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Key words and phrasesiensen gap; Jensen’s inequality; Mean-concentrated distributions; Moments.

2010Mathematics Subject Classificat/orPrimary 26D10, 97K50. Secondary 97K80.

ISSN (electronic): 1449-5910
(© 2019 Austral Internet Publishing. All rights reserved.


http://ajmaa.org/
mailto: Xiang Gao <qasdfgtyuiop@gmail.com>
https://scholar.google.com/citations?user=t2nOdxQAAAAJ
http://www.ams.org/msc/

2 XIANG GAO, MEERA SITHARAM, ADRIAN E. ROITBERG

1. INTRODUCTION

The widely used Jensen’s inequality for convex functions, attributed to Danish mathematician
Johan Jensen, dates back to 1906[12]. The literature contains numerous bounds on the Jensen
gap, defined as/ (f, X ~P) = E[f (X)] — f(E[X]), whereX is a random variable with
distribution?, and the functiory’ might be convex or nonconvex [20].

Example consequences and applications of the known bounds are: a number of famous clas-
sical inequalities such as the generalized mean inequality, and a special case the inequality of
arithmetic and geometric means, the Hélder’s inequality, etc¢. [17]; commonly used results in in-
formation theory, e.g. non-negativity of Kullback-Leibler divergence [7]; variational bounds for
negative log likelihood used in statistics and machine learning methods such as the expectation
maximization algorithm[8], and variational inference[18].

Computing a hard-to-compute|f(X)] appears in theoretical estimates in a variety of sce-
narios from statistical mechanics to machine learning theory. A common approach to tackle
this problem is to make the approximati@i{f(X)] ~ f (E[X]) (for example(+) =~ <71>),
and then show that the error, i.e., the Jensen gap, would be small enough for the application.
Since the error itself is as hard to computefdg (X)], inequalities on the Jensen gap would
help by giving easy-to-compute bounds. Moments are commonly used to characterize distribu-
tions of random variables because of their relative ease to compute for many distributions. By
establishing the connection between the Jensen gap and moments, we create a powerful tool for
error estimation based on moment estimates.

As a concrete scenario, the Jensen gap has many useful interpretations in statistical mechanics
such as the difference of average non-equilibrium work and change of free energy, an important
guantity to characterize the deviation of a thermodynamical process from a quasi-static process,
as in Jarzynski equality[11], and the fluctuation of thermodynamical quantities around their en-
semble average, which is of common interest in physics. In machine learning theory, stochastic
gradient descent is employed to minimize the so-called loss function, when learning the para-
meters of a function from a parametrized family; in this case the training inputs are sampled
from a distribution and the loss function is an expectation, to be minimized with respect to the
parameters.

In such scenarios, a common type of random variable has a distribution concentrated around
its mean as described below.

(1) In estimatingg¢ = f (E[X]), an empirical average from samples is often used as an
estimation of expectation, i.6E [X] ~ X = 73y X andé = € = f(X).

The bias of, i.e. E [E] — ¢ is given by the Jensen gap where the random varidble

has a distribution concentrated around its mean. The asymptotic growth behavior of the
Jensen gap therefore gives an idea how fast we can push the bias to zero by increasing
N.

(2) Random variables with a distribution concentrated around the mean are very common
in statistical mechanics. Since the number of particles in the system is usually the order
of Avogadro constaniV, ~ 1023, the distribution is so sharp that all the Jensen gaps
become negligible. However, this is not the case in computer simulation or microscopic
experiments, which usually have a much smaller system size. The asymptotic growth
behavior of thermodynamic fluctuation (defined as the Jensen gap of fungtion
random variableéZ?) with the system size guides the simulation/experiment setup.

Moments play an important role in studying random variables with a distribution concentrated
on the mean, especially when the random variable is an empirical average of i.i.d random
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variables[14]. Our results will use moments to express the asymptotic growth behavior of the
Jensen gap.
Next we give an elementary example to illustrate the inspiration behind our results, which
establish the connection between the Jensen gap and the (absolute centered) soment
E[|X — ul’], wherep = E [X] is the expectation of random variahle. Assume that for
a >0, f (x) is a-Holder continuous oveR, i.e. there exists a positive numhéf such that for
anyz € R, |f (z) — f (u)] < M |z — p|®. Then we have

L1) [E[f ) - |</u )| dP (X)
gM/]a:—madP(X) < Mo

Similarly, if f(x) — f(u) > M|z —pl|® or f(u) — f(x) > M|z — u|*, we can obtain an

elementary lower bound on the Jensen gap

12) [E[f (X)) - |—/v )| dP (X)

> M/ & — pl” dP (X) > Mo®
Our main results generalize these two elementary bounds as described in the next section.

