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1. I NTRODUCTION

Differential equations introduced by Sir Isaac Newton, have played a decisive role in the
mathematical study of natural phenomena. For many decades, researchers have focused on
applicability of the qualitative properties of solutions of differential equations. One of such
attempts is the study of the geometrical properties as well as the topological properties of the
solutions. Global analysis, also called analysis on manifolds, is the study of the geometric
and topological properties of differential equations on manifolds and vector bundles, see e.g.
[28, 26, 17, 12, 22] and [2].

Central to the field of global analysis is the index theorem propounded by Atiyah and Singer
[4] in (1963), which states that analytic and topological index of an elliptic differential operator
on a compact manifold are equal. This theorem is one of the main bridges, which stimulated a
lot of further research and interplay between geometry, analysis and mathematical physics. To
understand the Atiyah-Singer index formula on a Riemannian manifold, one needs to clarify the
concept of global analysis on a Riemannian manifold.

Global analysis uses techniques in manifold theory and topological spaces of mappings to
classify behaviours of differential equations, particularly nonlinear differential equations, [26].
Global Analysis and the theory of differential equations are classical fields of mathematics that
have a wide range of applications within mathematics, for instance in number theory, group
theory, geometry and topology, but also have important applications outside of mathematics to
physics, engineering and technology.

The field of Global Analysis is rooted in pure mathematics and focuses on geometric and
topological aspects of analysis. The interests of the field include spectral and scattering theory
on manifolds, regularity and existence of global solutions to pseudo-differential equations and
boundary value problems, topological questions related to generalizations of the Atiyah-Singer
index theorem among other topics, see e.g. [7, 15, 13] and [6]. More recent works in this field
are those of Li [18] in 2016, Lai [16] in 2017, Yiming [31] in 2018 and Zhang [32] in (2019).

An earlier attempt to explain global analysis was made by Smale in [28]. He gave a histor-
ical background of the development of global analysis since the 1968 Summer Institute of the
American Mathematical Society in global analysis. He highlighted the pioneering activities of
Poincaŕe and Birkhoff in the development of the study of the topology of linear elliptic differ-
ential operators, especially in the work of Atiyah, Singer, and Bott. Smale also examined the
works of Andronov, Pontryagin and Peixoto in dynamical systems on a manifold.

This present paper is centred around demonstrating what global analysis on a Riemannian
manifold means. We prove the existence of a unique solution for a system of ordinary differen-
tial equations generated by the flow of smooth tangent vectors on a Riemannian manifold. We
proceed with a clear discussion of basic concepts such as vector field, Riemannian manifold
and the flow of smooth vector fields with diagrammatic illustrations where necessary.

2. PRELIMINARIES

Following Lee [17] and Jost [14], we letM be a topological space. Firstly, we recall some
basic topological notions. The topological spaceM is called Hausdorff if for any two distinct
pointsx, y ∈ M, there exists disjoint open subsetsU, V ⊂ M containingx andy respectively.
A covering (Uα)α∈I (I an arbitrary index set) is called locally finite if eachx ∈ M has a
neighbourhood that intersects only finitely manyUα. M is said to be paracompact if any open
covering possesses a locally finite refinement. This means that for any open covering(Uα)α∈I
there exists a locally finite open covering(U ′

β)β∈I′ (I ′ an arbitrary index set) with

∀β ∈ I ′ ∃α ∈ I : U ′
β ⊂ Uα.
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GLOBAL ANALYSIS ON RIEMANNIAN MANIFOLDS 3

The spaceM is said to be connected if there are no two or more disjoint open subsets whose
union isM. It is second countable if it admits a countable bases for its topology.M is compact
if its every open covering has a subcovering.

A map between topological spaces is called continuous if the preimage of any open set is
again open. A bijective map which is continuous in both directions is called a homeomorphism.
If the map is bijective and of classC∞ with a differentiable inverse of classC∞ then we say it
is a diffeomorphism. For more details, one may see Jost [14].

Definition 2.1. An n-dimensional chart onM is any pair(U,ϕ), whereU is an open subset of
M andϕ is a homeomorphism ofU onto an open subset ofRn called the image of the chart. In
diagram we have Figure (1).

Figure 1: Coordinate chart

Definition 2.2. A Hausdorff, second countable, connected topological spaceM is called an
n-dimensional topological manifold (with a countable basis) if any point ofM belongs to an
n-dimensional chart.

