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ABSTRACT. In this paper, basic notions of von Neumann algebra and its direct analogues in the
realm of groupoids and measure spaces have been considered. By recovering the action of a
locally compact Lie group from a crossed product of a von Neumann algebra, other proof of one
of a geometric propositions of O’Neil and an extension of it has been proposed. Also, using the
advanced exploration of nilmanifolds in measure spaces and their corresponding automorphisms
(Lie algebraic derivations) a different proof of an analytic theorem of Gordon and Mao has
been attained. These two propositions are of the most important ones for rigidity problems of
Riemannian manifolds especially 2-step nilmanifolds.
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2 A. HASAN-ZADEH AND H-R. FANAI

1. INTRODUCTION

Motivation. Let M is a simply connected 2-step nilpotent Lie group with a left invariant
metric andl" is a cocompact discrete subgroup of isometries/ofin the literature, one of the
most important rigidity problems of geodesic flows for compact nilmanifolds is the following
problem:

Problem. Whether two compaQ-step nilmanifolds¥ andJ‘I?—,' are isometric or not, if they
have conjugated geodesic flows?

This problem has been studied well through the works of Eberlein, Gordon and Mao, (e.g.,
[3,16,7]). We have already considered these In [4] by an Algebraic-Geometric approach, espe-
cially in the category of Lie groupoids. Also, we studied a result of Gordon, Mao and Schueth
about compact 2-step nilmanifolds with symplectically conjugate flaws, [7]. Then, via Poisson
cohomology and other respective notions, we presented a proof of their result which extends
not only symplectic concepts to Poisson geometry, but zistep nilmanifolds to manifolds
with extensible momentum maps]| [5].

On the other hand, many objects in Poisson geometry and of course, in groupoids, which
we used them iri |4,]5], such as dual pairs, bimodules, tensor products, and Morita equivalence
have direct analogues in the realm of von Neumann algebras. Also, the theory of von Neumann
algebras replaces ordinary measure theory when one has to deal with noncommutative spaces
which naturally arise in geometry or noncommutative geometry, specially through the papers of
Connes,[[2].

These links do not seem to exist wifli-algebras on any types of analytic algebras. For
examples, for a subset ¢ B(H), we define the commutant’ to be{L € B(H) : Va €
A, La = aL}. Similarly, if B is a subset of a Poisson algelitathen its commutant i’ =
{f € P: {f,B} =0}. Onthe analytic side, a dual p&iA, .A’) is a pair of unital-subalgebras
A and A" of B(H) that are the mutual commutants of each other. The Double Commutant
Theorem of von Neumann implies that all von Neumann algebras satisfy this condition, [2, 8].

Structure. After some preliminaries about von Neumann algebras, by recovering the action
of a locally compact Lie group from a crossed product of a von Neumann algebra, we reach
to a direct proof of one of the well-known proposition of O’Neil. This is about the properly
discontinuous group of isometriels, acting on a simply connected Riemannian manifold
This gives the characterization of the isometry grou%dﬁy normalizersV(T") and it is usually
used to solve problems of rigidity,|[4, 5]. The exposed proof leads to an extension of it to the
ergodic actions of the countable discrete infinite groups enfiaite measure space. More
details can be found in Theorém.1.

Lastly, advanced exploration of nilmanifolds in measure spaces via special measurable func-
tionals and suitable actions of Lie groups on simply connected manifolds leads to study those
works using concepts of von Neumann algebras. This gives us the other proof of the analytic
proposition of Gordon and Mao which exposed in Thedrer 3.2.

It is to be noted that proofs provided, although long and completely different from the stan-
dard proof used in existing resources have a general approach to its structure. The general
approach introduced is such that the given proposition is a special case of it. For this reason,
while providing a link between some geometric and analytic concepts (apparently unrelated), it
can include many results in each notion.
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2. MAIN CONCEPTS

2.1. Preliminaries about von Neumann Algebras.In this section we review some notions
about von Neumann algebras. We assume that the reader know the main conaépts of
algebras and von Neumann algebras which can found in [8, 10].

