into three disjoint
measurable partsΓ1, Γ2 andΓ3. Assumemeas(Γ1) > 0. A body is assumed clamped along the
boundaryΓ1, i.e., the displacement vanishes there. Along the boundaryΓ3 ×(0, T ) the body is
assumed to be in contact with the foundation. The surface tractionf2 acts on the boundaryΓ2

×(0, T ).The body is loaded by a volume force of densityf1 in Ω × (0, T ). The external heat
sourceq is applied inΩ× (0, T ). The body is assumed to undergo the coupled thermal as well
as elastic-viscoplastic deformation with linear isotropic and kinematic hardening.

Let us denote byu = (u1, u2), u = u(x, t), x ∈ Ω, t ∈ (0, T ), T > 0 is given, and by
θ = θ(x, t) a displacement field and a temperature field of the body, respectively.

The infinitesimal strain tensor is denoted byε(u) = (εij(u)) and the stress field byσ = (σij),
whereε(u) = 1

2
(ui,j + uj,i), i, j = 1, 2.

The divergence operatordiv is defined asdiv(σ) = {σij, j}, i, j = 1, 2, and

σij, j =
∂σi,j

∂xj

The symbol denotes the derivative with respect the time variable.

.
u =

∂u

dt
and

..
u =

∂2u

∂t2

We denoteυ the unit outward normal vector to the boundaryΓ.
The normal and tangential components of the displacement fieldu are denoted by

uυ = u · v = ui.vi , i = 1, 2 , uτ = u− uνv
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Respectively, similarly normal and tangential components of the stress fieldσ are denoted by
σν = συ·υ andστ = σν − σνυ.

Denote byS2 the space of second-order symmetric tensors onR2. Moreover

Q =
{
q = (qij)2×2 : qij = qji qij ∈ L2(Ω)

}
and

Q0 = {q ∈ Q : tr(q) = 0}
is closed subspace ofQ. Additive small strain plasticity model is used Additive small strain

plasticity model is used [10, 11, 12] whereεp denotes the plastic part of the strain tensor.
We denote by(σ,X ) ∈ Q × [L2(Ω)]2 and(εp, ζ) ∈ Q0 × [L2(Ω)]2 the generalized stress

and strain tensors respectively. For a given yield functionφ the set of admissible generalized
stressesK is defined by

K = {(σ,X ) : φ(σ,X ) ≤ 0}
Denote byNK a normal cone to the setK at a point(σ, X ) and byφ the support function of

the setK called the dissipation function [11] as well as byKp = domφ.

Problem 1. P. find the displacement fieldu : Ω× [0, T ] → R2 ,the stress fieldσ : Ω× [0, T ] →
S2 , the internal field(εp,ζ) : Ω× [0, T ] → R2×2 × R2and the temperatureθ : Ω× [0, T ] → R
satisfying

(2.1) ρ
..
u = div σ + f1 in Ω× (0, T )

(2.2)

 σ(t) = A(ε(
.
u(t))) + E(ε(u(t))) +

1∫
0

G(σ(s)−A(
.
ε(

.
u(s)), ε(u(s)), θ(s), ζ(s))ds

in Ω× (0, T )

(2.3) ϕ(q, η)− ϕ(
.
ε

p
,

.

ζ)− σ(q − .
ε

p
)−X (η −

.

ζ) ≥ 0 , ∀(q, η) ∈ Kp ,in Ω× (0, T )

(2.4) ρ
.

θ − θ = ψ(σ −A(ε(
.
u), ε(u), θ, ζ) + g in Ω× (0, T )

(2.5) u = 0 onΓ1 × (0, T )

(2.6) συ = f2 onΓ2 × (0, T )

(2.7) − συ = pν(uν) onΓ3 × (0, T )

(2.8) − στ = pτ onΓ3 × (0, T )

(2.9) ∇θν + k1θ =
∼
g onΓ3 × (0, T )
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(2.10) u(0) = u0, ε
p(0) = εp