Definition 2.3. Let M andN be topological spaces. Letϕ : M → N be a smooth map.
Supposef : N → R is a smooth function onN. The pullback off by ϕ is a smooth function
ϕ∗f onM defined by(ϕ∗f)(x) = f(ϕ(x)) for x ∈M. In diagram, this is shown as Figure (2).

Figure 2: Pullback function.

LetM be ann-dimensional manifold. For any chart(U,ϕ) onM, the local coordinate system
(x1, x2, · · · , xn) is defined inU by taking theϕ-pullback of the Cartesian coordinate system in
Rn.Consequently, one can say that a chart is an open setU ⊂M with a local coordinate system.
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4 LOUIS OMENYI AND M ICHAEL UCHENNA

For any two charts(U,ϕ) and(V, ψ) onM for which the intersectionU ∩V is not empty, the
mapψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is called the chart transition from one chart to the other.
In diagram, see Figure (3).

Figure 3: Chart transition.

A chart transition map on ann-dimensional manifold is calledCk if its kth derivatives exist
and are continuous for a positive integerk ≤ n. When this condition holds for all positive
integers, we say the map isC∞ or simply “smooth". A family of charts on the manifoldM
is called aCk-atlas when the associated chart transition isCk and if it covers all ofM. Two
charts(U,ϕ) and(V, ψ) are said to be compatible ifU ∩ V 6= ∅ and the transition mapψ ◦ ϕ−1

is a diffeomorphism. Similarly, twoCk-atlases are called compatible if their union is again a
Ck-atlas. The union of all compatibleCk-atlases determines aCk-structure onM. We collect
these notions together as the following definition.

Definition 2.4. A differentiablen-dimensional manifoldM is a connected paracompact Haus-
dorff topological space for which every point has a neighbourhoodU that is homeomorphic to
an open subsetΩ ⊂ Rn. Such a homeomorphismϕ : U → Ω is called a chart. Again, a family
{Uα, ϕα} of charts for which theUα constitute an open covering ofM is called an atlas. The
atlas{Uα, ϕα} of M is called differentiable if all charts transitions

ψα ◦ ϕ−1
α : ϕα(Uα ∩ Vα) → ψα(Uα ∩ Vα)

are differentiable of classC∞(M). A maximal differentiable atlas is called a differentiable
structure and a manifold with differentiable structure is called a differentiable manifold; see
e.g. [10, 27, 11] and [14].

We also need the concepts of tangent space and Riemannian metric to define Riemannian
Manifold. Following B̈ar [5] and Chavel [10], we let a linear map

ξ : C∞(M) → R

be such that at a pointx ∈M, ξ(fg)(x) = ξ(f)(g(x)) + ξ(g)(f(x)) for all f, g ∈ C∞(M).
We denote the set of all such maps byTxM. For all ξ, η ∈ TxM andλ ∈ R , we define the

sum and scalar multiplicationξ + η andλξ so thatTxM is a linear space overR.
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Definition 2.5. The linear spaceTxM is called the tangent space ofM at a pointx and we
denote byTM := txTxM the disjoint union of all the tangent spaces at the pointx. TM is
called the tangent bundle ofM. A tangent space is illustrated in Figure (4).

Figure 4: tangent space.

We will denote the components ofξ in local coordinate chart(x1, · · · , xn) by ξi and write

(2.1) ξ(f) = ξi
∂f

∂xi
∀f ∈ C∞(M).

An alternative notation for (2.1) which we will also adopt in this paper is

ξ(f) =
∂f

∂ξ
so that

∂f

∂ξ
= ξi

∂f

∂xi

which allows to think ofξ as a directional derivative atx and to interpret∂f
∂ξ

as a directional
derivative; see e.g Grigor’yam [12].

Definition 2.6. (Vector field): A vector field on a smooth manifoldM is a family{v(x)}x∈M of
tangent vectors such thatv(x) ∈ TxM for anyx ∈M. In local coordinates, it can be represented
in the formv(x) = vi ∂

∂xi .

A Riemannian metric (also called Riemannian metric tensor) onM is a family of symmetric
positive definite bilinear formsg = {g(x)} onTxM which depends onx ∈ M smoothly. The
metric enables to define an inner product〈., .〉g(x) on TM by 〈ξ, η〉g(x) ∀ ξ, η ∈ TxM. Hence,
TxM becomes an Euclidean space. For anyξ ∈ TxM, its length||ξ|| =

√
〈ξ, ξ〉.