Let B('H), as usual, is the set of bounded operators on a Hilbert sfad von Neumann
algebra is an involutive subalgebyé of the algebra of3(H) that has the property of being
the commutant of its commutant. Létis a group acting by automorphisms suchuasn a
von Neumann algebra and consider the vector space of finite formal syms. , a,u, with
a, € A. We use the crossed produdtx G which can be obtained by multiplying the sums
with the rulesuyu, = ugy(andu, = 1) andugau, ' = g(a).

In the case of von Neumann algebras, there is a (strong continuous) unitary group represen-
tationg — u, with u,Au} = A,Vg € G. In this settinge,(r) = ugru; (9 € G,z € A),
defines an action aff on A. Eacha, is a*-automorphism of4 and that the mapping — «,
is a homomorphism of7 into Aut(.A). All finite linear combinations of all vector states (i.e,
positive linear functionals ol with norm equald) on A are dense itd’. Then, the actiom
is implemented by the unitary representatign Finally, an inner automorphism of is in the
form Adu(z) = uwxu* for u a unitary in4 and an outer automorphism, if the onjyin G for
which a4 is inner is the identity. Also, an actiad on A is said to be ergodic if the stabilizer
A = Cid.

We assumey : G — Aut(.A) is an (continuous) action of the locally compact gr@avith
(left) Haar measuréqg on the von Neumann algebrbon the Hilbert space{. Form the Hilbert
spacek = L*(G, H) = L*(G) ® H and letG act onk by u, = A\, ® 1, A being the left regular
representation af in the Hilbert spacd.?(G), i.e, (\,&)(h) = £(g7'h), Vg, h € G, € € L*(G).
The actionw of G on A is encoded by the actiad on £:

(2.1) (@f)(9) = ag-1(f(9)), g€ G, fEA,
which satisfies the equivariance condition
(2.2) Zoag(f(9) = X(Ef)(9)N,', VgeG, feA

particularly, u,u; = a,(z). In this way, the crossed produet x,, G is the von Neumann
algebra onlC = L*(G) ® H generated byu, : g € G} and{i : = € A}.

Equality {2.1) says that finite linear combinatiops, 7,u, form a dense'-subalgebra of
A %, G. Moreover theu,’s are linearly independent ovet in the sense that_ 7 u, = 0
result toz, = 0 for eachg in the sum.

When the groug- is discrete, any element of the crossed product can be uniquely written
as above formal sum, where tlifie= f(g)'s are uniquely determined as matrix elements in the
natural basis of?(G), i.e, matrix of operators ot = ¢*(G) ® H. Also, since sum converges
pointwise at least on the dense set of functions of finite support fdm7?{, any matrix of this
form which defines a bounded operator/oms in A x, G. This is no longer the case when the
groupdG is not discrete. For more details refer tol[8] 12].

2.2. Preliminaries about nilmanifolds. As the notions ofi[3,6,/7], a Riemannian nilmanifold
isa quotient% of a simply connected nilpotent Lie group by a discrete subgroup; together
with a Riemannian metrig whose lift toMis left-invariant. A niImanifoId% has step sizé if
M is k-step nilpotent.

Especially, a Lie groupV/ is said to be two-step nilpotent if its Lie algebra satisfies
M, M, M]] = 0 equivalently] M, M] is central inM. Let g be a left-invariant Riemannian
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metric on 2-step nilpotent Lie grould. Theng defines an inner product .) on the Lie algebra
Mof M. Let Z = [M, M] and letV denote the orthogonal complement®in M relative to
(.,.). Note that whileZ is contained in the center o¥1, it does not necessarily coincide with
the full center. For € Z, a skew symmetric linear transformatidtr) : VV — V can be defined
by J(2)x = (ad(z))*z for z € V, wheread(z))* denotes the adjoint afd(x). Equivalently,

(2.3) (J(2)x,y) = ([x,y],2), forz,y eV, z € Z,

and this process is reversible.
An authomorphismb of A is said to bel-almost inner if®() is conjugate toy for all
~ € I'. The automorphism is said to be almost inne®{fr) is conjugate ta: for all z € M.
A derivationy of the Lie algebraM is said to bd -almost inner, respectively almost inner, if
o(X) € (M, X]forall X € logl', respectively, for allX € M.

