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2 Louis OMENYI AND MICHAEL UCHENNA

1. INTRODUCTION

Differential equations introduced by Sir Isaac Newton, have played a decisive role in the
mathematical study of natural phenomena. For many decades, researchers have focused on
applicability of the qualitative properties of solutions of differential equations. One of such
attempts is the study of the geometrical properties as well as the topological properties of the
solutions. Global analysis, also called analysis on manifolds, is the study of the geometric
and topological properties of differential equations on manifolds and vector bundles, see e.g.
[28,126, 17| 12, 22] and [2].

Central to the field of global analysis is the index theorem propounded by Atiyah and Singer
[4] in (1963), which states that analytic and topological index of an elliptic differential operator
on a compact manifold are equal. This theorem is one of the main bridges, which stimulated a
lot of further research and interplay between geometry, analysis and mathematical physics. To
understand the Atiyah-Singer index formula on a Riemannian manifold, one needs to clarify the
concept of global analysis on a Riemannian manifold.

Global analysis uses techniques in manifold theory and topological spaces of mappings to
classify behaviours of differential equations, particularly nonlinear differential equations, [26].
Global Analysis and the theory of differential equations are classical fields of mathematics that
have a wide range of applications within mathematics, for instance in number theory, group
theory, geometry and topology, but also have important applications outside of mathematics to
physics, engineering and technology.

The field of Global Analysis is rooted in pure mathematics and focuses on geometric and
topological aspects of analysis. The interests of the field include spectral and scattering theory
on manifolds, regularity and existence of global solutions to pseudo-differential equations and
boundary value problems, topological questions related to generalizations of the Atiyah-Singer
index theorem among other topics, see e.gl. [7, 15, 13][and [6]. More recent works in this field
are those of Li[[18] in 2016, Lai[16] in 2017, Yimin@ [31] in 2018 and Zhang [32] in (2019).

An earlier attempt to explain global analysis was made by Smale in [28]. He gave a histor-
ical background of the development of global analysis since the 1968 Summer Institute of the
American Mathematical Society in global analysis. He highlighted the pioneering activities of
Poinca¢ and Birkhoff in the development of the study of the topology of linear elliptic differ-
ential operators, especially in the work of Atiyah, Singer, and Bott. Smale also examined the
works of Andronov, Pontryagin and Peixoto in dynamical systems on a manifold.

This present paper is centred around demonstrating what global analysis on a Riemannian
manifold means. We prove the existence of a unique solution for a system of ordinary differen-
tial equations generated by the flow of smooth tangent vectors on a Riemannian manifold. We
proceed with a clear discussion of basic concepts such as vector field, Riemannian manifold
and the flow of smooth vector fields with diagrammatic illustrations where necessary.

2. PRELIMINARIES

Following Lee [17] and Jost [14], we |ét/ be a topological space. Firstly, we recall some
basic topological notions. The topological spddes called Hausdorff if for any two distinct
pointsz,y € M, there exists disjoint open subsétsl” C M containingz andy respectively.

A covering (U, )aer (I an arbitrary index set) is called locally finite if eache M has a
neighbourhood that intersects only finitely maily. M is said to be paracompact if any open
covering possesses a locally finite refinement. This means that for any open cq&ring
there exists a locally finite open coveriflgy)sc (I” an arbitrary index set) with

Vel 3ael:U;CU,.
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The spaceV/ is said to be connected if there are no two or more disjoint open subsets whose
union isM. Itis second countable if it admits a countable bases for its topolagis compact
if its every open covering has a subcovering.

A map between topological spaces is called continuous if the preimage of any open set is
again open. A bijective map which is continuous in both directions is called a homeomorphism.
If the map is bijective and of clags> with a differentiable inverse of clags™ then we say it
is a diffeomorphism. For more details, one may see Jost [14].

Definition 2.1. An n-dimensional chart o/ is any pair(U, ¢), whereU is an open subset of

M andyp is a homeomorphism df onto an open subset & called the image of the chart. In
diagram we have Figurg](1).

Figure 1: Coordinate chart

Definition 2.2. A Hausdorff, second countable, connected topological spdds called an

n-dimensional topological manifold (with a countable basis) if any point/fobelongs to an
n-dimensional chart.