In local coordinates, the inner product has the form〈ξ, η〉g(x) = gij(x)ξ
iηj where(gij)

n
ij=1 is

a square symmetric positive-definite matrix expressing the metric in the local coordinates.
These can be summarised in form of definition thus:

Definition 2.7. (Riemannian metric): A Riemannian metric on a smooth manifoldM is an
assignment of an inner product〈., .〉g(x) : TxM × TxM → R for all x ∈M such that

(1.) 〈ξ, ξ〉g(x) > 0 for ξ 6= 0 (positive definite);
(2.) 〈ξ, η〉g(x) = 〈η, ξ〉g(x) ∀η, ξ ∈ TxM (symmetric);

(3.) 〈aiξi + ajξj, biηi + bjηj〉g(x) =
n∑

i,j=1

aibj〈ξi, ηj〉g(x)∀ ξi, ηj ∈ TxM andai, aj, bi, bj ∈ R

(bilinear);
(4.) 〈ξ, η〉g(x) = 0 if and only if eitherξ = 0 or η = 0 or ξ = 0 = η (non-degenerate); and
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6 LOUIS OMENYI AND M ICHAEL UCHENNA

(5.) for all x ∈ M, there exist local coordinates{xi} such thatgij(x) = 〈 ∂
∂xi ,

∂
∂xj 〉g(x) are

smooth functions.

From the foregoing concepts, we make the following definition.

Definition 2.8. (Riemannian Manifold): A Riemannian manifold is a pair(M, g), whereg is a
Riemannian metric on the smooth manifoldM.

3. M AIN RESULTS

A vector field usually identified with a linear differential operator of the form

ξ =
n∑
i=1

ξi
∂

∂xi

wherexi, x2, · · · , xn are coordinates on a manifoldM andξi ∈ C∞(M) are handy to define
the directional derivative off ∈ C∞(M) as

df · ξ = ξ · f =
n∑
i=1

ξi
∂f

∂xi
.

So, the directional derivative off in the direction ofξ is the action of the differential operatorξ
onf , compare with e.g. [19, 6, 16] and [29].

In n dimensional manifold, we can therefore write the vector field in the form
Ln = a1

∂
∂x1

+ a2
∂
∂x2

+ · · ·+ an
∂
∂xn

= ϕ1(x1, x2, · · · , xn) ∂
∂x1

+ ϕ2(x1, x2, · · · , xn) ∂
∂x2

+ · · ·+ ϕn(x1, x2, · · · , xn) ∂
∂xn

(3.1)

wherea1 = ϕ1, · · · , an = ϕn ∈ C∞(M). For instance in a2-dimensional manifold,

L2 = a
∂

∂x
+ b

∂

∂y
= ϕ(x, y)

∂

∂x
+ ψ(x, y)

∂

∂y
.

wherex andy are coordinates on the manifold, anda = ϕ(x, y), b = ψ(x, y) ∈ C∞(M). If
f ∈ C∞(M) then

df · ξ = a
∂f

∂x
+ b

∂f

∂y
.

If the same vector field is expressed in terms of coordinatess, r then by the chain rule

∂f

∂x
=
∂f

∂s

∂s

∂x
+
∂f

∂r

∂r

∂x
and

∂f

∂y
=
∂f

∂s

∂s

∂y
+
∂f

∂r

∂r

∂y

so that

df · ξ =
(
a
∂s

∂x
+ b

∂s

∂y

)∂f
∂s

+
(
a
∂r

∂x
+ b

∂r

∂y

)∂f
∂r
.

Here, the linear partial differential operator is

ξ =
(
a
∂s

∂x
+ b

∂s

∂y

) ∂
∂s

+
(
a
∂r

∂x
+ b

∂r

∂y

) ∂
∂r
.

We have the following preliminary result.

Lemma 3.1. A constant coefficient linear ordinary differential equation

(3.2) an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a(t)ẏ + a0(t)y = g(t)

wherean(t) 6= 0 on a Riemannian manifoldM is generated by a vector field.
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Proof. Rewrite the system (3.2) as follows. Definen new variables, for example:

y = y1,
dy

dt
= y2,

d2y

dt2
= y3,

d3y

dt3
= y4, · · · ,

dn−1y

dtn−1
= yn.

