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1. I NTRODUCTION

The widely used Jensen’s inequality for convex functions, attributed to Danish mathematician
Johan Jensen, dates back to 1906[12]. The literature contains numerous bounds on the Jensen
gap, defined asJ (f, X ∼ P) = E [f (X)] − f (E [X]), whereX is a random variable with
distributionP, and the functionf might be convex or nonconvex [20].

Example consequences and applications of the known bounds are: a number of famous clas-
sical inequalities such as the generalized mean inequality, and a special case the inequality of
arithmetic and geometric means, the Hölder’s inequality, etc. [17]; commonly used results in in-
formation theory, e.g. non-negativity of Kullback-Leibler divergence [7]; variational bounds for
negative log likelihood used in statistics and machine learning methods such as the expectation
maximization algorithm[8], and variational inference[18].

Computing a hard-to-computeE [f(X)] appears in theoretical estimates in a variety of sce-
narios from statistical mechanics to machine learning theory. A common approach to tackle
this problem is to make the approximationE [f(X)] ≈ f (E [X]) (for example

〈
1
X

〉
≈ 1

〈X〉 ),
and then show that the error, i.e., the Jensen gap, would be small enough for the application.
Since the error itself is as hard to compute asE [f(X)], inequalities on the Jensen gap would
help by giving easy-to-compute bounds. Moments are commonly used to characterize distribu-
tions of random variables because of their relative ease to compute for many distributions. By
establishing the connection between the Jensen gap and moments, we create a powerful tool for
error estimation based on moment estimates.

As a concrete scenario, the Jensen gap has many useful interpretations in statistical mechanics
such as the difference of average non-equilibrium work and change of free energy, an important
quantity to characterize the deviation of a thermodynamical process from a quasi-static process,
as in Jarzynski equality[11], and the fluctuation of thermodynamical quantities around their en-
semble average, which is of common interest in physics. In machine learning theory, stochastic
gradient descent is employed to minimize the so-called loss function, when learning the para-
meters of a function from a parametrized family; in this case the training inputs are sampled
from a distribution and the loss function is an expectation, to be minimized with respect to the
parameters.

In such scenarios, a common type of random variable has a distribution concentrated around
its mean as described below.

(1) In estimatingξ = f (E [X]), an empirical average from samples is often used as an
estimation of expectation, i.e.E [X] ≈ X̄ = 1

|M|
∑

Xi∈M Xi and ξ ≈ ξ̂ = f
(
X̄
)
.

The bias of̂ξ, i.e. EM[ξ̂] − ξ is given by the Jensen gap where the random variableX̄
has a distribution concentrated around its mean. The asymptotic growth behavior of the
Jensen gap therefore gives an idea how fast we can push the bias to zero by increasing
N .

(2) Random variables with a distribution concentrated around the mean are very common
in statistical mechanics. Since the number of particles in the system is usually the order
of Avogadro constantNA ∼ 1023, the distribution is so sharp that all the Jensen gaps
become negligible. However, this is not the case in computer simulation or microscopic
experiments, which usually have a much smaller system size. The asymptotic growth
behavior of thermodynamic fluctuation (defined as the Jensen gap of function

√
· of

random variableE2) with the system size guides the simulation/experiment setup.

Moments play an important role in studying random variables with a distribution concentrated
on the mean, especially when the random variable is an empirical average of i.i.d random
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THE JENSENGAP 3

variables[14]. Our results will use moments to express the asymptotic growth behavior of the
Jensen gap.

Next we give an elementary example to illustrate the inspiration behind our results, which
establish the connection between the Jensen gap and the (absolute centered) momentσp =
p
√

E [|X − µ|p], whereµ = E [X] is the expectation of random variableX. Assume that for
α > 0, f (x) is α-Hölder continuous overR, i.e. there exists a positive numberM such that for
anyx ∈ R, |f (x)− f (µ)| ≤ M |x− µ|α. Then we have

(1.1) |E [f (X)]− f (E [X])| ≤
∫
|f (X)− f (µ)| dP (X)

≤ M

∫
|x− µ|α dP (X) ≤ Mσα

α

Similarly, if f (x) − f (µ) ≥ M |x− µ|α or f (µ) − f (x) ≥ M |x− µ|α, we can obtain an
elementary lower bound on the Jensen gap

(1.2) |E [f (X)]− f (E [X])| =
∫
|f (X)− f (µ)| dP (X)

≥ M

∫
|x− µ|α dP (X) ≥ Mσα

α

Our main results generalize these two elementary bounds as described in the next section.

1.1. Contribution and Comparison. We prove an upper and lower bound on the Jensen gap,
summarized below, and demonstrate their tightness. In the following, "upper bound ofA"
means|J (f, X ∼ P)| ≤ A which means−A ≤ J (f, X ∼ P) ≤ A, while "lower bound of
A" means eitherJ (f, X ∼ P) ≥ A or−J (f, X ∼ P) ≥ A.