Definition 2.3. Let M and N be topological spaces. Let : M — N be a smooth map.
Supposef : N — R is a smooth function o@V. The pullback off by ¢ is a smooth function
©* f on M defined by(p* f)(x) = f(¢(x)) for x € M. In diagram, this is shown as Figufé (2).

M L

Figure 2: Pullback function.

Let M be ann-dimensional manifold. For any chdft, ) on M, the local coordinate system
2

(', 22, .-+ 2™) is defined inU by taking thep-pullback of the Cartesian coordinate system in
R™. Consequently, one can say that a chart is an opdn setV/ with a local coordinate system.
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For any two chartsU, ¢) and(V, ) on M for which the intersectio’ NV is not empty, the
mapy ot p(UNV)— (UNV)is called the chart transition from one chart to the other.
In diagram, see Figurg](3).

Figure 3: Chart transition.

A chart transition map on an-dimensional manifold is calle@* if its k" derivatives exist
and are continuous for a positive integer< n. When this condition holds for all positive
integers, we say the map @3> or simply “smooth”. A family of charts on the manifoltl
is called aC*-atlas when the associated chart transitiod'fsand if it covers all ofM/. Two
charts(U, ¢) and(V, ¢) are said to be compatiblelif NV # () and the transition map o !
is a diffeomorphism. Similarly, tw@'*-atlases are called compatible if their union is again a
C*-atlas. The union of all compatiblg*-atlases determines@"-structure on)/. We collect
these notions together as the following definition.

Definition 2.4. A differentiablen-dimensional manifold\/ is a connected paracompact Haus-
dorff topological space for which every point has a neighbourhiddldat is homeomorphic to
an open subsét C R™. Such a homeomorphism: U — Q is called a chart. Again, a family
{Ua, ¢, } of charts for which thé/, constitute an open covering 8f is called an atlas. The
atlas{U,, ¢, } of M is called differentiable if all charts transitions

Y, 0 90;1 L0 (Ua NVey) = ¥, (Ua NVy)

are differentiable of clas€’>(M). A maximal differentiable atlas is called a differentiable
structure and a manifold with differentiable structure is called a differentiable manifold; see
e.g. [10/ 2V} 11] and [14].

We also need the concepts of tangent space and Riemannian metric to define Riemannian
Manifold. Following Bir [5] and Chavel[[10], we let a linear map

£E:C*°(M)—R

be such that at a pointe M. £(fg)(x) = £(f)(g(x)) + &(9)(f(x)) forall f,g € C=(M).
We denote the set of all such mapsByV.. For all{,n € T, M and)\ € R, we define the

sum and scalar multiplicatioh+ n and\¢ so thatT, M is a linear space ovéR.
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Definition 2.5. The linear spac&, M is called the tangent space &f at a pointz and we
denote byI'M := U, T, M the disjoint union of all the tangent spaces at the poirfit'M is
called the tangent bundle af. A tangent space is illustrated in Figufe (4).

Figure 4: tangent space.

We will denote the components 6in local coordinate chart:!, - - - ,2") by ¢ and write
-0
2.1) () = €9l v e (),
An alternative notation fof (2] 1) which we will also adopt in this paper is
_of of _ . of
(f) = o€ sothat(95 =¢ e

which allows to think of¢ as a directional derivative atand to interprelg—g as a directional
derivative; see e.g Grigor'yam [12].

Definition 2.6. (Vector field): A vector field on a smooth manifold is a family{v(z)}.cas Of
tangent vectors such thatr) € T, M foranyx € M. Inlocal coordinates, it can be represented

in the formu(z) = v 2.

A Riemannian metric (also called Riemannian metric tensor)/ois a family of symmetric
positive definite bilinear formg = {g(x)} onT, M which depends om € M smoothly. The
metric enables to define an inner produyct) ;) onT'M by (£, 1)) V¥ &1 € T, M. Hence,
T, M becomes an Euclidean space. For ary T, M, its length||¢|| = / (&, &).

In local coordinates, the inner product has the fdem) ) = gi;(z)E'n where(g;; )7, is
a square symmetric positive-definite matrix expressing the metric in the local coordinates.