0, ζ(0) = ζ0, θ(0) = θ0

Equation (2.1) represents the motion of the body whereρ denotes the material mass density.
The equation (2.2) represent the thermo-elastic-viscoplastic constitutive law with operatorsA
andE governing the viscous and the elastic properties of the material as well as with nonlinear
constitutive functionG governing viscoplastic properties of the material. The inequality (2.3)
describes the plastic flow. Heat flow is governed by the equation (2.4) whereψ is a constitutive
function representing the heat generated by the work of internal forces andg is a given volume
heat source. Displacement and stress boundary conditions are given by (2.5, 2.6), respectively.
Normal compliance condition with a given positive functionpν is described by (2.7). In (2.8
tangential tractionpτ is a given function. Fourier type boundary condition for temperature is
given in (2.9 with a given function

∼
g and constantk1 > 0. Suitable regular initial data functions

u0, u1, ε
p
0 , ζ0, θ0 in (2.10 are assumed to be given. Before we formulate initial problem (2.1 -

2.10) in variational form let us introduce the following spaces and subspaces,

(2.11) H =
{
{ui}2

i , i = 1, 2 : ui ∈ L2(Ω)
}

=
[
L2(Ω)

]2

(2.12) H =
{
σ = {σi, j}2

i,j=1 : σij = σji ∈ L2(Ω)
}

(2.13) H1 = {u ∈ H : ε(u) ∈ H}

(2.14) H1 = {σ = H : div(σ) ∈ H}

(2.15) V = H1(Ω) ,V =
{
v ∈ H1(Ω) : v = 0 , onΓ1

}
The spacesH,H ,H1,H1, V are endowed with the canonical inner products

(u , υ)H =

∫
Ω

uiυidx, i = 1, 2

The inner product on the spaceV is equal to

(u, v)V = (ε(u), ε(v))H

and let‖.‖V be the associated norm, defined by

‖υ‖V = ‖ε(υ)‖H

(σ, τ)H =

∫
Ω

σiτ idx , i = 1, 2

(u, υ)H1
= (u , υ)H + (ε(u), ε(υ))H

(σ, τ)H1
= (σ, τ)H1

+ (Div(σ), Div(τ))H

It follows from Korn’s inequality that‖.‖H1
and‖.‖V are equivalent norms onV. Therefore

(V ; ‖.‖V )is a real Hilbert space [12, 13].
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Moreover, by the Sobolev trace theorem there exists a positive constantC0 which depends
only onΩ, Γ1 andΓ3 such that

‖υ‖L2(Γ3)n = C0 ‖υ‖V ∀υ ∈ V
Furthermore, ifσ ∈ H1 there exists an elementσν ∈ H ′

Γ such that the following Green
formula holds

(σ, ε(υ))H + (Div(σ), υ)H =

∫
Γ

σν.γυ ∀υ ∈ H1

(f, g)V = (f, g)L2(Ω) + (fxi
, gxi

)L2(Ω)

LetV ′
andV ′ denote dual spaces to the spacesV andV , respectively. We have the inclusions

V ⊂ H ⊂ V ′
; V ⊂ L2(Ω) ⊂ V ′

Let us introduce the following assumptions.
The viscosity operatorA : Ω× S2 → S2 satisfies

(2.16)



(a) There exixts a constantL1 > 0 such that
A(x, ε1)−A(x, ε2) ≤ L1 |ε1 − ε2| ,∀ε1, ε2 ∈ S2,a.e.x ∈ Ω
(b) There exists a constantm1 such that
A(x, ε1)−A(x, ε2) ≥ m1 |ε1 − ε2|2 ,∀ε1, ε2 ∈ S2,a.e.x ∈ Ω
(c) The mappingx→ A(x, ε) is Lebesgue measurable onΩ,∀ε ∈ S2

(d) The mappingx→ A(x, 0) ∈ H

The elasticity operatorE : Ω× S2 → S2 satisfies:

(2.17)


(a) There exists a constantL2 > 0 such that:
E(x, ε1)− E(x, ε2) ≤ L2 |ε1 − ε2| ,∀ε1, ε2 ∈ S2,a.e.x ∈ Ω
(b)The mappingx→ E(x, ε) is Lebesgue measurable onΩ,∀ε ∈ S2