• For functions that approachf (µ) at x → µ no slower than|x− µ|α, and grow as
x → ±∞ no faster than± |x|n for n ≥ α,

|E [f (X)]− f (E [X])| ≤ M (σα
α + σn

n) ≤ M
(
1 + σn−α

n

)
σα

n

whereM = supx 6=µ
|f(x)−f(µ)|

|x−µ|α+|x−µ|n . This implies thatE [f (X)]− f (E [X]) approaches0
no slower thanσα

n asσn → 0.
• For functions that either decrease or increase (but do not decrease on one side and in-

crease on the other) tof (µ) asx → µ no faster than|x− µ|α, and grow to infinity at
x →∞ no slower than|x|β for 0 ≤ β ≤ α,

|E [f (X)]− f (E [X])| ≥ M
σα

α/2

1 + σα−β
α−β

whereM = infx 6=µ

{
[f (x)− f (µ)] ·

(
1

|X−µ|β + 1
|X−µ|α

)}
. This implies thatE [f (X)]−

f (E [X]) decreases to0 no faster thanσα
α/2 asσα/2 → 0 as long asσα−β does not grow

to infinity at the same time.
Although neither our upper bounds nor our lower bounds require the function to be convex or
concave, the condition in our lower bound is naturally satisfied by convex or concave functions
as we will show in Section 3.2.

In order to illustrate the flavor of the main results, we give simple examples that are di-
rect consequences. We also compare the consequences of our main results with known lower
bounds[1, 15, 19, 2, 20, 13] and upper bounds[6, 16]. A major advantage of our result over
these known results is their relative generality: our conditions on the function, its domain, and
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the distribution are weak (for example we do not require the function to be convex, and we
do not require the distribution to be discrete). Among the above-mentioned bounds, [15] and
[16] are only for discrete distributions, and are omitted from the comparisons below. Besides
the bounds as listed above, the Jensen’s gap can also be estimated by Jensen-Ostrowski type
inequalities[4, 9, 5, 10, 3].

Example 1.1. Consider the Jensen gap ofsin (x) and random variables with mean at0. Ob-
serve thatsin (x) has a power seriessin (x) = x− x3

6
+ x5

120
+ · · · , and by choosingα = n = 1,

we get|J (sin, X ∼ P)| ≤ σ1
1. Also, sincesin′ (0) = 1 6= 0, we can obtain a different result by

studyingg (x) = sin (x) − x (which has the same gap behavior, discussed in Section 2.2 and

Section 3.2) instead. This time, by choosingα = n = 3, we can see that|J (sin, X ∼ P)| ≤ σ3
3

6
.

If we are interested in the asymptotic behavior of the Jensen gap when the distribution is con-
centrated around the mean, we can conclude immediately that|J (sin, X ∼ P)| decreases to
0 no slower than∼ σ3

3 and∼ σ1
1. It is also possible to chooseα = n = 2 and obtain

|J (sin, X ∼ P)| ≤ σ2
2

π
. Although this result is not as good as theσ3

3 version in terms of as-
ymptotic behavior for non-heavy-tailed distributions such as Gaussian distribution and Laplace
distribution, the second moment is usually more available than the third moment. Our lower
bound result is not useful in this example. In fact, sincesin(x) is odd, any even distributionP
will result in a zero Jensen gap regardless of its moments. That is, it is impossible to obtain a
non-trivial bound that is a function of only moments.

Results in[6, 19] require the function to be convex, and are therefore not useful for this
example. Since the domain is not[0, A) or (0, A] as required by[2], or [0, +∞) as required by
[1], these results do not apply either. The result in[13] gives the same bound as ourσ2

2 version,

which is better than theJ (sin, X ∼ P) ≥ −σ2
2

2
given by[20]. The fact that[13] gives the same

bound as ours is not just a coincidence, but can be attributed to the connections between our
results and[13] as described in Section 2.2.

Example 1.2.Considercos (x) and random variables with mean at0. Observe thatcos (x) has
a power seriescos (x) = 1−x2

2
+· · · , we can chooseα = n = 2 and see that|J (cos, X ∼ P)| ≤

σ2
2

2
. If we are interested in the asymptotic behavior, we can conclude that|J (cos, X ∼ P)| will

decrease no slower than∼ σ2
2, i.e. the variance of the distribution. Again, our lower bound

result is not useful in this example. In fact, although non-trivial, it is possible to construct a
probability distributionP that makes the Jensen gap equal0 and has arbitrary moments,1 that
is, it is impossible to obtain a non-trivial bound that is a function of only moments.