1.1. Contribution and Comparison. We prove an upper and lower bound on the Jensen gap,
summarized below, and demonstrate their tightness. In the following, "upper bouaAd of
meansJ (f,X ~ P)| < Awhichmeans-A < J (f,X ~P) < A, while "lower bound of
A" means eithe7 (f, X ~P)>Aor—-J (f,X ~P) > A.
e For functions that approacfi(u) atz — u no slower thanz — p|®, and grow as
x — +oo no faster thant |z|" forn > «,

E[f(X)] = fEIX])] < M(oq +073) <M (1+0,7%) 0}

whereM = sup, ,,, LGSl This implies thatt [f (X)] — f (E[X]) approaches
no slower thaw? aso,, — 0.
e For functions that either decrease or increase (but do not decrease on one side and in-
crease on the other) tb(u) asz — u no faster thanz — p|®, and grow to infinity at
z — 0o no slower thanz|® for 0 < 3 < a,

E[f (X)] - f (E[X])] > M—22_

1400 g
whereM :inf#“{[f (x) — f (u)] - <‘X 5+ Ma)} This implies thal [ f (X)]—
f (E[X]) decreases t0 no faster thaw® o/2 @S0, — 0as long aw,,_ s does not grow

to infinity at the same time.

Although neither our upper bounds nor our lower bounds require the function to be convex or
concave, the condition in our lower bound is naturally satisfied by convex or concave functions
as we will show in Section 3.2.

In order to illustrate the flavor of the main results, we give simple examples that are di-
rect consequences. We also compare the consequences of our main results with known lower
boundd[1] 15, 19,/12, 20, 13] and upper bounds[6, 16]. A major advantage of our result over
these known results is their relative generality: our conditions on the function, its domain, and
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the distribution are weak (for example we do not require the function to be convex, and we
do not require the distribution to be discrete). Among the above-mentioned bounds, [15] and
[16] are only for discrete distributions, and are omitted from the comparisons below. Besides
the bounds as listed above, the Jensen’s gap can also be estimated by Jensen-Ostrowski type
inequalities[4] 9,5, 10,/ 3].

Example 1.1. Consider the Jensen gap gh (z) and random variables with mean at Ob-

serve thatin (z) has a power seriesin (z) = x — %: + % +---,and by choosing = n =1,

we get|7 (sin, X ~ P)| < o1. Also, sincesin’ (0) = 1 # 0, we can obtain a different result by
studyingg (z) = sin (z) — « (which has the same gap behavior, discussed in Section 2.2 and
Sectio) instead. This time, by choosing n = 3, we can see that7 (sin, X ~ P)| < %g

If we are interested in the asymptotic behavior of the Jensen gap when the distribution is con-
centrated around the mean, we can conclude immediately|thétin, X ~ P)| decreases to

0 no slower than~ o3 and ~ o}. It is also possible to choose = n = 2 and obtain

| T (sin, X ~P)| < "7% Although this result is not as good as th& version in terms of as-
ymptotic behavior for non-heavy-tailed distributions such as Gaussian distribution and Laplace
distribution, the second moment is usually more available than the third moment. Our lower
bound result is not useful in this example. In fact, sisie¢x) is odd, any even distributiof
will result in a zero Jensen gap regardless of its moments. That is, it is impossible to obtain a
non-trivial bound that is a function of only moments.

Results in[6l [19] require the function to be convex, and are therefore not useful for this
example. Since the domain is notA) or (0, A] as required by2], or [0, +o00) as required by
[1], these results do not apply either. The resufflil] gives the same bound as otif version,
which is better than the/ (sin, X ~ P) > —%3 given by{20]. The fact thafl13] gives the same
bound as ours is not just a coincidence, but can be attributed to the connections between our
results and13] as described in Sectign 2.2.

