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ABSTRACT. We consider a mathematical model which describes the dynamic evolution of a
thermo elasto viscoplastic contact problem between a body and a rigid foundation. The me-
chanical and thermal properties of the obstacle coating material near its surface. A variational
formulation of this dynamic contact phenomenon is derived in the context of general models
of thermo elasto viscoplastic materials. The displacements and temperatures of the bodies in
contact are governed by the coupled system consisting of a variational inequality and a para-
bolic differential equation. The proof is based on a classical existence and uniqueness result on
parabolic inequalities,differential equations and fixed point arguments.

Key words and phrasedNonlinear constitutive law; Normal compliance; Elasto-viscoplastic materials; Variational inequality;
Weak solution.

2010Mathematics Subject Classificat/orPrimary :74M15; 74G25; 74G30; 49J40.

ISSN (electronic): 1449-5910
(© 2020 Austral Internet Publishing. All rights reserved.


https://ajmaa.org/
mailto: Ourahmoun Abbes <ourahmounabbes@yahoo.fr>
https://www.ams.org/msc/
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1. INTRODUCTION

Dynamic or quasistatic contact phenomena for elastic-plastic or viscoplastic materials with
heat flow appear in many engineering problems|[L] 5, 7] and are intensively studied in literature
(see references inl[L) 2] 3|, 14,8, 10/ 12| 14,[17,[21, 22]). General model of thermo-elastic-
viscoplastic material is characterized by a rate—type constitutive equation with internal variables
modeling their impact on the behavior of real bodies in contact under plastic deformation. The
considered internal state variables include, among others, spatial display of dislocations, the
work hardening of materials, the temperature or the damagelfield [3].

The existence of solutions to these contact problems is studied in monodraphs [11, 13] and
papers([l, 3,19, 12, 15, 16,/18,/119].

The paper is concerned with the analysis and numerical modeling of the rolling contact be-
tween a rigid wheel and an elasto-viscoplastic rail lying on a rigid foundation. The contact
phenomenon includes also a heat generation and flow through the contact surface [6, 18]. The
obstacle is assumed to be covered with functionally graded coating material which properties
depending on the spatial variables according to the power law. In the paper the nonhomogeneous
plastically graded model of the coating layer rather than elastic onelds in [7, 20] is assumed. The
existence of solutions for this hyperbolic, parabolic coupling of the boundary value problems is
presented in the context of general models of thermoelastic-viscoplastic materials.

The paper is organized as follows. First in Secfipn 2 we formulate the dynamic frictionless
contact problem for a body with a normal compliance. Moreover, we introduce some notations
and preliminaries which will be used in the next. In Secfibn 3 and by using the monotonicity
arguments and fixed point theorem we establish the existence of the solution of the problem
considered.

2. MECHANICAL PROBLEM AND VARIATIONAL FORMULATION

Consider a dynamic frictionless contact problem for a body occupying a bounded domain
Q c R? with a Lipschitz continuous boundaiy. This boundary is divided into three disjoint
measurable parfs;, I'; andl's. Assumeneas(I';) > 0. A body is assumed clamped along the
boundaryl', i.e., the displacement vanishes there. Along the bounidary(0, T") the body is
assumed to be in contact with the foundation. The surface tragtiants on the boundarly,
x(0,7T).The body is loaded by a volume force of densftyin Q2 x (0,7"). The external heat
sourcey is applied inQ2 x (0,7"). The body is assumed to undergo the coupled thermal as well
as elastic-viscoplastic deformation with linear isotropic and kinematic hardening.

Let us denote byt = (uy,uz),u = u(z,t),z € Q,t € (0,7),T > 0 is given, and by
0 = 0(x,t) adisplacement field and a temperature field of the body, respectively.

The infinitesimal strain tensor is denoteddiy) = (;;(«)) and the stress field by = (o;),
wheres(u) = £ (u;; +uj;),i,5 = 1,2.

The divergence operatdiv is defined agliv(o) = {oij,j},i,7 = 1,2, and

.. 301‘,;
gl}],] = 8%
The symbol denotes the derivative with respect the time variable.
u = % andu = @
dt ot?