(c) The mappingx→ E(x, 0) ∈ H

The visco-plasticity operatorG : Ω× S2 × S2 × R× R → S2 is assumed to satisfy:

(2.18)



(a) There exists a constantL3 > 0 such that:
G(x, σ1, ε1, θ1, ζ1)− G(x, σ2, ε2, θ2, ζ2) ≤ L3(|σ1 − σ2|+
|ε1 − ε2|+ |θ1 − θ2|+ |ζ1 − ζ2|),∀σ1, σ2 ∈ S2,∀ε1, ε2 ∈ S2

∀θ1, θ2 ∈ R,∀ζ1, ζ2 ∈ R.a.e .x ∈ Ω
(b)The mappingx→ G(x, σ, ε, θ, ζ) is Lebesgue measurable onΩ ,
∀σ, ε ∈ S2, θ, ζ ∈ R.
(c)The mappingx→ G(x, 0, 0, 0, 0) ∈ H.

The dissipation functionϕ : Ω× S2 × R2 → R as well as the setKp of the admissible states
and the hardening modulusH satisfy

(2.19)


(a)ϕ is a proper,convex and lower semi-continuous function,
(b)Kp is nonempty,closed and convex set inL2(Ω; R2×2 × R2),
(c)the hardening modulusH is symmetric,positive definite
and linear operator fromR2 into R2.
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The functionψ : Ω× S2 × S2 × R× R → R satisfies:

(2.20)



(a) There exists a constantL4 > 0 such that:
ψ(x, σ1, ε1, θ1, ζ1)− ψ(x, σ2, ε2, θ2, ζ2) ≤ L4(|σ1 − σ2|+
|ε1 − ε2|+ |θ1 − θ2|+ |ζ1 − ζ2|),∀σ1, σ2 ∈ S2,∀ε1, ε2 ∈ S2

∀θ1, θ2 ∈ R,∀ζ1, ζ2 ∈ R.a.e .x ∈ Ω
(b)The mappingx→ ψ(x, σ, ε, θ, ζ) is Lebesgue measurable onΩ ,
∀σ, ε ∈ S2, θ, ζ ∈ R
The mappingx→ ψ(x, 0, 0, 0, 0) ∈ H

The normal compliance functionpν : Γ3 × R → R+ is assumed to satisfy:

(2.21)


(a) There exists a constantL5 > 0 such that:
pν(x, z1)− pν(x, z2) ≤ L5 |z1 − z2| ,∀z1, z2 ∈ R, .a.e.x ∈ Γ3

(b)The mappingx→ pν(x, z) is Lebesgue measurable onΓ3,∀z ∈ R
(c)The mappingx→ pν(x, z) = 0,∀z ≤ 0, a.e.x ∈ Γ3.

We shall also assume:

(2.22) f1 ∈ L(0, T,H), f2 ∈ L2(0, T,
[
L2(Γ2)

]2
)

(2.23) g ∈ L2(0, T, L2(Ω)) ,
∼
g ∈ L2(Γ3) , k1 > 0 , pν ∈ L∞(Γ3)

(2.24) ρ ∈ L∞(Ω) ; (εp
0, ζ0) ∈ Kp, u0 ∈ V , u1 ∈ H , θ0 ∈ V

Let us define the following bilinear and linear forms:{
aθ : V × V → R

aθ(ζ, ξ) =
∫
Ω

ρ∇ζ∇ξdx+ k1

∫
Γ3

ζξds

〈f(t), v〉V ′×V =

∫
Ω

f1(t)vdx+

∫
Γ2

f2vdx , f(t) ∈ L2(0, T,V ′
)

{
jc : V × V → R

jc(u, v) =
∫
Γ3

pν(uν)υν + pτυτ )ds{
jp : Q0 ×H → R

jp(q, ζ) =
∫
φ(q, ζ)dx

3. AN ABSTRACT EXISTENCE AND UNIQUENESS RESULT

Using Green’s formula it is straightforward to derive the following variational formulation
of ProblemP .