These can be summarised in form of definition thus:

Definition 2.7. (Riemannian metric): A Riemannian metric on a smooth manifalds an
assignment of an inner product.) . : T,M x T,M — R for all x € M such that

(1.) (£, &) g) > 0for & # 0 (positive definite);

(2) <€7 77>9(93) = <777 5)9(5”) V77>f € TIM (SymmetriC);

(3.) (@i&; + a;&;,bim; + bin;) g(z) = Z aibj (i M) 9@V i n; € ToM anday, aj, bi, by € R
i,j=1
(bilinear);
(4.) (€,m)g(x) = Oif and only if either{ = 0 orn = 0 or§{ = 0 = n (non-degenerate); and
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(5.) for all z € M, there exist local coordinates'} such thaiyi;(v) = (527, 557 ) () are
smooth functions.

From the foregoing concepts, we make the following definition.

Definition 2.8. (Riemannian Manifold): A Riemannian manifold is a p@lt, g), whereg is a
Riemannian metric on the smooth manifadld

3. MAIN RESULTS

A vector field usually identified with a linear differential operator of the form

- 0
6:;&0%

wherez;, zo, - - - , x,, are coordinates on a manifold and¢, € C*°(M) are handy to define
the directional derivative of € C*>°(M) as

e N~ Of
df-&—f-f—;&axi-

So, the directional derivative gfin the direction of is the action of the differential operator
on f, compare with e.g/ [19, 6, 16] and [29].
In n dimensional manifold, we can therefore write the vector field in the form

o] o] o]
g T 025, + Gngy

L,
(31) { = 901($1,$2,"' wxn)@ixl +()02(x17$27"' 7xn)3;22
+"'—|—g0n($1,l’2,--' 71.71)%

wherea; = ¢y, ,a, = ¢, € C(M). For instance in &-dimensional manifold,

ox

wherez andy are coordinates on the manifold, and= ¢(x,y), b = ¥(z,y) € C*(M). If
f € C>(M) then

0 0 0 0
Lo=a-— + ba_y = w(x,y)a—x + w(ﬂc,y)a—y-

If the same vector field is expressed in terms of coordingteshen by the chain rule
of _0fos ofor  0f 9fds  ofor
Jr 0sOdx Orox dy 0sdy Ordy

so that 5 T 5 orof
S S r T
Here, the linear partial differential operator is
0s ds, 0 or or, 0
=(am—+b—)= —+b—)=.
¢ (aam + 8y>83 + (aﬁx + Gy)ﬁr

We have the following preliminary result.

Lemma 3.1. A constant coefficient linear ordinary differential equation

(3:2) an(t) ot aa ()7 o+ o alt) + an(t)y = g(1)

wherea,, (t) # 0 on a Riemannian manifold/ is generated by a vector field.

n n—1

d"y
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Proof. Rewrite the systeni (3.2) as follows. Define@ew variables, for example:

B dy B d2y _ d3y B dn—ly B
Y=Y, di = Y2, dt2 = Y3, A3 = Y4, g1 = Yn-
Substitute the new variables info (8.2) to obtain the system of equations
(= Y
Yo = Y3
Ys = Y
(3.3) o
yn—l = Un
. yn = bn_l(t)yn + -+ bl (t)y2 + bo(t)yl + f(t)

Equation (3.B) is the required system of first-order equatiofigiift), y=(t),- - - ,y.(t)) € M.
These can be displayed in matrix form as

(3.4) j=Ay+ F(t)
where
0 1 0 0 0
0 0 1 0 0 y1(t) 0
A 000 Tol= [ anar < |
0 0 0 0 1 ynt) £(t)
bo(t) bi(t) bo(t) bs(t) b_1(t)

Therefore¢ = Zgi a@ is the generator 0-2) for € M where,
= Y

51 = Y2, §2 =Yz, 7§n = bn*1<t)yn teet b1<t)y2 + bo(t)yl + f(t)
|

The intuitive meaning of such an equatipn (3.2) is that a point on the manifold is a function
of time ¢ and its coordinates are changing according to the system of ordinary differential equa-
tions [3.3). Hence, the system of the ordinary differential equations and the vector fields are
effectively the same, see elg [29].