We denotev the unit outward normal vector to the boundary
The normal and tangential components of the displacementfiatd denoted by

Uy =U-V=U; V5, 2= 1,2 ,U =U— UV
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Respectively, similarly normal and tangential components of the stress fagkldenoted by
ov =ov-wwando, = ov — o,0.
Denote byS, the space of second-order symmetric tensor®driMoreover

Q= {q = (Gij)2x2 : Gij = Qi Gij € Lz(Q)}
and

Qo={q€Q:tr(qg) =0}
is closed subspace ¢J. Additive small strain plasticity model is used Additive small strain
plasticity model is used [10, 11, 12] wheredenotes the plastic part of the strain tensor.
We denote by(o, X) € Q x [L*(Q2)]* and (eF,({) € Qo x [L*(Q)]? the generalized stress
and strain tensors respectively. For a given yield functidhe set of admissible generalized
stresseds is defined by

K ={(0,X):¢(c,X) <0}

Denote byNx a normal cone to the séf at a point(o, X’) and by¢ the support function of
the setK called the dissipation function [11] as well as By = dome.

Problem 1. P. find the displacement fietd: Q2 x [0, 7] — R? ,the stress field : Q x [0,T] —
S? , the internal fielde?,¢) : Q x [0, 7] — R?*? x R%and the temperaturé : Q x [0,7] — R
satisfying

(2.1) pu =dive + f1inQ x (0,7
22 { o(6) = A((0(t) + Eu(t) + [ 6(o(s) ~ AC(0(s)). (ul(9), 69, ()
inQ x (0,7)

(2.3) p(g,n) — 9(',¢) —alg—E") = X(n—{) >0,Y(g,n) € K, ,inQ x (0,T)

(2.4) p — 0 = (o — Ae(i),e(u),0,¢) + gin Q x (0,7)
(2.5) u=0o0onT; x (0,7)

(2.6) o, = fyonTy x (0,7)

(2.7) — 0y =py(uy) OnTs x (0,7)

(2.8) — o, =p,onTs x (0,T)

(2.9) Vo, + k6 =gonTs x (0,7)
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(2.10) u(0) = uo,€"(0) = 5, ¢(0) = ¢, 8(0) = o

Equation|(2.1L) represents the motion of the body whedenotes the material mass density.
The equation[(2]2) represent the thermo-elastic-viscoplastic constitutive law with opetators
and& governing the viscous and the elastic properties of the material as well as with nonlinear
constitutive functioni governing viscoplastic properties of the material. The inequality (2.3)
describes the plastic flow. Heat flow is governed by the equdtio (2.4) whisra constitutive
function representing the heat generated by the work of internal forcegiaragiven volume
heat source. Displacement and stress boundary conditions are gijen|By (2.5, 2.6), respectively.
Normal compliance condition with a given positive functipnis described by (2]7). I (2.8
tangential tractiorp, is a given function. Fourier type boundary condition for temperature is
givenin with a given functiop and constant; > 0. Suitable regular initial data functions
ug, U1, €5 5 Coy 0o In (2.10 are assumed to be given. Before we formulate initial pro (2.1 -
[2.10) in variational form let us introduce the following spaces and subspaces,

(2.11) H={{u}},i=1,2:u¢cL*Q)} = [L}Q)]’
(2.12) H={o {01}, 00 = 05 € IAQ) |
(2.13) Hy={ucH:e(u) e H}

(2.14) Hy = {0 ="H:div(o) € H}

(2.15) V=H(Q),V={veH(Q):v=0,0nI}

The spacedi, H , H,, H,, V are endowed with the canonical inner products

(u,v)y = /uividx,i =1,2

Q
The inner product on the spatés equal to

(u, v}y = (e(u), £(v))n
and let||.||,, be the associated norm, defined by

[olly = lle()ll

(0,7)y = /aﬂ'idx ,i=1,2
Q

(u,v) g, = (u, V) + (e(u), €(V))y
(0,7')71{1 = (0,7’)71{1 + (Div(o), Div(T))n

It follows from Korn’s inequality that].|| ; and||.||;, are equivalent norms on. Therefore
(V5 |I-1ly,)is a real Hilbert space [12, 13].
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Moreover, by the Sobolev trace theorem there exists a positive corigtamhich depends
only on€, I'y andI's such that

[0l 2y = Collvlly, Yo eV

Furthermore, ifc € H, there exists an elementr € H{ such that the following Green
formula holds

(0,e(v))y + (Div(o),v)y = /au.'yv Yv € Hy

<f7 g)V = (fa g)LQ(Q) + (f%?gIZ)L?(Q)

LetV ' andV”’ denote dual spaces to the sparemdV/, respectively. We have the inclusions