Example 1.2. Considercos (x) and random variables with mean @t Observe thatos (x) has
apower seriesos () = 1—§+- -+, we can choose = n = 2 and see tha7 (cos, X ~ P)| <

%%. If we are interested in the asymptotic behavior, we can concludéfhgatos, X ~ P)| will
decrease no slower thar o2, i.e. the variance of the distribution. Again, our lower bound
result is not useful in this example. In fact, although non-trivial, it is possible to construct a
probability distribution” that makes the Jensen gap egoiand has arbitrary moments, that
is, it is impossible to obtain a non-trivial bound that is a function of only moments.

Results in[6, [19] require the function to be convex, therefore not useful for this example.
Since the domain is nét, A) or (0, A] as required by[2], or [0, +00) as required byfl], these

2

results do not apply. Both our result afitB,[20] are able to get7 (cos, X ~ P) > —22. Since
cos (x) —1 <0, itis not hard to see tha (cos, X ~ P) < 0, which is also given by the result
of [13].
Example 1.3.Considerog () and random variableéX € [a, +00) witha > 0that hasE [X] =
1. Sincelog’ (z) = 1 # 0, we studyg (z) = log (z) — (z — 1) instead, which preserves gap
behavior as in thein example above. Note thaig (z) = (z — 1) — 5 (z — 1>+ ---. By
choosingy = n = 2, we have

—1-1
a—1-log(a) ,

(1—a)?

1To construct such a probability distribution, we can choose a disdPetehose support is a subset of

{£27k|k € N}. By appropriate choice of probability values at discrete points, it is possible to fdkave
any desired set of moments.

T (log, X ~ P)| <
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i.e. |7 (log, X ~ P)| will decrease no slower thar o2, i.e. the variance of the distribution,
aso, — 0. Since theog function is concave, our lower bound is useful (see Se€tign 3.2).
Choosingy = 2 and = 1, we get

2
01

1+O’1

whereby the Jensen gap approaches 0 no faster tHaso; — 0.
The estimate given H@] is

l\DI»—

o5

T (log, X ~P) < 5 min {E[(X — )] + (1 -7} = 72

CL2 c>a
fora <1
a—1—1log(a) _ 1
(1—a)? 2a?
which means that we get a better result tHeh Since the domain is ndd, A) or (0, A] as
required by[2], or (0, +00) as required by19], or [0, +o00) as required byfl], these results do
not apply. The result if20] in this case falls back to Jensen’s inequalifylog, X ~ P) > 0.

The result in[13] gives the same upper bound as ours and fall back to Jensen’s inequality for
the lower bound.

Example 1.4. Considerf (x) = /x and random variables off), +c0) that has mean at.
Sincef’ (1) = 5 # 0, we studyy (z) = /= — %7+ instead. Note tha{/% =145t — 3z —
1)2 +---. By choosing: = o = 2, we see thaU (V. X ~P)| < “2 e |T (V5 X ~P)]
will decrease no slower than o3, i.e. the variance of the dlstnbutlon. Also, singér is
concave, our lower bound is useful. By setting: 2 and = 1, we get

2
01

- 8 1 + 01
whereby the Jensen gap will approach 0 no faster than

Since the second order derivative is not boundéfidoes not apply to this example. Since
‘f Y0 is not defined o and does not have a power series@rresults in[2] do not apply.
Slnce the domain is n@0, +oo) as required by19], that result does not apply. Sinee/- is
superquadratic[1l] applies and has a result 7 (\[,X 73) > —E [\/|X — 1] a}g,
which is not even an improvement of Jensen’s inequalitiy(\/T,X ~ 79) > 0. Again, the

result in[20] falls back to Jensen’s inequality.7 (/-, X ~ P) > 0. The result in13] gives
the same upper bound as ours and fall back to Jensen’s inequality for the lower bound.