Results in[6, 19] require the function to be convex, therefore not useful for this example.
Since the domain is not[0, A) or (0, A] as required by[2], or [0, +∞) as required by[1], these

results do not apply. Both our result and[13, 20]are able to getJ (cos, X ∼ P) ≥ −σ2
2

2
. Since

cos (x)− 1 ≤ 0, it is not hard to see thatJ (cos, X ∼ P) ≤ 0, which is also given by the result
of [13].

Example 1.3.Considerlog (x) and random variableX ∈ [a, +∞) witha > 0 that hasE [X] =
1. Sincelog′ (x) = 1 6= 0, we studyg (x) = log (x) − (x− 1) instead, which preserves gap
behavior as in thesin example above. Note thatlog (x) = (x− 1) − 1

2
(x− 1)2 + · · · . By

choosingα = n = 2, we have

|J (log, X ∼ P)| ≤ a− 1− log(a)

(1− a)2
σ2

2

1To construct such a probability distribution, we can choose a discreteP whose support is a subset of
{±2πk|k ∈ N}. By appropriate choice of probability values at discrete points, it is possible to makeP have
any desired set of moments.
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i.e. |J (log, X ∼ P)| will decrease no slower than∼ σ2
2, i.e. the variance of the distribution,

as σ2 → 0. Since thelog function is concave, our lower bound is useful (see Section 3.2).
Choosingα = 2 andβ = 1, we get

−J (log, X ∼ P) ≥ 1

2
· σ2

1

1 + σ1

whereby the Jensen gap approaches 0 no faster thanσ2
1 asσ1 → 0.

The estimate given by[6] is

J (log, X ∼ P) ≤ 1

2a2
min
c≥a

{
E
[
(X − c)2

]
+ (1− c)2

}
=

σ2
2

2a2

for a < 1
a− 1− log(a)

(1− a)2
<

1

2a2

which means that we get a better result than[6]. Since the domain is not[0, A) or (0, A] as
required by[2], or (0, +∞) as required by[19], or [0, +∞) as required by[1], these results do
not apply. The result in[20] in this case falls back to Jensen’s inequalityJ (log, X ∼ P) ≥ 0.
The result in[13] gives the same upper bound as ours and fall back to Jensen’s inequality for
the lower bound.

Example 1.4. Considerf (x) =
√

x and random variables on[0, +∞) that has mean at1.
Sincef ′ (1) = 1

2
6= 0, we studyg (x) =

√
x − x−1

2
instead. Note that

√
x = 1 + x−1

2
− 1

8
(x −

1)2 + · · · . By choosingn = α = 2, we see that
∣∣J (√·, X ∼ P

)∣∣ ≤ σ2
2

2
, i.e.

∣∣J (√·, X ∼ P
)∣∣

will decrease no slower than∼ σ2
2, i.e. the variance of the distribution. Also, since

√
x is

concave, our lower bound is useful. By settingα = 2 andβ = 1, we get

−J
(√
·, X ∼ P

)
≥ 1

8
· σ2

1

1 + σ1

whereby the Jensen gap will approach 0 no faster thanσ2
1.

Since the second order derivative is not bounded,[6] does not apply to this example. Since√
x−

√
0

x
is not defined on0 and does not have a power series on0, results in[2] do not apply.

Since the domain is not(0, +∞) as required by[19], that result does not apply. Since−
√
· is

superquadratic,[1] applies and has a result−J
(√
·, X ∼ P

)
≥ −E

[√
|X − 1|

]
= −σ

1/2
1/2,

which is not even an improvement of Jensen’s inequality−J
(√
·, X ∼ P

)
≥ 0. Again, the

result in [20] falls back to Jensen’s inequality−J
(√
·, X ∼ P

)
≥ 0. The result in[13] gives

the same upper bound as ours and fall back to Jensen’s inequality for the lower bound.

Example 1.5. Considerf (x) = x4 and random variables that have mean at1. Sincef ′ (1) =
4 6= 0, we studyg (x) = x4 − 4(x − 1) instead. By choosingα = 2, n = 4, we see that
|J (f, X ∼ P)| ≤ 7+

√
41

2
(1 + σ2

4) σ2
4, i.e. |J (f, X ∼ P)| will decrease no slower than∼ σ2

4.
Also, sincef(x) = x4 is convex, our lower bound is useful. By choosingα = β = 2, we get
J (f, X ∼ P) ≥ 2σ2

1 whereby the Jensen gap will decrease to 0 no faster thanσ2
1.

Since the second order derivative is not bounded, results in[6] do not apply to this example.
Since the domain is not[0, A) or (0, A] as required by[2], or (0, +∞) as required by[19],
or [0, +∞) as required by[1], these results do not apply. Again[20] falls back to Jensen’s
inequalityJ (f, X ∼ P) ≥ 0. The Jensen gap ofx4 onR with µ = 1. The result in[13] gives a
trivial upper boundJ (f, X ∼ P) ≤ +∞ and a lower boundJ (f, X ∼ P) ≥ 2σ2

2. This lower
bound gives better numerical values and is usually easier to compute compared with ours.
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2. FIRST M AIN RESULT : UPPER BOUND

We first prove an upper bound on the Jensen gap and discuss the tightness of this bound in
Section 2.1. Note that our upper bound is useful even when the functionf is not convex. Next,
we show how to use shifts to expand the scope of our upper bound in Section 2.2.

