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ABSTRACT. In this paper, we first show the conditions under which an operator on a Hilbert
spaceH can be represented as sum of two unitary operators. Then, it is concluded that a Riesz
basis for a Hilbert spacH can be written as a sum of two orthonormal bases. Finally, the study
proves that ifA is a normal maximal partial isometry on a Hilbert spdtend if {e; }2, is an
orthonormal basis fof, then{Ae;, }7° , is a 1-tight frame fot.
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1. INTRODUCTION

This section provides preliminaries from operators theory which will be needed them. Nor-
mally, B(H, K') consists of all bounded operators from a Hilbert spdde a Hilbert spacéy,
B(H) denotes for whichH = K, and/ C N. Throughout the papef{ denotes a separable
Hilbert space.
Recall that an operatdf € B(H) is an isometry if for allz € H, ||Tz|| = ||z||, and is a
partial isometry if it is an isometry on the orthogonal complement of its kernel. Also, we define
a unitary operator as a linear transformation which is a surjective isometry.

Definition 1.1. A maximal partial isometry, either itself or its adjoint is isometry.

The followings facts can be found in any standard text of operators theory (for example, see
[3]).

Lemma 1.1.U € B(H) is surjective if and only it/* is bounded below.

Theorem 1.2. (Polar Decomposition If T € B(H, K), then

(i) it has a decomposition d6 = V P such that

1-V € B(H, K) is a partial isometry.

2- P € B(H) is a positive operator.

3- kerV = kerP.

(i) Let T" = U A be an another decomposition as product of partial isométrgnd positive
operator A such thatterU = kerA. ThenU =V andP = A = |T.

(i) If 7= V|T|, then|T'| = V*T.

Corollary 1.3. If T = V P is the polar decomposition @f, then
(i) V isisometry if and only if" is injective.
(i) V*isisometry if and only ifmT is dense.
Proof. The proofs are based on the facts that:
kerP = kerT*T = kerT
and also
kerV* = (ranV)* = (kerT)™ .
|

It is known from operators theory that every separable Hilbert spabas an orthonormal
basis, and itV € B(H) is a unitary operator anfe; }7 , is an orthonormal basis fdi, then
{Uei}2, is an orthonormal basis fdd. The next theorem which can be found in any text of
operators theory characterizes all orthonormal bases of a Hilbert épacth one basis.

Theorem 1.4. Let{e,}?2, be an orthonormal basis for a Hilbert spa¢é. Then orthonormal
bases forH are precisely the setd/e, }7° |, whereU is a unitary operator orf.

2. FRAMES AND PRELIMINARIES

Frames were first utilized in 1952 by Duffin and Schaeffér [7]. The theory of frames plays
significant roles in applied mathematics, science, and engineering today. The feature of a basis
{fx}32, in a Hilbert space is that every element € H can be represented as an (infi-
nite)linear combination of the elemenftsas follows:

(2.1) =Y alf)fe
h=1
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where the coefficients,(f) are unique.

The frames are an extension of bases in Hilbert spaces. In fact, a frame is a sefgfyéfice

in H which it allows every element € H can be written as in the relation (2.1), whereas the
coefficients are not unique. So, a frame need not a basis.

Definition 2.1. A frame for a Hilbert space H is a family of vectaFs= { fi. } .c; in H such that
there are constant$ and B > 0 satisfying:

AFIP <Y 1< ffe > P<BlIAIP?, VfeH
kel
The constants A and B are called lower and upper frame bounds, respectively, and they are
not unique. If only the right-hand side inequality is assumed, it is called a B-Bessel sequence.
If A= B, itis said to be an A-tight frame.
For any Bessel sequenée= { f; }rc; the pre-frame (synthesis) operator is defined by

T:P(I)—H,  T{a}) =) crfr
kel
The analysis operator fdr is 7* and is given byI™ f = {< f, fx >}res. The frame operator
is S =TT* and it satisfiesSrf =3, ., < f, fx > fu, Vf € H.

Itis a fact that if ' = { fi }res is an A-tight frame with the frame operatéf, thenS = A7,
so for eachf, we havef = %Zkel < [, fie > fr
The next lemma can be seen in [4] gives some important properties of the frame opgrators
andS—!:

Lemma 2.1. Let{ f;};2, be a frame with the frame operatérand frame bounds!, B. Then
the following holds:
(i) S is bounded, invertible, self-adjoint, and positive.
(ii) {S7fi}re, is a frame with the frame operatast—' and frame bounds—!, A~
(iii) If A, B are the optimal frame bounds fdrf;. }5° ,, then the bound®~!, A~! are optimal
for {S~" fi}ie,.
The frame{S~! f;}32, is called the canonical dual frame f;}2° . It is well-known that
the definition of a frame has several equivalents. It can be considered an equivalence relation
between the frames and surjective operators; that is, if we have a theorem about frames, then we
have a theorem about surjective operators and vice versa. The first theorem states an equivalent
on frames. The second theorem characterizes the frames for a Hilbert/$@axkit is similar
to the definition of a Riesz basis. All the following theorems can be found in [4].