~J (V. X ~P) >

Example 1.5. Considerf (z) = x* and random variables that have meaniatSincef’ (1) =
4 # 0, we studyg (z) = 2* — 4(x — 1) instead. By choosing = 2, n = 4, we see that
T (f, X ~P)| < A (1+03) 0%, i.e. | T (f, X ~ P)| will decrease no slower thar 7.
Also, sincef(z) = 2 is convex, our lower bound is useful. By choosing- 3 = 2, we get
J (f, X ~ P) > 202 whereby the Jensen gap will decrease to 0 no faster ¢fjan

Since the second order derivative is not bounded, resu([&]ido not apply to this example.
Since the domain is nd@, A) or (0, A] as required by[2], or (0, +occ) as required by[19],
or [0, +o0) as required by[1], these results do not apply. Agdi20] falls back to Jensen’s
inequality7 (f, X ~ P) > 0. The Jensen gap of onR with ;, = 1. The resultif13] gives a
trivial upper bound7 (f, X ~ P) < +oc and a lower boung7 (f, X ~ P) > 203. This lower
bound gives better numerical values and is usually easier to compute compared with ours.
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2. FIRST MAIN RESULT: UPPER BOUND

We first prove an upper bound on the Jensen gap and discuss the tightness of this bound in
Sectior] 2.]L. Note that our upper bound is useful even when the fungi®not convex. Next,
we show how to use shifts to expand the scope of our upper bound in Section 2.2.

The upper bound in the following theorem holds for any probability distribution as long as
the relevant moments are well defined.

Theorem 2.1.1f f : I — R, where! is a closed subset & and . € I, satisfies the following
conditions:

(1) fis bounded on any compact subsef of

(2 |f(z) = f (W] =0 (lz — ") atez — pfora>0.

3) |f ()] =0 (Jz|") asz — o forn > «
then for a random variabl& with probability distribution” and expectation, the following
inequality holds:

(2.1) E[f (X)) = f ()] <M (cS+0o0) <M (1400 o2

n

whereM = sup,ep () % does not depend on the probability distributiBn

Proof. We begin by showing that (z) = % is bounded o\ {u}:

Since|f (z)] = O (Jz|") and|z — u|* + |z — p|" = O (|=|") atx — oo, there existsi;
thatg (x) is bounded onx — u| > d;. Also, atx — p, since|f (z) — f ()| = O (|z — pu|¥)
and|z — p|® + |z — p" = O (Jx — pu|”), there existsl, < d; such thaty (x) is bounded on
|z — u| < dy. Since the sei; < |z — u| < dy is compact, the numerator is bounded on this
set, and the denominator is bounded from belowdbyt di, g (z) is therefore bounded on
dy < |z — p| < dp. In summaryg () is bounded oR\ {0}.

Let M = sup,ep % we then have:
f (@) = f ()] = (& = pl* + ]z = pl") - g (2) < M (|Jx = p* + o= pl")

So the Jensen gap is

E[f(X)] - fE[X])] Z/R|f(X) — f(p)]dP (X)
EUW/LX—M”HX—MWMNX)SMﬂﬂ+a@

Also note that, < o,, for « < n, we then have
M(cS+o)<M(1+00%) ol

If we are only interested in distributions concentrated arqunde can further simplify the
inequality to the corollary below:

Corollary 1. For functions that satisfy the condition in Theorem| 2.1, there exists a positive
number)M’ independent of the distribution such that

(2.2) E[f (X)] = f ()] < Moy,
for sufficiently smalb,,
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2.1. Tightness of upper bound. We show that modulo the preceding constafit the inequal-
ity 2.2 is sharp.

Proposition 1. Let f (z) be a function that satisfies the condition in Theofen 2.1 With R
and has|f (x) — f (u)| > M |z — u|* onx € R for someM > 0. Then for anyr,, > 0 there
exists probability distributiorP that makes

E[f(X)] = f(E[X])| > Moy,
Proof. Let P be discrete with

P({nt o) =P (n—0) = 5

PR\ {p+0n,p—0n}) =0
The Jensen gap can then be written as

E[f(X)] - f (E[X])] > M/ X — " dP (X) = Mo®

n

The following proposition shows that tlag, in inequality [2.2) cannot be replaced by for
anys < n:

Proposition 2. There exists a functioffi that satisfies the condition in Theor¢m]|2.1 such that
for any0 < 3 < n ando, > 0, there exists a probability distributio® that makew
arbitrarily large.