Problem 2. PV . Find the stress fieldσ : [0, T ] → S2, the displacement fieldu : [0, T ] → R, the
internal variable(εp, ζ) : [0, T ] → R2×2 × R2, the temperature fieldθ : [0, T ] → R, such that

(3.1)

 σ(t) = A(ε(
.
u(t))) + E(ε(u(t))) +

t∫
0

G(σ(s)−A(
.
ε(

.
u(s)), ε(u(s)), θ(s), ζ(s))ds

in Ω, a.e.t ∈ (0, T )
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(3.2)


〈
ρ

.
..
u, υ

〉
V ′×V

+
∫
Ω

σ(t)ε(v)dx+ jc(u, v) + jp(q, ζ)− jp(
.
ε

p
,

.

ζ) ≥ 〈f(t), v〉V ′×V

∀(v, q, η) ∈ V ×Kp a.e.t ∈ (0, T )

(3.3)


〈
ρ

.

θ, υ
〉

V ′×V
+ aθ(θ, v) = 〈ψ(σ(t)−A(

.
ε(

.
u(t)), ε(u(t)), θ(t), ζ(t), υ〉V ′×V +∫

Ω

g(t)υdx+
∫
Γ3

∼
gυds ∀υ ∈ V, a.e.t ∈ (0, T )

(3.4) u(0) = u0,
.
u(0) = u1, θ(0) = θ0, ε

p(0) = εp
0 , ζ(0) = ζ0

The existence of a unique solution to contact problem (3.1 - 3.4) is shown in next theorem

Theorem 3.1. Assume conditions (2.1 - 2.10) and (2.16 - 2.24) hold. There exists a unique
solution(σ, u, εp, ζ, θ) to the problem (3.1 - 3.4). Moreover

(3.5) u ∈ C0(0, T,V) ∩ C1(0, T,H) ,
.
u ∈ L2(0, T,V) ,

..
u ∈ L2(0, T,V ′)

(3.6) εp ∈ L2(0, T, V ) ∩ C0(0, T, L2(Ω)) ;
.

.
ε

p ∈ L2(0, T, V ′)

(3.7) ζ ∈ L2(0, T, V ) ∩ C0(0, T, L2(Ω)),
.

ζ ∈ L2(0, T, V ′)

(3.8) σ ∈ L2(0, T,H)

(3.9) θ ∈ L2(0, T, V ) ∩ C0(0, T, L2(Ω)) ;
.

.

θ ∈ L2(0, T, V ′)

In order to prove Theorem 3.1 we need the following auxiliary problemPγ

Problem 3. Pγ.For a givenγ ∈ L2(0, T ;V ),find the displacement field

uγ : [0, T ]× Ω → R2

And the internal variable

(εp
γ, ζγ) : [0, T ]× Ω → R2×2 × R2

Satisfying

(3.10)

{
〈ρ ..
uγ, υ〉V ′×V +

∫
Ω

A(ε(
.
u(t))ε(υ)dx+ jp(q, η)− jp(

.
ε

p
γ,

.

ζγ)+

〈γ(t), υ〉V ′×V ≥ 〈f(t), υ〉V ′×V , ∀(υ, q, η) ∈ V×Kp,a.e.t ∈ (0, T )

(3.11) uγ(0) = u0 ,
.
uγ(0) = u1 , ε

p
γ(0) = εp

0 , ζγ(0) = ζ0
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Lemma 3.2. For all γ ∈ L2(0, T ;V ) there exists a unique solution

uγ : [0, T ]× Ω → R2

and

(εp
γ, ζγ) : [0, T ]× Ω → R2×2 × R

to the problemPγ satisfying(3.5 - 3.9).

Proof. From the assumption (2.16) it follows that operatorA is bounded, semi continuous and
coercive onV . Sinceγ ∈ L2(0, T ;V ) and (2.24) holds by standard arguments concerning the
parabolic inequalities it results the existence of (uγ, ργ, ζγ ) satisfying (3.10, 3.11). For details
see [2, 3, 19].