The upper bound in the following theorem holds for any probability distribution as long as
the relevant moments are well defined.

Theorem 2.1. If f : I → R, whereI is a closed subset ofR andµ ∈ I, satisfies the following
conditions:

(1) f is bounded on any compact subset ofI.
(2) |f (x)− f (µ)| = O (|x− µ|α) atx → µ for α > 0 .
(3) |f (x)| = O (|x|n) asx →∞ for n ≥ α

then for a random variableX with probability distributionP and expectationµ, the following
inequality holds:

(2.1) |E [f (X)]− f (µ)| ≤ M (σα
α + σn

n) ≤ M
(
1 + σn−α

n

)
σα

n

whereM = supx∈I\{µ}
|f(x)−f(µ)|

|x−µ|α+|x−µ|n does not depend on the probability distributionP.

Proof. We begin by showing thatg (x) = |f(x)−f(µ)|
|x−µ|α+|x−µ|n is bounded onI\ {µ}:

Since|f (x)| = O (|x|n) and |x− µ|α + |x− µ|n = Θ (|x|n) at x → ∞, there existsd1

thatg (x) is bounded on|x− µ| ≥ d1. Also, atx → µ, since|f (x)− f (µ)| = O (|x− µ|α)
and |x− µ|α + |x− µ|n = Θ (|x− µ|α), there existsd2 < d1 such thatg (x) is bounded on
|x− µ| ≤ d2. Since the setd1 ≤ |x− µ| ≤ d2 is compact, the numerator is bounded on this
set, and the denominator is bounded from below bydα

2 + dn
2 , g (x) is therefore bounded on

d1 ≤ |x− µ| ≤ d2. In summary,g (x) is bounded onR\ {0}.
Let M = supx∈I\{µ}

|f(x)−f(µ)|
|x−µ|α+|x−µ|n , we then have:

|f (x)− f (µ)| = (|x− µ|α + |x− µ|n) · g (x) ≤ M (|x− µ|α + |x− µ|n)

So the Jensen gap is

|E [f (X)]− f (E [X])| =
∫

R
|f (X)− f (µ)| dP (X)

≤ M

∫
R
|X − µ|α + |X − µ|n dP (X) ≤ M (σα

α + σn
n)

Also note thatσα ≤ σn for α ≤ n, we then have

M (σα
α + σn

n) ≤ M
(
1 + σn−α

n

)
σα

n

If we are only interested in distributions concentrated aroundµ, we can further simplify the
inequality to the corollary below:

Corollary 1. For functions that satisfy the condition in Theorem 2.1, there exists a positive
numberM ′ independent of the distribution such that

(2.2) |E [f (X)]− f (µ)| ≤ M ′σα
n

for sufficiently smallσn,
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2.1. Tightness of upper bound. We show that modulo the preceding constantM ′, the inequal-
ity 2.2 is sharp.

Proposition 1. Let f (x) be a function that satisfies the condition in Theorem 2.1 withI = R
and has|f (x)− f (µ)| ≥ M |x− µ|α on x ∈ R for someM > 0. Then for anyσn > 0 there
exists probability distributionP that makes

|E [f (X)]− f (E [X])| ≥ Mσα
n

Proof. LetP be discrete with

P ({µ + σn}) = P ({µ− σn}) =
1

2

P (R\ {µ + σn, µ− σn}) = 0

The Jensen gap can then be written as

|E [f (X)]− f (E [X])| ≥ M

∫
|X − µ|α dP (X) = Mσα

n

The following proposition shows that theσn in inequality (2.2) cannot be replaced byσβ for
anyβ < n:

Proposition 2. There exists a functionf that satisfies the condition in Theorem 2.1 such that
for any0 < β < n andσn > 0, there exists a probability distributionP that makes|J (f,X∼P)|

σβ
α

arbitrarily large.

Proof. LetP be discrete with

P ({µ}) = 1− p

P ({µ + a}) = P ({µ− a}) = p/2

P (R\ {µ, µ + a, µ− a}) = 0

Thenσβ can be written as

σβ = β
√

p · a

Let f (x) = |x− µ|α + |x− µ|n. The absolute value of the Jensen gap can be written as

|J (f, X ∼ P)| = p · (aα + an) .

Then the ratio
|J (f, X ∼ P)|

σα
β

= p1−α
β ·
(
1 + an−α

)
.