Proof. Let P be discrete with
P{H{ut)=1-p
P{p+a})=P{n—a})=p/2

P (R\{p,p+a,p—a}l)=0
Theno s can be written as
og=4{p-a
Let f (z) = |z — u|™ + |z — p|". The absolute value of the Jensen gap can be written as
T (f; X ~P)|=p-(a® +a").

Then the ratio

J(X~P _a n—a
TUX PN _ s 4 ey
93
Note thato,, = ;/p - a. We then have = (\7/% Then we can write the ratio as

|\7<f7X ~ 73)| :pl—% . (1 + O-Ib_a> :pl—% +pa(%—%) .Uz—a.

p n

73
Since% — [13 < 0 andp can take any value if0, 1), it is always possible to make the ratio

arbitrarily large.n
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2.2. Expanding the scope of the upper bound by linear shifts When referring to random
variables with distribution peaked around its mean, i.e. random variables with smahe
larger thea in inequality [2.2), the tighter the upper bound. However, for mgnit is im-
possible to find arv > 1. For example, for functions that are differentiableusaéind have a
I (p) # 0, the largesty we can obtain isx = 1. Also, for the case of convex functions that are
strictly increasing at = p, it is impossible to find aa > 1:

Proposition 3. Let f () be a convex function that is strictly increasing nearThen for any
a > 1, we have
oz —pl”
lim ——— =0
a=n f () = f (1)

Proof. Sincef is convex and strictly increasing, we hag/e(x) > 0 and f’ (i) > 0. So
)05—1 . T — W 1

N et | A _ T g1
I e e e T Y

Same argument holds fer— p~. 1

Although the inability to get amx > 1 seems to be a major limitation, fortunately for most
cases we can eliminate this limitation by shifting the function by a linear function, because this
does not change its convexity or the Jensen gap. For functions that are differentiable at
from Taylor’'s theorem with Peano’s form of remainder, we know that

f@)=F)+f (1) (@—p) +o(z—p)
We can therefore study (z) = f(x) — f' (1) (x — p) instead off (). We will then have

g(z) —g(n) = o(x — u), which has anv value at least as large ggx). If further f (z) has
well defined second derivative, we then have

F@)= £+ 7 ) - )+ L8
that is
23) 9@) g = 88 oy

which impliesa = 2. If f”(u) = 0, we can apply similar arguments to higher order derivatives
to find the bestv. , /
Note that if we defing: (z; ) = L6 = [ /W-TW@-m) then [2:8) can be written as

(z—p)*
g(x) — g (p) = h(x;p) (x — p)?, which further gives
(2.4) infh (z;p) - Var [ X] < T (f, X ~P) <suph(z;u) - Var [X]

as shown in[13]. ifif (z)| # O (x?) atz — oo, thensup, i (z; 1) = +oo orinf, h (x;p) =
—oo or both, which means at least half pf (2.4) will become a trivial inequality < 7 (f, X ~ P)
or 7 (f,X ~P) < +oco. On the other hand, iff (z)] = O (z*) atz — oo, we then have

n = 2. If this is the case, the preceding constantin Theoreni 2]l can then be written as
M = sup, |h(z; )| and Equation (2.1) therefore becomesup, |h (z; )] - 03 < J <
sup, |h (z; 1)| - o3, which is equivalent tg (2]4) in half or in fdll Due to these connections,

2If |sup, h (z;p)| > |inf, b (z; )], then we must haveup, |k (x; )| = sup, h(z; 1), which means the
J (f,X ~P) < part of Theoren 2|1 and of (2.4) are equivalent/sifp, i (z; )| < |inf, h (x; p)|, then we
must have- sup,, | (z; 1)| = inf, h (z; 1), which means thed 7 (f, X ~ P) part of Theorem 2]1 and df (2.4)
are equivalent. Ifsup,, h (x; )| = |inf, A (z; p)| andh (z; 1) is not constant, then we must hawep,, |h (x; 1)| =
—inf, h (x; ) = sup, h (x; 1), hence in this case, The0r2.1 is fully equivalenftq| (2.4).

AJMAA \Vol. 16, No. 2, Art. 14, pp. 1-16, 2019 AIJMAA
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Lemma 1in[[13] gives a convenient way to compute Alhién equation[(2.[1) when th¢' () is
convex or concave.