Let α ∈ L2(0, T ;V ) be given. Define the auxiliary problemPα.

Problem 4. Pα: find the temperatureθα : [0, T ]× Ω → R satisfying

(3.12)


〈
ρ

.

θα, υ
〉

V ′×V
+ aθ(θα, υ) = 〈α, υ〉V ′×V +

∫
Ω

gυdx+
∫
Γ3

∼
gυds , ∀υ ∈ V

θα(0) = θ0

Lemma 3.3. For all α ∈ L2(0, T ;V ) there exists a unique solution

θα : [0, T ]× Ω → R

to the auxiliary problemPα satisfying (3.6).

Proof. From Poincaré-Friedrich’s inequality it follows that the bilinear formaθ is V -elliptic.
Hence by standard arguments the parabolic boundary value problem (3.12) possesses a unique
solutionθα : [0, T ]× Ω → R satisfying (3.6). For details [3, 19].

Let us consider the following auxiliary problemPγ,α

Problem 5. Pγ,α: find the stress fieldσγ,α :[0, T ]× Ω → S2 solving the equation:

(3.13) σγ,α(t) = E(ε(uγ(t))) +

t∫
0

G(σγ,α(s), ε(uγ(s)), θα(s), ζγ(s))ds , ∀t ∈ (0, T )

Lemma 3.4. There exists a unique solutionσγ,α :[0, T ]×Ω → S2 to the problemPγ,α satisfying
(3.8, 3.9).

Let for i = 1, 2, uγi
, θαi

, ζγi
andσγi,αi

denote the solutions to problemsPγi
, Pαi andPγi,αi

,
respectively.

Proof. Then there exists constantC > 0 such that:

(3.14)


∥∥σγ1,α1(t)− σγ2,α2(t)

∥∥2

H ≤ C(
∥∥uγ1

(t)− uγ1
(t)

∥∥2

V +
t∫

0

(∥∥uγ1
(s)− uγ1

(s)
∥∥2

V + ‖θα1(s)− θα2(s)‖
2
V + ‖ζγ1(s)− ζγ1(s)‖

2
V

)
ds

We denote the mapping

(3.15)


Πγ,α : L2(0, T,H) →L2(0, T, H)

Πγ,ασ(t) = E(ε(uγ(t))) +
t∫

0

G(σγ,α(s), ε(uγ(s)), θα(s), ζγ(s))ds
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Assumeσi ∈ L2(0, T ;H), i = 1, 2, andt ∈ (0, T ). From the assumption (2.18) and Hölder’s
inequality we obtain

(3.16) ‖Πγ,ασ1(t
∗)− Πγ,ασ2(t

∗)‖2
H ≤ L2

3T

t∫
0

‖σ1(s)− σ2(s)‖2
H ds

Repeating this evaluationk times and integrating on the time interval(0, T ) we obtain

(3.17) ‖Πγ,ασ1(t
∗)− Πγ,ασ2(t

∗)‖2
H ≤ L2k

3 T
k

k!
‖σ1(s)− σ2(s)‖2

H

Hence fork large enough operatorΠγ,α is a contraction on the spaceL2(0, T ;H). By Banach
fixed point theorem there exists a unique solution

σγ,α ∈ L2(0, T ;H)

to the equation

(3.18) Πγ,α(σγ,α) = σγ,α

which is also a unique solution to problemPγ,α. Since fori = 1, 2 thenuγi , θαi , ζγi are
solutions to problems (3.10, 3.11,3.12), respectively, applying Young’s inequality and (2.18 -
2.20) we obtain (3.14).

Lemma 3.5. We denote now the mappingΛ : L2(0, T ;V × V ) → L2(0, T ;V × V ) defined as
follows: Λ(γ(t), α(t)) = (Λ0(γ(t), α(t)),Λ1(γ(t), α(t))), where

Λ0(γ(t), α(t), υ) = E(uγ(t); ε(υ))H + jc(uγ(t), υ)+(
t∫

0

G(σγ,α(s), ε(uγ(s)), θα(s), ζγ(s))ds, ε(υ)

)
H
ds, ∀υ ∈ V

And

(3.19) Λ1(γ(t), α(t)) = Ψ(σγ,α(t), ε(uγ(t)), θα(t), ζγ(t))

The mappingΛ has a fixed point(γ∗, α∗) ∈ L2(0, T ;V ′ × V ′).