VcHcV ; VcI*QcV
Let us introduce the following assumptions.
The viscosity operatad : Q2 x S? — S? satisfies

( (a) There exixts a constart, > 0 such that
(l’ 81) (ZE 62) < Iy |61 — €2| \V/é‘l,&g c S2,a.e1’ €
(2.16) (b) There exists a constant; such that
' A(l’ 51) (ZE 62) > my |€1—€2| V81,€2 ES a.exr ()
(c) The mappingr — A(z, ¢) is Lebesgue measurable orve € S?

| (d) The mappingr — A(z,0) € H

The elasticity operataf : Q x S? — S? satisfies:

(a) There exists a constant > 0 such that:

S(ZL’ 61) (.Z‘,€2) < L, |€1—€2|,V€1,€2 ESz,a.eer

(b)The mapping: — &(z, <) is Lebesgue measurable Qe € S?
(c) The mappinge — £(z,0) € H

(2.17)

The visco-plasticity operataf : 2 x S? x S? x R x R — S? is assumed to satisfy:

( (a) There exists a constant > 0 such that:
G(x,01,61,01,(;) — G(x,09,89,0,(y) < La(loy — 02| +
|€1 — €2| + |91 — 92| + |C1 — C2|),V01,02 S 82,V61,€2 €s?
(2.18) V01,05 € R,V(,,(, € Ra.e.x €
(b)The mapping: — G(z,0,¢,0,() is Lebesgue measurable En
Vo,e € S%,0,( € R.
. (¢)The mapping: — G(z,0,0,0,0) € H.

The dissipation function : Q x S* x R? — R as well as the sekt’, of the admissible states
and the hardening modulus satisfy

(a)p is a proper,convex and lower semi-continuous function
(2.19) (b) K, is nonempty,closed and convex seflif(2; R**? x R?),
' (c)the hardening moduluf is symmetric,positive definite
and linear operator froR? into R2.
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The functiony : Q2 x S? x S? x R x R — R satisfies:

( (a) There exists a constait, > 0 such that:
U(w,01,61,01,C,) — (2, 00,2,02,(y) < Ly(|or — 02| +
|€1 — €2| + ’91 — 92| + |€1 — C2|),V01,02 € 82,\V/€1,82 e S?
(2.20) V01,05 € R,V(,,(, € Raa.e.x € 1)
(b)The mappinge — ¥ (x,0,¢,6,() is Lebesgue measurable on
Vo,e € S%,0, €R
[ The mapping: — ¢ (z,0,0,0,0) € H

The normal compliance functign, : I's x R — R+ is assumed to satisfy:

a) There exists a constant > 0 such that:
po(x,21) — po(x, 29) < Lg |21 — 22|, V21,22 € R, .a.e.x € T3
)The mappingr — p,(z, z) is Lebesgue measurable by Vz € R

(2.21) (
(¢)The mapping: — p,(z,z) =0,Vz < 0,a.e.x € I's.

We shall also assume:

(2.22) A €LO.T,H), f,eL*0,T, [LAT:)])
(2.23) g€ L*0,T,L*R)), g€ L*(T'3) , ki >0,p, € L=(Ts)
(2.24) p€L®Q); (e5,() € Kpyup €V, uy € H,0peV
Let us define the following bilinear and linear forms:
ag:VxV —=R
ag(¢,§) = [ pVCVEdr + ky [ (Eds
Q s

<f(t),v>vfxv:/fl(t)vdx+/fzvdx . f(t) e L2(0,T,V)
Q Iy

jc(uvv) = fpu(uu)vl/ +pTUT)dS
I's

{ Jp 1 Qo x H—R
3p(a,¢) = [ ¢(q, ()dx
3. AN ABSTRACT EXISTENCE AND UNIQUENESS RESULT

Using Green’s formula it is straightforward to derive the following variational formulation
of ProblempP.