3. SECOND MAIN RESULT: L OWER BOUND

We first prove our lower bound for conditions similar to the upper bound case. The tightness
of this bound will be discussed in Section|3.1 followed, in Sedtioh 3.2, by strong implications
for convex functions, and expanding the scope via linear function shifts.

The lower bound given in the following theorem holds for any probability distribution as long
as the relevant moments are well-defined.

Theorem 3.1.If function f : I — R, where! is a closed subset & and . € I, satisfies the
following conditions:

(1) F(2) = f(u) > 0ats £ p
) f(z) = f(p) =Q(z —p|") ate — pfora >0
(3)f(:c)—f(u):Q<|x—,u\ﬁ) atr — oofor0 < g <a

then for random variable& with probability distributionP that has expectation, the following
inequality holds:

a
O-a/2

(3-1) j(faXNP)ZM—a_ﬁ
1+0a_ﬂ

where M = inf,cp g {[f () — f(w)]- <‘X_1Mﬁ + |X_1M|a>} > 0 does not depend on the
probability distributionP.

Proof. Let

-1
1 1
g9(x) = + a
<|x—,u]6 |z — pf )

from the definition ofA/, we know thatf (z) — f (1) > M - g(z).

We first prove thatM/ > 0. It is easy to see thaj(x) is positive atz # pu, g(z) =
O (Jz — p|*) atz — p, andg (z) = © (|x — M|B> atx — oo. Therefore, there exists positive
M, My andd; < dy suchthatf (z) — f () > My - g (z) at|z — u| < dyandf (z) — f (u) >
M, - g(z) at|x — u| > dy. Sinced; < |z — u| < dy is compact and botlf (z) — f (1) and
g (z) are positive in this interval, there exisig; > 0 such thatf (z) — f (u) > M5 - g ().
Taking M’ = min {M;, My, M} > 0, we havef (z) — f (1) > M'g (x). Thatis, [t is
bounded from below by some positive number. Therefore

f ) = f(p)

M = inf >0
vel\{n}  g()
Sincef (z) — f(n) > M - g (x), we have
1 1 -
32) J(f,X~P ZM/ + | drP(x
3.2 J(f ) <|X_Mﬁ |X—M|> (X)
X —pl”
- M dP (X
X—a a1

AIJMAA Vol. 16, No. 2, Art. 14, pp. 1-16, 2019 AJMAA
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The Cauchy-Schwarz inequality can be used to simplify the above inequality: Let

| X —pl
X =" 41

91 (X) =

and

92 (X) = /IX =" 41
Cauchy-Schwarz inequality
E [ (X)] E [¢5 (X)] > E g1 (X) g2 (X))

can be rewritten as )
E [91 (X)92 (X)]

E[g5 (X)]

| X —pl®
X —p* ™ 41

EbﬁXﬂ:i/OX—ﬂP%+J)ﬂNX):1+Ji§

Note that

P (X)

Blo (0 (O = ([ 1X 2P () =05,

We therefore have N
| X — u

X —p* 41
Plugging into [(3.R), we have

P
dP (X) > —
1+ ag_ﬂ

To/o
J(f X~P)zM——7"=
1+03_ﬂ
|

Note that if we replace alf(x) — f(u) with f(u) — f(z), and at the same time replace
J (f, X ~P) with =7 (f, X ~ P), Theorenj 311 still holds. Also note that by replacing the
Cauchy—-Schwarz inequality with Holder’s inequality in the proof of the above theorem, we can
get a more general but less pleasing result:

Theorem 3.2. The inequality(3.1)in Theoren 3]1 can be replaced by the following inequality:
@+nm—1< M*+1)/q—-1>(prum—m}p
=0 l a/p+i(a—p)

. k laB) p/q
{Zz:o ( I )Ul(aﬁ)]

wherek > 1 is an integerg can be any positive factor ¢k + 1) exceptl, andp = qqu

(3.3) J@X~M2M[

Proof. Following the same steps as in the Cauchy—Schwarz version, but this time introducing a
new integral parametdr > 1, and setting

| X — pl”