Note thatσn = n
√

p · a. We then havea = σn
n
√

p
. Then we can write the ratio as

|J (f, X ∼ P)|
σα

β

= p1−α
β ·
(

1 +
σn−α

n

p1−α
n

)
= p1−α

β + pα( 1
n
− 1

β ) · σn−α
n .

Since 1
n
− 1

β
< 0 andp can take any value in(0, 1), it is always possible to make the ratio

arbitrarily large.
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2.2. Expanding the scope of the upper bound by linear shifts .When referring to random
variables with distribution peaked around its mean, i.e. random variables with smallσn, the
larger theα in inequality (2.2), the tighter the upper bound. However, for manyf , it is im-
possible to find anα > 1. For example, for functions that are differentiable atµ and have a
f ′ (µ) 6= 0, the largestα we can obtain isα = 1. Also, for the case of convex functions that are
strictly increasing atx = µ, it is impossible to find anα > 1:

Proposition 3. Let f (x) be a convex function that is strictly increasing nearµ. Then for any
α > 1, we have

lim
x→µ

|x− µ|α

f (x)− f (µ)
= 0

Proof. Sincef is convex and strictly increasing, we havef ′+(µ) > 0 andf ′−(µ) > 0. So

lim
x→µ+

|x− µ|α

f (x)− f (µ)
= lim

x→µ+
(x− µ)α−1 · x− µ

f (x)− f (µ)
= 0 · 1

f ′+(µ)
= 0

Same argument holds forx → µ−.

Although the inability to get anα > 1 seems to be a major limitation, fortunately for most
cases we can eliminate this limitation by shifting the function by a linear function, because this
does not change its convexity or the Jensen gap. For functions that are differentiable atx = µ,
from Taylor’s theorem with Peano’s form of remainder, we know that

f (x) = f (µ) + f ′ (µ) (x− µ) + o (x− µ)

We can therefore studyg (x) = f (x) − f ′ (µ) (x− µ) instead off (x). We will then have
g (x) − g (µ) = o (x− µ), which has anα value at least as large asf (x). If further f (x) has
well defined second derivative, we then have

f (x) = f (µ) + f ′ (µ) (x− µ) +
f

′′
(ξL)

2
(x− µ)2

that is

(2.3) g (x)− g (µ) =
f

′′
(ξL)

2
(x− µ)2

which impliesα = 2. If f ′′(µ) = 0, we can apply similar arguments to higher order derivatives
to find the bestα.

Note that if we defineh (x; µ) ≡ f ′′(ξL)
2

≡ f(x)−f(µ)−f ′(µ)(x−µ)

(x−µ)2
, then (2.3) can be written as

g (x)− g (µ) = h (x; µ) (x− µ)2, which further gives

(2.4) inf
x

h (x; µ) · Var [X] ≤ J (f, X ∼ P) ≤ sup
x

h (x; µ) · Var [X]

as shown in[13]. If|f (x)| 6= O (x2) at x → ∞, thensupx h (x; µ) = +∞ or infx h (x; µ) =
−∞ or both, which means at least half of (2.4) will become a trivial inequality−∞ ≤ J (f, X ∼ P)
or J (f, X ∼ P) ≤ +∞. On the other hand, if|f (x)| = O (x2) at x → ∞, we then have
n = 2. If this is the case, the preceding constantM in Theorem 2.1 can then be written as
M = 1

2
supx |h (x; µ)| and Equation (2.1) therefore becomes− supx |h (x; µ)| · σ2

2 ≤ J ≤
supx |h (x; µ)| · σ2

2, which is equivalent to (2.4) in half or in full2. Due to these connections,

2If |supx h (x;µ)| > |infx h (x;µ)|, then we must havesupx |h (x;µ)| = supx h (x;µ), which means the
J (f,X ∼ P) ≤ part of Theorem 2.1 and of (2.4) are equivalent. If|supx h (x;µ)| < |infx h (x;µ)|, then we
must have− supx |h (x;µ)| = infx h (x;µ), which means the≤ J (f,X ∼ P) part of Theorem 2.1 and of (2.4)
are equivalent. If|supx h (x;µ)| = |infx h (x;µ)| andh (x;µ) is not constant, then we must havesupx |h (x;µ)| =
− infx h (x;µ) = supx h (x;µ), hence in this case, Theorem 2.1 is fully equivalent to (2.4).
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Lemma 1 in [13] gives a convenient way to compute theM in equation (2.1) when thef ′ (x) is
convex or concave.

3. SECOND M AIN RESULT: L OWER BOUND

We first prove our lower bound for conditions similar to the upper bound case. The tightness
of this bound will be discussed in Section 3.1 followed, in Section 3.2, by strong implications
for convex functions, and expanding the scope via linear function shifts.

The lower bound given in the following theorem holds for any probability distribution as long
as the relevant moments are well-defined.