Substitute the new variables into (3.2) to obtain the system of equations

ẏ1 = y2

ẏ2 = y3

ẏ3 = y4
...

ẏn−1 = yn
ẏn = bn−1(t)yn + · · ·+ b1(t)y2 + b0(t)y1 + f(t).

(3.3)

Equation (3.3) is the required system of first-order equations in(y1(t), y2(t), · · · , yn(t)) ∈M.
These can be displayed in matrix form as

(3.4) ẏ = Ay + F (t)

where

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 1

b0(t) b1(t) b2(t) b3(t) · · · bn−1(t)

 , y =


y1(t)
y2(t)

...
yn(t)

 andF (t) =


0
0
...

f(t)

 .

Therefore,ξ =
n∑
i=1

ξi
∂

∂yi
is the generator of (3.2) fory ∈M where,

ξ1 = y2, ξ2 = y3, · · · , ξn = bn−1(t)yn + · · ·+ b1(t)y2 + b0(t)y1 + f(t).

The intuitive meaning of such an equation (3.2) is that a point on the manifold is a function
of time t and its coordinates are changing according to the system of ordinary differential equa-
tions (3.3). Hence, the system of the ordinary differential equations and the vector fields are
effectively the same, see e.g [29].

Consequently, given a vector fieldv ∈ TxM for x in a Riemannian manifoldM, the basic
problem of the theory of ordinary differential equation is to find a smooth mapΨ : I →M for
some intervalI 3 0 such that{

Ψ̇(t) = vΨ(t)) ∀t ∈ I and
Ψ(0) = x.

(3.5)

We have the following result.

Theorem 3.2.Letv ∈ TxM be a vector field forx in a RiemannianM and suppose the flow of
the vector fieldΨ : U × I →M towardsy ∈M satisfies{

∂tΨ(y, t) = vΨ(y,t) and
Ψ(0) = y

(3.6)

for each(y, t) ∈ U × I.
Letψ : W → Ω ⊂ Rn be a chart forM such thatΨ(U×I) ⊂ W. Thenu = ψ◦Ψ(ψ−1(z), t)

defines a mapψ(U × I) 7→ Ω satisfying

(3.7) ∂tu
k = ṽk((u1, u2, · · · , un), 0) = zk
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8 LOUIS OMENYI AND M ICHAEL UCHENNA

for k = 1, 2, · · · , n and all (z1, z2, · · · , zn) ∈ ψ(U) andt ∈ I. The operator

v(ψ−1(z1, z2, · · · , zn)) =
n∑
k=1

ṽk∂k.

If u satisfies (3.7) thenΨ(y, t) = ψ−1(u(ψ(y), t)) solves (3.6).

Proof. We have

ξ(z,t)(u(∂t)) = ξΨ(ψ−1(z), t)ψ ◦ ξψ−1(z,t)Ψ(∂t) = ξψ(v).

Sinceξψ(∂j) = e
j

for j = 1, 2, · · · , n, it follows that if

v =
n∑
k=1

ṽk∂k

then

ξψ(v) =
n∑
k=1

ṽkek

which completes the proof.

The main result of this work is a proof that a Riemannian manifoldM admits a unique
solution for a system of differential equations generated by the flow of smooth tangent vectors.
This is presented as the next theorem.

Theorem 3.3. Let f ∈ C∞(ψ(U)) in a neighbourhoodψ(U) of x ∈ M and letf : Ω → Rn

whereΩ ⊂ Rn is open. Assume||f ||∞ = M0 < 0 and||ξ(f)||∞ = M1 < 0. Then there exists a
unique smooth mapΨ : I → Ω satisfying{

d
dt

Ψi(t) = f(Ψ1(t),Ψ2(t), · · · ,Ψn(t)) and
Ψ(0) = z; ∀z ∈ Ω, andt ∈ I; for i = 1, 2, · · · , n.(3.8)

The integral curvesΨi are functions of timet ∈ I. In particular we take
d(z, ∂Ω)

M0

∈ I.

Proof. By Picard’s iteration technique of successive approximation, sinceΨ(0)(t) = z for all
t ∈ I, we seek improved approximations using the formula

(3.9) Ψ(k+1)(t) = z +

∫ (t)

0

f(Ψk(s))ds.