(251 (X) = P
X —p* 41

and

92 (X) = \/ (1% = p? 1)
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we have | |
X — pl®
E [ (X)] = P (X
A (0] = [ P ()
k k L z
E[gg<x>1=/(\x pl*? 1) dP(X)zZ( l )Uézﬁi
=0
o o k/q—1/p
Bl () g2 (X)) = [ X =l (1X = 1) P (1)
(k+1)/q—1
= = (1 = ) e )
(k+1)/q—1
_ T ( (k+1)/¢—1 ) Fo/pH(a=p)
- l a/p+i(a—p3)"

=0
From Holder’s inequality, we know that

” { (k+1)/g—1 < (k+1)/q—1 > Ua/p+z<aﬁ>r

1=0 I a/p+l(a—p)
p/q
k k\ ia-p)
[Zzo < I )Ul(a—ﬂ):|

Although general, inequality (3.3) is too cumbersome to be useful. To simplify it, we can
takeq = k + 1 and thereforg = 1 + +. We then have

which immediately yields inequality (3.3

O—a/(l-l-%)

1/k
k k l(a—8
[Zlﬂ ( I )Uzéa—ﬁ;]

Note that applying inequality (3.4) t&(z) = |z|*, we obtain
(3.5) o 20,

(3.4) T(f,X~P)>M

/(1+%)
which is a special case of the inequality

E[X|]<E[X[]]*
for0 <r < s.

3.1. Tightness of the lower bound. Since inequality[(3]5) is a special case[of[3.4) and since
(3.9) is sharp, it follows thaf (3/4) is sharp.
In inequality 3.4), as the centered absolute moments decre@ssince the denominator de-
creases ta, it is the numerator that characterizes how fast the Jensen gap decreasgste
0. < os forr < s, having a larger subscript in the numerator means a tighter resuft. In (3.4),
the subscript of the numerator can be increased to a value arbitrarily cleseytachoosing
largerk, but as a side effect, this also brings higher orders of moments into the denominator.
Therefore, a natural question is whether we can increase the subscript of the numerator of
(3.4) without bringing in higher orders of moments? The following proposition shows that the
answer is no, by showing that if we increase the subscript higher than that propoged in (3.4),
it is possible to construct a sequence of probability distributions that make the moments in the
denominator decrease to 0 while at the same time making the ratio between the Jensen gap and
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the numerator go to zero (therefore making it impossible to fidd éo make the> in (3.4)
hold):

Proposition 4. Let f(z) = ©(|z|’) at z — oo be a function that satisfies the condition in
Theorel. Then for any> o/ (1 + %) there exists a sequence of probability distributions

P P@ . such thatr? is non-increasing with respect tofor all r < k(o — 3) and

J (f, X ~ p(j))
j—too [ (j)]a

=0

Oq

Proof. Letm = k(a— (). Without loss of generality, assume= 0, f(x) is even, and (0) = 0.
Let P be a discrete probability distribution that has

PN =P~} = —

29m
1

P({0}) =1- i

P (R\ {0, £5}) =0
It is easy to see that

o) =77
does not increase @sncreases for < m, and
7 (5.x ~p0) = L) _ g (jo-m)

atj — +oo. We then have
‘7 (f’ X ~ P(J)) B—m—a(1-2
o] =6 |7 metew)]

In the case thaj > «/ (1 + %) we haves — m — « (1 — %) < 0. Therefore

) [jﬁfm*a(lf%)} — 0
asj — +oo. 1

3.2. The lower bound for convex functions. The conditions for Theorein 3.1 are hard for a
general function to satisfy. In fact, Jensen’s inequality only holds for convex functions, so it is
not surprising that we are unable to obtain a lower bound of the Jensen gap. In this section, we
show that convexity implies the conditions in Theorenj 3.1. The argument in this section also
applies to concave functions.

In order for the condition in Theorefn 3.1 to be satisfied, a convex fungtiohneeds to be
non-increasing at—oo, ] and non-decreasing gt, +oc). The following proposition shows
that it is always possible to shift a convex function by a linear function to make it so.