Theorem 3.1. If functionf : I → R, whereI is a closed subset ofR andµ ∈ I, satisfies the
following conditions:

(1) f(x)− f(µ) > 0 at x 6= µ
(2) f (x)− f (µ) = Ω (|x− µ|α) at x → µ for α > 0

(3) f (x)− f (µ) = Ω
(
|x− µ|β

)
at x →∞ for 0 ≤ β ≤ α

then for random variableX with probability distributionP that has expectationµ, the following
inequality holds:

(3.1) J (f, X ∼ P) ≥ M
σα

α/2

1 + σα−β
α−β

whereM = infx∈I\{µ}

{
[f (x)− f (µ)] ·

(
1

|X−µ|β + 1
|X−µ|α

)}
> 0 does not depend on the

probability distributionP.

Proof. Let

g (x) =

(
1

|x− µ|β
+

1

|x− µ|α

)−1

from the definition ofM , we know thatf (x)− f (µ) ≥ M · g(x).
We first prove thatM > 0. It is easy to see thatg (x) is positive atx 6= µ, g (x) =

Θ (|x− µ|α) at x → µ, andg (x) = Θ
(
|x− µ|β

)
at x → ∞. Therefore, there exists positive

M1, M2 andd1 ≤ d2 such thatf (x)− f (µ) ≥ M1 · g (x) at |x− µ| ≤ d1 andf (x)− f (µ) ≥
M2 · g (x) at |x− µ| ≥ d2. Sinced1 ≤ |x− µ| ≤ d2 is compact and bothf (x) − f (µ) and
g (x) are positive in this interval, there existsM3 > 0 such thatf (x) − f (µ) ≥ M3 · g (x).
TakingM ′ = min {M1, M2, M3} > 0, we havef (x) − f (µ) ≥ M ′g (x). That is,f(x)−f(µ)

g(x)
is

bounded from below by some positive number. Therefore

M = inf
x∈I\{µ}

f (x)− f (µ)

g(x)
> 0

Sincef (x)− f (µ) ≥ M · g (x), we have

(3.2) J (f, X ∼ P) ≥ M

∫ (
1

|X − µ|β
+

1

|X − µ|α

)−1

dP (X)

= M

∫
|X − µ|α

|X − µ|α−β + 1
dP (X)
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The Cauchy–Schwarz inequality can be used to simplify the above inequality: Let

g1 (X) =

√
|X − µ|α

|X − µ|α−β + 1

and

g2 (X) =

√
|X − µ|α−β + 1

Cauchy–Schwarz inequality

E
[
g2
1 (X)

]
E
[
g2
2 (X)

]
≥ E [g1 (X) g2 (X)]2

can be rewritten as

E
[
g2
1 (X)

]
≥ E [g1 (X) g2 (X)]2

E [g2
2 (X)]

Note that

E
[
g2
1 (X)

]
=

∫
|X − µ|α

|X − µ|α−β + 1
dP (X)

E
[
g2
2 (X)

]
=

∫ (
|X − µ|α−β + 1

)
dP (X) = 1 + σα−β

α−β

E [g1 (X) g2 (X)]2 =

(∫
|X − µ|α/2 dP (X)

)2

= σα
α/2

We therefore have ∫
|X − µ|α

|X − µ|α−β + 1
dP (X) ≥

σα
α/2

1 + σα−β
α−β

Plugging into (3.2), we have

J (f, X ∼ P) ≥ M
σα

α/2

1 + σα−β
α−β

Note that if we replace allf(x) − f(µ) with f(µ) − f(x), and at the same time replace
J (f, X ∼ P) with −J (f, X ∼ P), Theorem 3.1 still holds. Also note that by replacing the
Cauchy–Schwarz inequality with Hölder’s inequality in the proof of the above theorem, we can
get a more general but less pleasing result:

Theorem 3.2.The inequality(3.1) in Theorem 3.1 can be replaced by the following inequality:

(3.3) J (f, X ∼ P) ≥ M

[∑(k+1)/q−1
l=0

(
(k + 1) /q − 1

l

)
σ

α/p+l(α−β)
α/p+l(α−β)

]p

[∑k
l=0

(
k
l

)
σ

l(α−β)
l(α−β)

]p/q

wherek ≥ 1 is an integer,q can be any positive factor of(k + 1) except1, andp = q
q−1

.