Consequently, given a vector fielde 7, M for x in a Riemannian manifold/, the basic
problem of the theory of ordinary differential equation is to find a smooth ¥inag — M for
some interval > 0 such that

(3.5) { \P(t) = Z\‘I](t)) vt € I and

K
—~
@)
~—
I

We have the following result.

Theorem 3.2.Letv € T, M be a vector field for: in a Riemannian/ and suppose the flow of
the vector fieldV : U x I — M towardsy € M satisfies

at\I’(y, t) = U\I;( t) and
3.6 Y
(36 { ¥(0) = y

for each(y,t) € U x [I.
Lett) : W — Q C R” be a chart forM such thatl (U x I) C W. Thenu = o ¥ (1p "1 (2), 1)
definesamap (U x I) — (2 satisfying

(3.7) Ot = o ((u' u?, -+ u"),0) = 2
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fork=1,2,--- ,nandall(z!, 22 ---,2") € ¢(U) andt € I. The operator

v(v,b_l(zl, 22 2") = zn:@kak.

k=1

If u satisfies[(3]7) theW (y,t) = v ' (u(v(y), t)) solves|(3.Jp).

Proof. We have

En(w(r) = EU(WTH(2), )Y 0 &y, U (D,) = EU ().
Sincesy(9;) = e, for j =1,2,--- ,n, it follows that if

vV = Z 17k8k
k=1
then
§Y(v) = Z ey,
k=1
which completes the prook

The main result of this work is a proof that a Riemannian manifddadmits a unique
solution for a system of differential equations generated by the flow of smooth tangent vectors.
This is presented as the next theorem.

Theorem 3.3.Let f € C*(y(U)) in a neighbourhood)(U) of z € M and letf : Q@ — R"
whereQ2 C R™ is open. Assumgf|| = My < 0 and||{(f)||l« = M1 < 0. Then there exists a
unique smooth may : I — € satisfying

38) SV = F0), 90, (1) and
' VU(0) = z VzeQ,andteI; fori=1,2,--- n.
, , . . . d(z,08)
The integral curved are functions of time € /. In particular we take———= < I.
0

Proof. By Picard’s iteration technique of successive approximation, sirieg:) = » for all
t € I, we seek improved approximations using the formula

(3.9 PED () = 2 + X f(U*(s))ds.
0

The formula[(3.P) is valid since it solves
d

Moreover,
U®E () — 2|| < [t| My < d(z,09).
Thus, ¥ € QVz € Q.
To show convergence, we need to prove that
MOM{e|t|k+1

R+ (1) — g®)
(3.10 IwER - vl < =y

, Vk > 0; andt € I.

Fork =0,
t
1906~ w0l =11 [ sl < e
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Assume by induction thaft (3.]L0) holds fbr- 1. Then

||\Ij(k+1)(t)—\11(k)(t)|| _ ||/0 f(\p(k)(S»_f(qj(k—l)(s))dSH
<|/ ML (5)) — WO ) s

MOM’“ 1|s|k Mo M|t

< an| [ R < Mo

Thus{¥®} is a Cauchy sequence in a complete space of continuous maps and hence conver-
gent uniformly to a continuous functioh. So,

—z+/ f(U(s))dsVtel

and differentiable. Consequently,
U(t) = f(0)(t)

for eacht €  andV¥(0) = z. Moreover,U € C>(12).
Furthermore supposeis another such solution then

1V (t) =@l = II/Of(\If(S))—f(U(S))dSII

< an| [ 1) - oto)ds

MF|t|F
c¢—>0ask—>oo

wherec = ||V — ol|. Thereforel = ¢, proving uniqgueness

Further results can be obtained for global analysis on a Riemannian mahifbidstudying
a partial differential operator ol/. An example is the Laplacian ai. This leads to the theory
of partial differential equations of/. We now give an explicit definition of the Laplacian on a
Riemannian manifold with particular reference to thdimensional unit sphere.

Let M be a smooth, compact and connectedimensional Riemannian manifold without
boundary and ley be a smooth Riemannian metric A For a coordinate chart i/,

(zt, 2%, -+ ,2"): U — R™, (U C M open),

. . 0
we represeny by the matrix-valued functiofig;;) whereg;; =

9,
! \Gra el
inner product on the tangent spde\/.
The volume formiV/, of (M, g) is defined aglV,, = \/|g|dz; with |g| = det(g,;) and

and(,-), is the

dr = dx" A -+ A dx™.