Theorem 2.2. A sequencd f,}7, in H is a frame forH if and only if there is a bounded
surjective operator/ : [*(N) — H such that for allk, Ue, = fi, where{e;}2, is an
orthonormal basis fot{.

Theorem 2.3. Let {e, };>, be an arbitrary orthonormal basis fof/. The frames for are
precisely the familyfUe }22;, whereU : H — H is a bounded surjective operator.

Proof. Suppose tha{d, }7°, is the canonical basis fat(N), {e;}2, is an orthonormal basis
for H, and¢ : H — [*(N) is the isometric isomorphism of the forge,, := 4.

If {fx}72, is a frame, then the pre-frame operalois a bounded surjective operator, thus by
Theorenj 2.p the familyUe, };2, is a frame.

In other words, itU¢;, = f, andU is a bounded surjective operator, then we have

SN<ffi>P=YI<fUe>P=|UfI VfeH.
k=1

k=1
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SinceU is bounded and surjective, again by Theofen 2.2 the seqyghtg , is a frame.n

A special example of a frame (in fact, the motivation behind the definition) is an orthonormal
basis for a Hilbert spacH or isomorphism images of orthonormal bases which are Riesz bases.
Theorenj 1.4 characterized all orthonormal bases in terms of unitary operators acting on a single
orthonormal basis. The definition of a Riesz basis appears by weakening the condition on the
operator of it theorem:

Definition 2.2. A Riesz basis for a Hilbert spadé is a family of the form{Ue;}?,, where
{ex}2, is an orthonormal basis faf andU : H — H is a bounded bijective operator.

The next theorem shows that a Riesz basis is a frame, in fact, a Riesz basis is a basis.

Theorem 2.4.1f { fx}72, = {Uer}2, is a Riesz basis fol, then there exist constants B >
0 such that

AIFIP <D 1< L fe>P<BIfIP, VfeH.
k=1

The largest possible value for the constaints W and the smallest possible value Bris
U1

3. MAIN RESULTS

In this section, we first show the conditions under which an operator on a Hilbert gpace
can be represented as sum of two unitary operators. Then, it is concluded that a Riesz basis can
be shown as sum of two orthonormal bases, whereas a frame cannot be shown as sum of two
orthonormal bases. First, we prove a fact on operators.

Proposition 3.1. LetT' € B(H) be a self-adjoint positive operator. Thént+ T is a bounded
invertible operator onA .

Proof. We know that for any, € H,
(I +T)h|* = <{T+T)h,(I+T)h >
= ||h]|*+ < h,Th > + < Th,h > +||Th||?,

since two the middle terms of the last relation are nonnegative, hence forallH, we
get||( + T)h|| > ||n|]; thatis,I + T is bounded below, so by LemralL.1 it is injective and
(I +T)* =1+ T is surjective.
On the other hand, the inequality/ + T')h|| > ||h||, Vh € H implies that
(I +T) Rl < [I(1+T)I +T)"hl| = ||All.

Therefore,l + T is invertible inB(H ). 1

Example 3.1.1f ¢ = {p, }ics is a frame forH, then¢ + (—¢) is not a frame.
The next corollary shows that the summation of a frame and its canonical dual is a frame.

Corollary 3.2. If ¢ = {p,}icr is a frame (Riesz basis) fdif with the frame operatof, then
{(I + S)p, }icr is aframe (Riesz basis) as well.

Similarly, the sequencgp, + S, }ics is a frame (Riesz basis) fdf .

If {¢,}rer is aframe forH andT € B(H), then{T'y, }rc; Nneed not a frame. For example,
if {ex}72, is an orthonormal basis faf and7" = 0.
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If {©,}rer is a frame forH with upper and lower boundd and B, respectively, and”
B(H) is surjective, then for ang € H, we get

Z|<haT¢k>’2 = Z|<T*h>§0k>’2

kel kel
> A|[T*h||* > AC||h|]%,

where the last inequality holds by Lemina]1.1.
On the other hand, it is clear that

Y I<hTo, > = Y | <Thpp >

kel kel
< B|[T*h|* < BI|T|]?||h|[*

Therefore{T' ¢, }ic; is a frame.
We now assume thdtl'y, } s is a frame forH with the frame operatal/, then by definition
forall f € H, we obtain

Uf = > <fTe,>Te,

kel

= T()_ <T*f.pr >¢,) =TU(T*f).

kel

That is,U = TUT*. SinceU is invertible, so it is concluded thdt is surjective. Now we can
summarise the above discussion as follows:

Proposition 3.3. Let {¢, }xer be a frame for a Hilbert spacél with lower and upper frame
boundsA and B, respectively, and’ € B(H). Then the famil{ 7'y, }rcr is a frame forH if
and only ifT" is surjective.

Corollary 3.4. Let{y, }rcr be aframe ford andT € B(H). Then the family{ ¢, + T¢; }rer
is a frame if and only if + 7 is surjective.