Proof. Following the same steps as in the Cauchy–Schwarz version, but this time introducing a
new integral parameterk ≥ 1, and setting

g1 (X) = p

√
|X − µ|α

|X − µ|α−β + 1

and

g2 (X) =
q

√(
|X − µ|α−β + 1

)k
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we have

E [gp
1 (X)] =

∫
|X − µ|α

|X − µ|α−β + 1
dP (X)

E [gq
2 (X)] =

∫ (
|X − µ|α−β + 1

)k

dP (X) =
k∑

l=0

(
k
l

)
σ

l(α−β)
l(α−β)

E [g1 (X) g2 (X)] =

∫
|X − µ|α/p

(
|X − µ|α−β + 1

)k/q−1/p

dP (X)

=

∫
|X − µ|α/p

(
|X − µ|α−β + 1

)(k+1)/q−1

dP (X)

=

(k+1)/q−1∑
l=0

(
(k + 1) /q − 1

l

)
σ

α/p+l(α−β)
α/p+l(α−β).

From Hölder’s inequality, we know that

E [gp
1 (X)] ≥ E [g1 (X) g2 (X)]p

E [gq
2 (X)]

p
q

=

[∑(k+1)/q−1
l=0

(
(k + 1) /q − 1

l

)
σ

α/p+l(α−β)
α/p+l(α−β)

]p

[∑k
l=0

(
k
l

)
σ

l(α−β)
l(α−β)

]p/q

which immediately yields inequality (3.3).

Although general, inequality (3.3) is too cumbersome to be useful. To simplify it, we can
takeq = k + 1 and thereforep = 1 + 1

k
. We then have

(3.4) J (f, X ∼ P) ≥ M
σα

α/(1+ 1
k)[∑k

l=0

(
k
l

)
σ

l(α−β)
l(α−β)

]1/k

Note that applying inequality (3.4) tof(x) = |x|α, we obtain

(3.5) σα ≥ σα/(1+ 1
k)

which is a special case of the inequality

E [|X|r] ≤ E [|X|s]
r
s

for 0 < r < s.

3.1. Tightness of the lower bound.Since inequality (3.5) is a special case of (3.4) and since
(3.5) is sharp, it follows that (3.4) is sharp.

In inequality (3.4), as the centered absolute moments decrease to0, since the denominator de-
creases to1, it is the numerator that characterizes how fast the Jensen gap decreases to0. Since
σr ≤ σs for r ≤ s, having a larger subscript in the numerator means a tighter result. In (3.4),
the subscript of the numerator can be increased to a value arbitrarily close toα by choosing
largerk, but as a side effect, this also brings higher orders of moments into the denominator.

Therefore, a natural question is whether we can increase the subscript of the numerator of
(3.4) without bringing in higher orders of moments? The following proposition shows that the
answer is no, by showing that if we increase the subscript higher than that proposed in (3.4),
it is possible to construct a sequence of probability distributions that make the moments in the
denominator decrease to 0 while at the same time making the ratio between the Jensen gap and
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the numerator go to zero (therefore making it impossible to find aM to make the≥ in (3.4)
hold):

Proposition 4. Let f(x) = Θ(|x|β) at x → ∞ be a function that satisfies the condition in
Theorem 3.1. Then for anyq > α/

(
1 + 1

k

)
, there exists a sequence of probability distributions

P(1),P(2), . . . such thatσ(j)
r is non-increasing with respect toj for all r ≤ k(α− β) and

lim
j→+∞

J
(
f, X ∼ P(j)

)[
σ

(j)
q

]α = 0

Proof. Letm = k(α−β). Without loss of generality, assumeµ = 0, f(x) is even, andf(0) = 0.
LetP be a discrete probability distribution that has

P ({j}) = P ({−j}) =
1

2jm

P ({0}) = 1− 1

jm

P (R\ {0,±j}) = 0

It is easy to see that

σ(j)
r = j1−m

r

does not increase asj increases forr ≤ m, and

J
(
f, X ∼ P(j)

)
=

f(j)

jm
= Θ

(
jβ−m

)
at j → +∞. We then have

J
(
f, X ∼ P(j)

)[
σ

(j)
q

]α = Θ
[
jβ−m−α(1−m

q )
]

In the case thatq > α/
(
1 + 1

k

)
, we haveβ −m− α

(
1− m

q

)
< 0. Therefore

Θ
[
jβ−m−α(1−m

q )
]
→ 0

asj → +∞.

3.2. The lower bound for convex functions. The conditions for Theorem 3.1 are hard for a
general function to satisfy. In fact, Jensen’s inequality only holds for convex functions, so it is
not surprising that we are unable to obtain a lower bound of the Jensen gap. In this section, we
show that convexity implies the conditions in Theorem 3.1. The argument in this section also
applies to concave functions.

In order for the condition in Theorem 3.1 to be satisfied, a convex functionf(x) needs to be
non-increasing at(−∞, µ] and non-decreasing at[µ, +∞). The following proposition shows
that it is always possible to shift a convex function by a linear function to make it so.