3. APPLICATIONS

Theorem 3.1.([9]) LetI" be a properly discontinuous group of isometries of a simply connected
Riemannian manifold/. Then group](%) of isometries o% is isomorphic to@, where
N(I') is the normalizer of " in 1(M).

Proof. The First Approach: Le# is a factor whose center §1. Foru = }_ ayu, in the
normalizerN(A) = {u unitary in A x G| uAu* = A}, there is af € Aut(A) so that
ur = f(x)u, Vo € A. Then by Lemma 11.2.6 of [8], there can be only grfer which a, is
different from0 and foryg, a, is unitary. Therefore, the quotient(.A)/U(.A) is in factG itself
whereU (A) is the unitary group as a normal subgroup. So we recGvand its action (up to
inner automorphisms) aA.

As Radon-Nikodym Theorem,|[1], the only remaining casdis- L>(X, i), where(X, u)
is a localizable measure space. Similar structure concludes that on the support of the transfor-
mationa, € A, we havea,ay(x) = [(z), for all L*-functionsz and € Aut(A). Then,
by Proposition 11.2.10 of [8], there is a partition &f into measurable subsets, one each of
which the transformation oK agrees with some element 6f and such a transformation is
implemented by a unitary itV (L>°(X), p).

Consider the group von Neumann algebra'ofrhen, the expressed structure can be applied
to % which acting freely on simply connected Riemannian manifald(because of properly
discontinuous action df on it). Lastly, a group von Neumann algebra of a discrete gigup
vN(T'), is the special case of the crossed product whea C and the action is trivial.

The Second Approach: An ExtensionConsider(G, X, u) which G denoted a countable
discrete infinite group andX,, 1) be a standard-finite measure space on whi¢hacts ergod-
ically. Let [¢g] denote the group of all Borel automorphism®f X such that(«(z),z) € ¢
for everyx € X. For an ergodic transformation grod¢', X, i), the normalizerN[g] is the
group of all non-singular transformatiofison { X, i} such thatl'Gx = GT'x for almost every
x € X. As in the relation[(2]1) of before section, eaghe N|[g| will be identified with the
automorphism ofd = L>°(X, 1) defined by(a f)(z) = f(a 'z).

In this case, by using the relatioris (2.1) and](2.2) of before section, the norm¥lizgrof
A is precisely the imagé), : g € [¢g]}. Then, an automorphism € Aut(A) can be extended
to an element oflut(A %, G) if and only if « € N[g|. Specially for a properly discontinuous
gr(oup of isometries of a simply connected Riemannian maniidlde have the isomorphism
N(I)

=2 = I({) of isometries ofy:, whereN (I') is the normalizer of in I(M).
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Finally, the definition of von Neumann algebras based on a commutant assumption lead us to
the probably another proof of some results about the commutative assumptions. In this way, we
give the other proof of a proposition of Gordon and Mao which has been used in some rigidity
problems for 2-step nilmanifolds and we used itin[4, 5].

|

Theorem 3.2.([6]) Let M be a 2-step nilpotent Lie algebra with an inner prodgct) and ¢
be an almost inner derivation of continuous typefehsayy(z) = [o(z), z] with o continuous
on M\{0}. Letz € Z(M) andy € ker(J(z)). Then
(p(x), 2) = ([o(y), 2], 2), Vo e M,
where, J(z) : V — V, defined by equatiof2.3), is a skew symmetric linear transformation
defined by/(z)x = (ad(z))*z forx € V.
In special case, if the center g#1 properly contains the derived algebra, then every almost
inner derivation of continuous type o is inner.

Proof. It is to be noted thai’-almost inner derivations aM, Al D(M), endowing with the
topology of pointwise norm convergence is a von Neumann algebra. Also, Athise2-step
nilpotent, A7 D(M) will be 1-step nilpotent, i.e, its commutant (as a derivation, too) is abelian.

If considerAI D(M) C Der(M) as a von Neumann algebra, which its commutant is abelian,
then as an result of [11] (Theorem 2.5.3), any derivation implemented by an (fixed) element.
This automatically result to the innerness of derivations.

|
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