To give definition of the Laplacian on smooth functions over the Riemannian madifolde
need the following definitions.

Definition 3.1. (Differential). For a fixedr € M, let f be a smooth function in a neighbour-
hood of z. The differentialdf of f at z is a linear functional or¥, M given by the pairing

(df,§) = &(f) for any § € T, M.

AJMAA Vol. 16, No. 2, Art. 11, pp. 1-17, 2019 AJMAA


http://ajmaa.org

10 Louis OMENYI AND MICHAEL UCHENNA

Hence,df is an element of the dual spacg )M, (called the cotangent space). Elements of
T:M are called covectors. A basfs;,- - ,e,} in T, M has dual basige',--- e"} in T M

which is defined by
i i Ly j=1
<6 7€j> = 5]’ = {

0; 7 #1.
For example, the basis%; } has dual basi¢dz'} becausédz’, a%> = 0%
The covectorif can be represented in the bagis'} as follows:

of .,
df = axidaz
that is, the patrtial derivativeg—i are the components of the differentiél Indeed,
of ., o, of,  , 0. 0Of, 0
<8xid$ ’ 8xj> B 895@'( o 8wj> B (%iéj = (. 8xj>'

Definition 3.2. (Gradient). For any smooth functighon MM, its gradientV, f at a pointr € M
is defined by

(Vo) (@) = g7 (2)df (x)
whereg~!(z) := ¢"(x) is the inverse of;. If we let{ = V, f(z) then for anyp € T,M one
writes
of

(Vofimo = df.m = 5.

which is another way of defining the gradient. In local coordinates,

(Vof) =g” of

dai’

If f1 on M is another smooth function, set= V f; then,
i Of 0f

(Vof Vo) = (df, Vi) = g9 5220

At this point, we may recall again that the Riemannian measure (volume t6rpi)) on
(M, g) can be represented in local coordinates as

Vigldz' A -+ A da™ where|g| = det(gi;).

Theorem 3.4. (Divergence theorem). Letbe any smooth vector field i anddV a Rie-
mannian measure. Then, there exists a unique smooth functidd oalled divergence and
denoted bylivv such that the following identity holds:

(3.11) /M(divv)fdv - —/ (v, V,f)dV Vf € CZ(M).

M

In local coordinates,
1 0 ,
3.12 dive = —— — 7).
(3.12) o= g (VI )
Note also that for any continuous functigron M if

/ FdV =0V € C(M)
M

thenf = 0. For proof, one may see e.g. [12].
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Theorem 3.5. ([12]). Let(M, g) be a Riemannian manifold without boundary. Then for every
smooth vector field on M,
/ dive dV, =0
M

wheredV/, is the volume form o/ induced by the metrig.

The Laplacian on smooth functions 0M/, g) is the operator

(3.13) A, C®(M) — C*(M)
defined in local coordinates by

i 0
(3.14) A, = — div(grad) = Z > (Vdl gﬂa -)

whereg/ are the components of the dual metric on the cotangent barydie
The operator\ , extends to a self-adjoint operator on
L*(M) > H*(M) — L*(M)

with compact resolvent. This implies that there exists an orthonormal b#sise L*(M)
consisting of eigenfunctions such that

Agfk: = Akfk:
where the eigenvalues are listed with multiplicities
0=Xdo <A < A< A< << - oo

see for example/ [22][ [12]| [24], [23], [10], [25] and [20]. The Laplaciap thus, has one-
dimensional null space consisting precisely of constant functions.

4. DISCUSSION

A typical Riemannian manifold is the-dimensional unit sphere defined by
(4.1) St={r e R"™ 12t + a3+ 422 =1}
In particular, the 0-sphere, 1-sphere and the 2-sphere are respectively a pair of points on a line
segment, a circle on a plane and the ordinary sphere in 3-dimension.