Proposition 5. For any convex functionf (x), and any real numbera satisfyingf ′−(µ) ≤
a ≤ f ′+(µ), the linear shiftg (x) = f (x) − a (x− µ) is non-increasing at(−∞, µ] and
non-decreasing at[µ, +∞). Specially, iff (x) is differentiable atµ, a is unique and given
bya = f ′ (x).
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Proof. Forµ ≤ x < x′, we have

g(x′)− g(x)

x′ − x
=

f(x′)− f(x)

x′ − x
− a ≥ f ′+(µ)− a ≥ 0

That is,g(x′) ≥ g(x). Similar argument applies to thex ≤ µ half of g(x).

The convexity also implies thatα can only take values from[1, +∞), as shown in the follow-
ing proposition:

Proposition 6. There does not exist any convex function that hasf (x)− f (µ) = Ω (|x− µ|α)
at x → µ with α < 1.

Proof. Sincef (x) − f (µ) = Ω (|x− µ|α) asx → µ, there exists positive numberd andM
such thatf (x)− f (µ) ≥ M |x− µ|α at |x− µ| ≤ d. Then for anyx that hasµ < x < µ + d,
we have

f (x)− f (µ)

x− µ
≥ M (x− µ)α−1

Sincef(x)−f(µ)
x−µ

is non-decreasing with respect tox, if α < 1, (x− µ)α−1 will becomes arbitrar-
ily high asx → µ+, making it impossible to for the above inequality to be true asx decreases
to µ.

The following proposition shows that for convex functions, it is possible to find aβ at least
as large as1:

Proposition 7. If f (x) is convex, then atx →∞, |f (x)| is either constant orΩ (|x|).

Proof. If f (x) is constant, then this proposition automatically holds true. Otherwise, letx0 <
x1 be two real numbers such thatf (x0) 6= f (x1). Without loss of generality, let us assume
f (x0) < f (x1). Sincef (x) is convex, then for‘ anyx > x1

f (x)− f (x0)

x− x0

≥ f (x1)− f (x0)

x1 − x0

> 0

That is

f (x)− f (x0) ≥
f (x1)− f (x0)

x1 − x0

· (x− x0)

i.e., f (x) = Ω (x) at x → +∞. Considering all the cases, i.e. whenx → −∞, and when
f (x0) > f (x1), we get|f (x)| = Ω (|x|).

Although for the lower bound case our result has no similar equivalence relation with [13] as
the one discussed in Section 2.2, the preceding constantM in our Theorem 3.1, after the linear
shift, can be written asM = 2 · supx 6=µ h (x; µ) whenα = β = 2. For this special case, when
f ′ (x) is convex or concave, the Lemma 1 in [13] is still helpful.

4. FURTHER DISCUSSION, CONCLUSION AND OPEN PROBLEMS

The procedure in the proofs of Theorems 2.1 and 3.1 can be thought of as a general scheme,
which is also followed by [13], of obtaining bounds on the Jensen gap. This procedure first
writesf (x)−f (µ) as a product of two functions, says (x) t (x), where thesup andinf of s are
easy to compute and the integral

∫
t (X) dP (X) can be easily computed or further bounded.

We then have

inf s (x) ·
∫

t (X) dP (X) ≤ J (f, X ∼ P) ≤ sup s (x) ·
∫

t (X) dP (X)

The above formula gives a very general way to bound the Jensen gap. For example, instead of
usingt (x) = |x− µ|α + |x− µ|n as in Theorem 2.1, the reader can choose a more general form
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t (x) =
∑

α≤η≤n aη |x− µ|η where values ofη andaη are chosen based on the application to
better approximatef (x), and obtain an improved upper bound

J ≤ sup
f (x)

t (x)
·

( ∑
α≤η≤n

aησ
η
η

)

Similarly, instead of usingt (x) =
(

1
|x−µ|α + 1

|x−µ|β

)−1

as in Theorem 3.1, the reader can

chooset (x) =
(∑

β≤η≤α
aη

|x−µ|η

)−1

where values ofη andaη depend on the application, and

obtain an improved lower bound

J ≥ inf
f (x)

t (x)
·

σα
α/2∑

β≤η≤α aησ
α−η
α−η

or

J ≥ inf
f (x)

t (x)
·

σα
α/(1+ 1

k)(∑
β≤η1,··· ,ηk≤α aη1

· · · aηk
σ

kα−η1−···−ηk
kα−η1−···−ηk

)1/k

We have obtained general upper and lower bounds on Jensen’s gap that depend on the as-
ymptotic growth of the function and related moments of the random variable’s distribution and
compared the new bounds with existing upper and lower bounds. Although fairly general,
some conditions in our theorems are still too strong for some situations. For example, in our
upper bound, we require the function to grow no faster than polynomial atx → ∞, which
excludes some useful functions, such as exponential functions. Also, we require the function
to be bounded on any compact subset ofR in our upper bound, which exclude the study of the
Jensen gap for functions likelog(x), 1

x
with random variableX on (0, +∞). Future work is

proposed to extend our results to include such cases.
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