Problem 2. P,. Find the stress field : [0, 7] — S?, the displacement field : [0,7] — R, the
internal variable(z,, ¢) : [0, 7] — R**? x R?, the temperature field : [0, 7] — R, such that

{ Jje:VxV—-R

(3.1) { o(t) = Ale(u(t))) + E((u(?))) + jg(a(s) — A(e(u(s)), £(u(s)),0(s), C(s))ds
in , a.et € (0,7)
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(3.2) <’m’.“>wv T S{ o(D)e(v)de + jo(u, v) + Gp(g,C) = jp(e",0) = (f(8), 0)yr sy
Y(v,q,m) €V x K, a.ete (0,T)

(p0,0),, | +an(0,0) = (Wlo(t) = AE((D), £(u(t)), 0. C(0), V) +

(33) [g(t)vdz + [ guds Vv € V,a.e.t € (0,T)
Q T
(3.4) u(0) = ug, w(0) = uy,0(0) = 0o, P(0) = &f , €(0) =,

The existence of a unique solution to contact problen (8.1] - 3.4) is shown in next theorem

Theorem 3.1. Assume condition$ (2.1 - 2]10) arid (2.16 - 2.24) hold. There exists a unique
solution (o, u, £,, ¢, #) to the problem[(3]1[- 3]4). Moreover

(3.5) u e C°0,T,V)NCY0,T,H) , ue L*0,T,V) ,uc L*0,T,V)
(3.6) e? € LX0,T,V) N C°0,T, L2(Q)) ; & € LX(0,T, V")

(3.7) ¢ e L*0,T,V)NC%0,T, L*(Q)), ¢ € L*(0,T, V")

(3.8) o€ L*0,T,H)

(3.9) 0 e L2(0,7,V)NC°0,T,L*(Q)) ;0 L2(6,T, V")

In order to prove Theorefn 3.1 we need the following auxiliary protfem
Problem 3. P,.For a giveny € L?(0,T; V),find the displacement field
w, : [0,T] x Q — R?

And the internal variable

(e%,¢,) 1 [0,T] x Q@ — R¥? x R?
Satisfying
3.10) { (pit Uy + [ AGCUE)E()dr + g m) = 3n(E1 €+
<7(t)7 U>V/><V > <f(t)a'0>v/xv ,V(U, Q777) < VXKpa a.et € (OaT)
(3.11) u(0) = g, u,(0) = w1, e5(0) = &7, (,(0) = (o
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Lemma 3.2. Forall v € L?(0,T;V) there exists a unique solution
w, : [0,T] x Q — R?
and

eP.C) [0, T] x Q — R*? xR
Al
to the problemP~ satisfying(3.p [ 3]9).

Proof. From the assumptiof (2.[16) it follows that operatbis bounded, semi continuous and
coercive onV. Sincey € L*(0,T;V) and [2.24) holds by standard arguments concerning the
parabolic inequalities it results the existence af(p., () satisfying [3.1f, 3.11). For details
seel[2| 3, 19]x

Leta € L?(0,T;V) be given. Define the auxiliary problef,.
Problem 4. P,: find the temperaturé,, : [0,7] x 2 — R satisfying

- { <p9.a7v>v/xv + ag(a, v) = {0, V) oy —|—({gvdx +rf3 guds \Yv €V
0(0) = b9
Lemma 3.3. For all a € L?(0,T; V) there exists a unique solution
0o:[0,7] x Q2 —R
to the auxiliary problen?, satisfying|[(3.p).

Proof. From Poincaré-Friedrich’s inequality it follows that the bilinear fosgis V-elliptic.
Hence by standard arguments the parabolic boundary value prdblerh (3.12) possesses a unique
solutiond,, : [0, 7] x 2 — R satisfying (3.6). For details [3, 19

Let us consider the following auxiliary problefry,«

Problem 5. P~,«: find the stress field, ,, :[0, 7] x Q@ — S? solving the equation:

(3.13) 0ra(t) = E(e(uy (1)) + /Q(U%a(s),a(uv(s)), 0a(s),C,(s))ds , vVt € (0,T)

Lemma 3.4. There exists a unique solutien ,, :[0, 7] x  — S? to the problen¥, , satisfying

B3a[39).

Letfori = 1,2, u,,, 0., ,C, ando,, ,, denote the solutions to problemts,, Pa; andP, ,,
respectively

Proof. Then there exists constarit> 0 such that:
1 { o= 00l £ e, O+
[ (1 (5) =, (I 18 (5) = BV + 2 (s) = Caa(s) ) s
We denote the mapping
IL, , : LQ(O,T, H) —>L2(O,T7 H)
(3.19) { I 6) = E(e(u, (1) + [ 6 (5): 200 (5),Bu(), G 5)) s
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Assumes; € L*(0,T; H),i = 1,2, andt € (0,T). From the assumptiof (2.18) and Hélder's
inequality we obtain

t
(3.16) ITL, 001 () = Iy 0o () 15, < L§T/ lon(s) = o2(s) 3, ds
0

Repeating this evaluationtimes and integrating on the time interyal 7') we obtain