Following [21,[3] and[[1], we letf € S™ be any function on the n-sphere arficbe its
extension to an open neighbourhood%f that is constant along rays from the centreS6t

We say thatf € C%(S") if f is aC? function of that neighbourhood. For such functions (not
containing{0}) on S™ the Laplaciam\,, equals

(4.2) Anf =D f

whereA, on the right-hand side of (4.2) is the usual Laplaciaffri".
In R™, n > 2, every pointz # 0 can be represented in polar coordinates as a cqupe
wherer := |z| > 0 is the polar radius and := m € S"—1 is the polar angle. Note that the

metricgg-—1 is obtained by restricting the metrig. to S*~1. On.S"~1, the polar coordinate is
(0, ---,0" ") whilstr = 1 anddr = 0. Indeed, for any

£ € TS, (dr,§) =€(r) = &(r|sn1) = €(1) = 0.

Consider now the polar coordinates 8h : (6',---,0"). Let p be the north pole and be
the south pole o™, i.e (p = (0,0,---,0,1)) andg = —p. For anyz € S™\ {p, ¢}, define
r € (0,7) andd € S" ! by cosr = 2" andf = |§—| wherez’ is the projection ofr onto
R" = {x € R""! : z»t! = (}. Clearly, the polar radius is the angle between the position
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vectorsz andp. The pointr can be regarded as the latitude of the paimheasured from the
pole. The polar anglé can be regarded as the longitude of the poirgee figure[(5).

éxrﬁ-l

R’ﬂ.

Figure 5: Polar coordinates o5™.

The canonical metrigs» on S™ has the following representation in polar coordinates:
gsn = dr?® 4 sin® rggn-1;
see([12].
In the polar coordinates, the Riemannian measuré™ois given bydV = sin™ ! rdrdé.
For the unitr-sphere, the Laplaciah (4.2) in polar coordinates reduces to
1 0 1
_ ——A,_
sin” 16 00 n’ 6 !
whereA,,_; is the Laplacian op™ .
The Laplacian in polar coordinaté, ¢) on S? endowed with the round metric

o2 w22 (10
gg2 = df” + sin” 0d¢ —(0 SiDQQ)

(4.3) A, = {sin"! 9—} —|—

using equatiori (3.14) is ) ,
Az = sm@@Q{Slne }+ GAl

whereA; = 2 is the Laplacian or".
On S3, where the round metric is

1 0 0
ggs = dB? + sin® 0dp* + sin® O sin® ¢pdyp®> = | 0 sin? 6 0

0 0 sin®fsin®¢

using equatior (3.14) is
1 0 1
0 ——A
" sin260 00 {sm 00} + sin2f
whereA, is the Laplacian or$2. Continuing this way, one arrives at (4.3).
The Legendre equation

(4.4) (1 — 2P (x)" —22Py(z) + (k(k +1))Py(z) = 0.
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is the usual equation on ti# which is solved by the Legendre polynomial function given by
I dam "

(4.5) f(z) = Pn(z) = 2m—m!da;_m(x - 1™

The Legendre polynomial function is generalised as follows.

Definition 4.1. The Gegenbauer polynomi&}’(¢) is given by
(%]

(4.6) Pr(t) = ko2 > L S (1)

J=0

or given through the extended Rodrigues formula

(1 — t2)ith=2
Wjlk = 2))T(G + 254)

3—n dk n—=a
(4.7) Pr(t) = (—1)*Rpn(1 — t2)%%(1 — )2 withn > 2,

where the Rodrigues constak ,, is given by
F(n_—l)

2
2T (k + 251)
Gegenbauer polynomials are relevant to the study of the heat and zeta kernels of the laplacian
on Riemannian manifolds because of the following result.

Lemma 4.1. (Addition formula, c.f: Morimot¢21])).
Let{v;, : 1 < j < dr(n)} be an orthonormal basis of the spacerstlimensional spherical
harmonicsH,(S™), that is,

Rk,n =

(4.8) . U (@) (2)dVy(x) = 6505 1 < j,1 < di(n).
Then

d n—1
@.9) Z Ba@)Bua(0) = T P ()

where as beforel’ (t) are the Gegenbauer polynomials of degkei@ n dimensions.

For proof, one may see Morimoto [21]. Note in particular, this meansffiat"/*(z - y) is
a harmonic function o™ with eigenvalue\, = k(k +n — 1).