Proposition 5. For any convex functiorf (z), and any real numbet satisfying f’ (1) <
a < fi(w), the linear shiftg () = f(z) — a(x — p) is non-increasing af—oo, ;1| and
non-decreasing alu, +co). Specially, iff (z) is differentiable atu, a is unique and given
bya = f' (x).
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Proof. Foru < x < 2/, we have

9@) =9@) _J@=I@ s iy —aso

Thatis,g(z') > g(x). Similar argument applies to the< x half of g(z). &

The convexity also implies thatcan only take values froifi, +cc0), as shown in the follow-
ing proposition:

Proposition 6. There does not exist any convex function that has) — f (1) = Q (|x — ul|)
atr — pwitha < 1.

Proof. Sincef (z) — f (u) = Q(|]z — p|®) asx — u, there exists positive numbédrand M
such thatf (z) — f (1) > M |z — p|* at|x — p| < d. Then for anyx that hasu < x < pu + d,

we have
f({L') B f(ﬂ’) > M(I i M)a—l
T —
Since%ﬁ(“) is non-decreasing with respectipif o < 1, (x — u)‘”‘_l will becomes arbitrar-

ily high asz — p*, making it impossible to for the above inequality to be true: @&creases
tou. 1

The following proposition shows that for convex functions, it is possible to figdaaleast
as large ag:

Proposition 7. If f (x) is convex, then at — oo, | f (x)] is either constant of2 (|z|).

Proof. If f (z) is constant, then this proposition automatically holds true. Otherwise, let
x1 be two real numbers such that{z,) # f (z;1). Without loss of generality, let us assume
[ (x9) < f (z1). Sincef (x) is convex, then for* any: > x,

f(x) — f(x0) > f (1) — f (o)

F@)~ 1 (ag) = TV

ie., f(z) = Q(x) atz — 4o0o0. Considering all the cases, i.e. when— —oo, and when
f (o) > [ (x1), we get]f ()| = Q(|z]). n

Although for the lower bound case our result has no similar equivalence relation with [13] as
the one discussed in Section]2.2, the preceding condfantour Theorenp 3]1, after the linear
shift, can be written a8/ = 2 - sup,_,, h (z; 1) whena = 3 = 2. For this special case, when
[’ (z) is convex or concave, the Lemma 1(in[13] is still helpful.

>0

That is

(x — xp)

4. FURTHER DiscuUssIiON, CONCLUSION AND OPEN PROBLEMS

The procedure in the proofs of Theoremg 2.1[anf 3.1 can be thought of as a general scheme,
which is also followed by[[13], of obtaining bounds on the Jensen gap. This procedure first
writes f (x) — f (u) as a product of two functions, sayz) t (x), where thesup andinf of s are
easy to compute and the integrat (X) dP (X) can be easily computed or further bounded.

We then have

infs(m)-/t(X)dP(X) <J(f,X ~P) Ssups(x)-/t(X)dP(X)

The above formula gives a very general way to bound the Jensen gap. For example, instead of
usingt (z) = |x — pu|*+ |z — u|™ asin Theorerp 2|1, the reader can choose a more general form
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t(x) = > n<y<n @y |z — " where values of; anda, are chosen based on the application to
better approximat¢ (z), and obtain an improved upper bound

J < sup{((z)) : ( > an"Z)

-1
Similarly, instead of using (z) = (ﬁ + +> as in Theorel, the reader can

choose! (z) = (Zﬁgnga wf—m) where values of) anda, depend on the application, and
obtain an improved lower bound

. f(x) J3/2
J > inf - =
" ¢ (x) Zﬁﬁnﬁa “n"gfz
or
o L
J> inf{(x)) . o/ (1+4)

 \1/k
@ (Zﬁﬁmw mp<a Gy " a”kgzzfz;-"*Z:)

We have obtained general upper and lower bounds on Jensen’s gap that depend on the as-
ymptotic growth of the function and related moments of the random variable’s distribution and
compared the new bounds with existing upper and lower bounds. Although fairly general,
some conditions in our theorems are still too strong for some situations. For example, in our
upper bound, we require the function to grow no faster than polynomial -at oo, which
excludes some useful functions, such as exponential functions. Also, we require the function
to be bounded on any compact subseRoh our upper bound, which exclude the study of the
Jensen gap for functions likeg(z), = with random variableX on (0, +c0). Future work is
proposed to extend our results to include such cases.
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