2kk
(3.17) 1ML 001 () — T 00a(E) 12, < 2327 oy (s) — 0a(s)]2
v,a 1 v,aY 2 H = k! 1 2 H

Hence fork large enough operatdt, , is a contraction on the spakg0,7; H). By Banach
fixed point theorem there exists a unique solution
0ya € L7(0,T; H)
to the equation
(3.18) 1L, 0 (0 0) = 00

which is also a unique solution to probleRty,a. Since fori = 1,2 thenur, , 6«; , (v, are
solutions to problemg (3.10, 3]JL1,3/12), respectively, applying Young’s inequality andl (2.18 -
[2.20) we obtain[(3.14)

Lemma 3.5. We denote now the mapping: L*(0,7;V x V) — L*(0,T;V x V) defined as
follows: A((t), a(t)) = (Ao(7(1), a(t)), Ay (1(t), a(t))), where

t Ao(7(8), a(t), v) = E(uy (); (V) + Jeluy (), v)+
<Ofg(a%a(s),6(%(5)),0&(3),C%s))ds,s(v)) ds, Yv eV

H

And

(3.19) A (v(t), a(t)) = W(oq,a(t), e(uy (1)), 0a(t), ¢, (1))
The mapping\ has a fixed pointy*, o*) € L?(0,T; V' x V).

Proof. Using assumption$ (2.[19 - 2]21) as well as Holder’s and Young'’s inequalities we show
that
(3.20)

1A (1), aa (1)) = A2 (1), a2(D) [Brerr < C (171 (1) = 72 ()l + llaa(t) = az(D)]15)
Reiterating this inequality k times results :
(3.21)
CrT*

[ A*(71(8), aa(£)) — AF(y5(2), 042(75||12;/va < N (172 () = v2 5 + llea(t) = aa(®)[[3-)

For k large enough operatd¥ is a contraction on the spadg(0, T'; V x V). By Banach fixed
point theorem it follows that\ possesses a unique fixed point,a*) € L*(0,T;V x V).
Using Lemmas](3]2[- 3|5), we prove Theoriem & 1.

Proof. (of Theorenj 3]1) Denote by1{*, a*) € L*(0,T;V x V) the fixed point of the operator

A defined by[(3.17[ 3.19).
Let:
(3.22) U= Uy 0 =0n," =8, (= (0= Ale(t) + T o
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Setting in [3.1B)y = v* , a = o* and using|[(3.113) it results that (3]10) holds. Fr¢m](3.2) with
v =~* and [3.22) we obtain:

(3.23) { (pily, V) 1y +§{A(5(u(t))5(v)d$ + (1), V) ey + (e m) — Jp(EL, Cy)
> (f(t), V) Y(v,q,m) € VXK, a.etec (0,T)
From (3.17 {3.19)[(3.22) as well as:

*

No(v,a") =" Mi(7", ") =
We obtain:
(3.24)
(V0 = f{f(e(uv(t)))e(v)dm + Je(u(t),v) + jp(q,m)—

Gn(e,0) +§{ (Oftg(%,a(S)’s(uw(S))a9a(8)7CW(S))d87€(0)> V(v,q,m) €V XK,

(3.25) a*(t) = ¢(o(t) — Ale(u(t))), e(u(t)), 6(1), C()).

Inserting [2.2)4) into[(2.23), usinp (3.1) we obtain that]|(3.2) is satisfied. Seitng* in (3.12)

and using[(3.22) as well gs (3]25) we conclude that {3.24) is satisfied. From Lejnmds (B.2 - 3.5)
it results that[(3)5[ 3]9) hold. From the uniqueness of solutions to probfems$[(3.10, 3.17), (3.12,
[3.13) as well as from the uniqueness of the fixed point of the opefatol [3.17, 3.18) follows the
uniqueness of the solution to the problgm [B.1} 3s4).

4. CONCLUSION

This paper deals with a mathematical model which describes the dynamic evolution of a
thermo-elasto-viscoplastic contact problem between a body and a rigid foundation. A varia-
tional formulation of this dynamic contact phenomenon is derived in the context of general
models of thermo elasto viscoplastic materials. The proof is established on several steps based
on a classical existence and uniqueness result on parabolic inequalities, differential equations
and fixed point arguments.
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