Lemma 3.5. Every positive operatoP € B(H) with || P|| < 1 can be represented as:
1

whereU = P +i/1 — P?is a unitary operator.
Proof. The proof on based of the definitiénis clear.n

Proposition 3.6. If A € B(H) is invertible, then it can be written as a linear combination of
two unitary operators.

Proof. Suppose thatl = V P is the polar decomposition ol. Since A is injective, so by
Corollary[1.3 the operatdr is an isometry, in fact” is a unitary. We now take

_2p

el
Because of? is a positive operator andP|| < 1, hence by the previous lemma we can write
P= $(U + U~), whereU is a unitary operator. Therefore,

P
A= —3”4 lvv v,

and the operatorgU andV U™ are unitary.p
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Proposition 3.7. There exists a frame (not a Riesz basis) for a Hilbert spgds® that it cannot
be shown as a sum of two orthonormal bases.

Proof. We consider the orthonormal badis; }7°, for H and for fixedm € N, we define the
sequencd fi}22, by

fi=fo=..=fn=0and f,x=mer, k=1,2,...
Hence, for any: € H, we get

o (o)
SI<h fr>P=)_|<hme>|
h=1 P

=m”Y | <hep > =m?||h|.
k=1
Thus, the sequendgf;. } 22, is a m-tight frame fotA..
We now assume that there are two orthonormal bésels> , and{h.}%>, and also nonzero
scalersy and such that for each, we havef, = agy + Ghi. Then the relatiomvg, + Shy, =
fr =0, fork =1,2,...m results that

span{gr}iy = span{hi}i.;.
This relation alone with
span{grtrz, = span{hi}il, = H
yields that
span{gr }itmi1 = span{hy}il,, .1 # H.
On the other hand, since the sequenggs >, {h«},, and{e;}:2, are orthonormal bases,
So we have
span{ gk }remi1 = span{ex oo, = H.
But, two these the last relations contradict each other, so the proof completes.

Proposition 3.8. The framed = {¢, }1cs is a Riesz basis for a Hilbert spa¢é if and only if it
can be represented as a sum of two orthonormal bases.

Proof. Let ® = {p, }rer be a Riesz basis fak, hencelUe, = ¢,, whereU € B(H) is a
bijective operator. By Propositign 3.6 we can wiite= ¢(U; + Us) and eacli; is unitary. So,
¢, = c(Urey + Usey,) and by Theorem 1}4Usey }res is an orthonormal basis fdi.
Conversely, ifp, = c(fi + gr) is a frame and fi }xer, {gx }rer are orthonormal bases féf.
Hence, by Theorel’[El]A we haye = U,e; andg, = Useyx, where{ey }re; is an orthonormal
basis forH andU; is a unitary operator of/. Thus,p, = c(U; + Us)e, ande(U; + Us) is a
bounded bijective operator, therefdre, } xc; is a Riesz basis

Proposition 3.9. If { f,}7°, = {Uex}2, is a Riesz basis for a Hilbert spadé with the frame
operatorS, then we have = UU*.

Proof. We know thatSf = >, ., < f, fr > fr, ¥V f € H. Onthe other hand, sindes};2,
is an orthonormal basis fd¥, so for everyf in H, we canwritef = >, _, < f, e, > e, hence

Uf =3 <fex>Us=) <fe>fi
kel kel
Thus, we obtain
UUf=) <Ufex>fr=Y <fUe>f=> <ffx>/n
kel kel kel
Therefore, we conclude that for glle H, Sf = UU* f and the proof is completa.
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Proposition 3.10.If A € B(H) is a normal maximal partial isometry an@,, }>° , is an ortho-
normal basis forH, then{Ae; }7° , is a 1-tight frame forH.

Proof. Because ofd is normal, so for alk € H, we have||Ah|| = ||A*h]|.
If A* is isometry, then we get

A2 = [JATR|? =Y | < A*h,en > |

k=1
=> | <hAe,>|*, VheH.
k=1

If Aisisometry, then for alh € H, we obtain

12| = [|AB||* = [|AR|[> =) | < h, Aey > |
k=1
Therefore, in each case it concludes that

> [ <hAep>|*=|hll>, VheH,
k=1
that is,{ Ae, } 32, is a 1-tight frameg

Corollary 3.11. If A € B(H) is a unitary and{e; }?>, is an orthonormal basis fof{, then
{Aei}2, is a 1-tight frame.

Proposition 3.12. LetT" € B(H) so thatT* be an isometry. Lefy, }rer be a frame for a
Hilbert spaceH with lower and upper boundd and B, respectively. ThelT ¢, }rer iS @
frame with lower and upper boundsand B||T||?, respectively.

Proof. The proof is based on which for dlle H,we have
AllR|P = A[IT*RIP <D | <Tho, > 1P =) | <h,Tp, >

kel kel
and also
Y I <hTo,>P=> | <Thg, >
kel kel
< B||T*R||* < B||T|]*||n]|*.
|

Corollary 3.13. LetT' € B(H) such thatl™ be an isometry. Lefe,}7>, be an orthonormal
basis forH. Then{Te;}?2, is a 1-tight frame.
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