The Gegenbauer polynomials enable one to write the heat kerngt explicitly, namely,
forallt > 0, andx,y € S™:

oo dp(n)
1 B _
(4.10) Ktay) = 5 ) R O TE (7))
k=0 j=1
1 0 B di(n (n—1)
(4.11) - v § e Hiktn l)t#})}c P (zy).

(n=1)
0 b, (1)

whereV is the volume ofS™, andd,(n) is the dimension of the,, eigenspace. Itis also known
that the zeta kernélg. (s, z,y) on.S™ is explicitly given by

i

1 (n—1)

(4.12) Con(s,2,y) = VZ k—i—n—l) =y P, (z-y)
Bt (1)

(see e.g Wogu [30], Campores| [9], Buser [8] and Morimota [21]).
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Lemma 4.2. The multiplicitiesd,.(n) of the eigenspace of the spectryrx, } of the Laplacian

on S™ can be expressed as

(4.13) d(n) = (2k + nk;(i)ikl—)i—' n—2)!

wherek € Ny and n > 1 is the dimension of the manifold S™.

Proof. Itis clear that

_ (k+n k+n—-2\ (k+n)! (k+n—2)
de(n) = ( n )‘( n >_ Knl (k- 2)n!
(Bt n=2) (k+n)(k+n—1) 1
- n! [ k! _(k:—2)!}

which simplifies as
(k4+n-=2)-(k+n)(k+n—1) 1
n! [ k! _(k;—2)!}
(k=20 (k4+n)(kE+n—1) .
T onl(k—2)! [ k(k—1) 1]
- W%(%—i—n—l)
@k +n—-1)(k+n-2)
B kl(n —1)!

|
We further illustrate the results with the following examples.

Example 4.1. Consider the systems of ordinary differential equations

ro=y,
Yy = —x
with z(0) = r € M andy(0) =0 € M.
Clearly, the system is solved by

{x(t) = rcost,

y(t) = —rsint.
Taker = 1 for example, to have the integral curve 6= [—2, 2] as

—_—

- I~

The integral curve plotted on the associated vector field on the same interval is

AIJMAA Vol. 16, No. 2, Art. 11, pp. 1-17, 2019
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B e e s W N T
B A I I i aai i
f ',f I i i i S " Y \*‘ \\
Vo B D
A 4 & # - - U T R |
d 4 4 &« R T N I |
————— ¥
T b oy v oo R
L T T T N A ¥ E ¥ ¥ F
AT T T iy - A

" \'\ ‘\_ N, W, w wme e e e a” N _"f f’ ’
A N R e et ol Sl S 3
b A N N R R s Tt a2l S oy
b R R it m e g g L

Example 4.2. Similarly, consider another systems of ordinary differential equations

To= vy,
y = z+y
with z(0) =0 € M.
Solving, we have
z(t) = \/lgce% sinh ‘/751? and
y(t) = —\/igce% [ — 5cosh \/7‘?’15 + +/5sinh %gt

for some arbitrary constant For integer values of € [0, 10] for example, we obtain a family
of the integral curves ot = [—2, 2] as

The family of the integral curves plotted on the associated vector field on the same interval is

- -~ v e Al A /4 A4 A /
pu Ny Ve % 7%
- - A A A A
- - A A 7
- A A AN
e e »  xF
A T w - ENE A 4
i’ -~ - - 1 - _,;’
> X x L e
J(_ .“/ -l‘( N - -+ - - -
* ESF s T T T
e ,ﬁ r 5 - - - e
‘K_ }/ ’- 1 L] kY - - — -
” / T e

So in both cases, the vector fields determine the direction of the flow of the integral curves.
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5. CONCLUSION

Global analysis has been systematically explained in this work as a bunch of theories on
geometrical and topological properties of differential equations on manifolds. We dwelt specif-
ically on the actions of vector fields on systems of ordinary differential equations on Riemannian
manifolds. A number of results emerged especially theorems relating what it means to defined
a differential equation on Riemannian manifolds and we proved that unique solutions of the
eqguations exist for the manifolds. The Laplace equation on thenddimensional sphere is
also illustrated as a prototype case of partial differential equations on Riemannian manifolds.
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