Proof. Using assumptions (2.15 - 2.21) as well as Hölder’s and Young’s inequalities we show
that
(3.20)

‖Λ(γ1(t), α1(t))− Λ(γ2(t), α2(t))‖2
V ′×V ′ ≤ C

(
‖γ1(t)− γ2(t)‖

2
V ′ + ‖α1(t)− α2(t)‖2

V ′

)
Reiterating this inequality k times results :
(3.21)∥∥Λk(γ1(t), α1(t))− Λk(γ2(t), α2(t

∥∥2

V ′×V ′ ≤
CkT k

k!

(
‖γ1(t)− γ2(t)‖

2
V ′ + ‖α1(t)− α2(t)‖2

V ′

)
For k large enough operatorΛk is a contraction on the spaceL2(0, T ;V × V ). By Banach fixed
point theorem it follows thatΛ possesses a unique fixed point(γ∗, α∗) ∈ L2(0, T ;V × V ).
Using Lemmas (3.2 - 3.5), we prove Theorem 3.1.

Proof. (of Theorem 3.1) Denote by ((γ∗, α∗) ∈ L2(0, T ;V × V ) the fixed point of the operator
Λ defined by (3.17 - 3.19).

Let:

(3.22) u = uγ∗ , θ = θα∗ , εp = εp
γ∗ , ζ = ζγ∗ , σ = A(ε(

.
u) + σγ∗,α∗ .
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Setting in (3.13)γ = γ∗ , α = α∗ and using (3.13) it results that (3.10) holds. From (3.2) with
γ = γ∗ and (3.22) we obtain:

(3.23)

{
〈ρ ..
uγ, υ〉V ′×V +

∫
Ω

A(ε(
.
u(t))ε(υ)dx+ 〈γ∗(t), υ〉V ′×V + jp(q, η)− jp(

.
ε

p
γ,

.

ζγ)

≥ 〈f(t), υ〉V ′×V , ∀(υ, q, η) ∈ V×Kp,a.e.t ∈ (0, T )

From (3.17 - 3.19), (3.22) as well as:

Λ0(γ
∗, α∗) = γ∗ ; Λ1(γ

∗, α∗) = α∗

We obtain:
(3.24)

〈γ∗, υ〉V ′×V =
∫
Ω

E(ε(uγ(t)))ε(υ)dx+ jc(u(t), v) + jp(q, η)−

jp(
.
ε

p
,

.

ζ) +
∫
Ω

(
t∫

0

G(σγ,α(s), ε(uγ(s)), θα(s), ζγ(s))ds, ε(υ)

)
,∀(v, q, η) ∈ V ×Kp

(3.25) α∗(t) = ψ(σ(t)−A(ε(
.
u(t))), ε(u(t)), θ(t), ζ(t)).

Inserting (2.24) into (2.23), using (3.1) we obtain that (3.2) is satisfied. Settingα = α∗ in (3.12)
and using (3.22) as well as (3.25) we conclude that (3.24) is satisfied. From Lemmas (3.2 - 3.5)
it results that (3.5 - 3.9) hold. From the uniqueness of solutions to problems (3.10, 3.11), (3.12,
3.13) as well as from the uniqueness of the fixed point of the operator (3.17, 3.18) follows the
uniqueness of the solution to the problem (3.1, 3.4).

4. CONCLUSION

This paper deals with a mathematical model which describes the dynamic evolution of a
thermo-elasto-viscoplastic contact problem between a body and a rigid foundation. A varia-
tional formulation of this dynamic contact phenomenon is derived in the context of general
models of thermo elasto viscoplastic materials. The proof is established on several steps based
on a classical existence and uniqueness result on parabolic inequalities, differential equations
and fixed point arguments.
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