The formula (3.9) is valid since it solves

d

dt
Ψ(k+1) = f(Ψk).

Moreover,
||Ψ(k)(t)− z|| ≤ |t|M0 < d(z, ∂Ω).

Thus,Ψ(k) ∈ Ω ∀z ∈ Ω.
To show convergence, we need to prove that

(3.10) ||Ψ(k+1)(t)−Ψ(k)(t)|| ≤ M0M
k
1 |t|k+1

(n+ 1)!
, ∀k > 0; andt ∈ I.

Fork = 0,

||Ψ(1)(t)−Ψ(0)(t)|| = ||
∫ t

0

f(z)ds|| ≤ |t|M0.
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GLOBAL ANALYSIS ON RIEMANNIAN MANIFOLDS 9

Assume by induction that (3.10) holds fork − 1. Then

||Ψ(k+1)(t)−Ψ(k)(t)|| = ||
∫ t

0

f(Ψ(k)(s))− f(Ψ(k−1)(s))ds||

≤
∣∣∣ ∫ t

0

M1||Ψ(k)(s))−Ψ(k−1)(s))||ds
∣∣∣

≤ M1

∣∣∣ ∫ t

0

M0M
k−1
1 |s|k

k!
ds

∣∣∣ ≤ M0M
k
1 |t|k+1

(k + 1)!
.

Thus{Ψ(k)} is a Cauchy sequence in a complete space of continuous maps and hence conver-
gent uniformly to a continuous functionΨ. So,

Ψ(t) = z +

∫ (t)

0

f(Ψ(s))ds ∀t ∈ I

and differentiable. Consequently,

Ψ̇(t) = f(Ψ)(t)

for eacht ∈ I andΨ(0) = z. Moreover,Ψ ∈ C∞(Ω).
Furthermore supposeσ is another such solution then

||Ψ(t)− σ(t)|| = ||
∫ t

0

f(Ψ(s))− f(σ(s))ds||

≤ M1

∣∣∣ ∫ t

0

||Ψ(s))− σ(s))||ds
∣∣∣

≤ c
Mk

1 |t|k

k!
→ 0 ask →∞

wherec = ||Ψ− σ||∞. ThereforeΨ = σ, proving uniqueness.

Further results can be obtained for global analysis on a Riemannian manifoldM by studying
a partial differential operator onM. An example is the Laplacian onM. This leads to the theory
of partial differential equations onM. We now give an explicit definition of the Laplacian on a
Riemannian manifold with particular reference to then-dimensional unit sphere.

Let M be a smooth, compact and connectedn-dimensional Riemannian manifold without
boundary and letg be a smooth Riemannian metric onM. For a coordinate chart onM,

(x1, x2, · · · , xn) : U → Rn, (U ⊂M open),

we representg by the matrix-valued function(gij) wheregij = 〈 ∂
∂xi

,
∂

∂xj
〉g and〈·, ·〉g is the

inner product on the tangent spaceTxM.
The volume formdVg of (M, g) is defined asdVg =

√
|g|dx; with |g| = det(gij) and

dx = dx1 ∧ · · · ∧ dxn.

To give definition of the Laplacian on smooth functions over the Riemannian manifoldM, we
need the following definitions.

Definition 3.1. (Differential). For a fixedx ∈ M, let f be a smooth function in a neighbour-
hood ofx. The differentialdf of f at x is a linear functional onTxM given by the pairing
〈df, ξ〉 = ξ(f) for any ξ ∈ TxM.
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10 LOUIS OMENYI AND M ICHAEL UCHENNA

Hence,df is an element of the dual spaceT ∗mM, (called the cotangent space). Elements of
T ∗xM are called covectors. A basis{e1, · · · , en} in TxM has dual basis{e1, · · · , en} in T ∗xM
which is defined by

〈ei, ej〉 = δij =

{
1; j = i

0; j 6= i.

For example, the basis{ ∂
∂xi} has dual basis{dxi} because〈dxi, ∂

∂xj
〉 = δij.

The covectordf can be represented in the basis{dxi} as follows:

df =
∂f

∂xi
dxi

that is, the partial derivatives∂f
∂xi

are the components of the differentialdf. Indeed,

〈 ∂f
∂xi

dxi,
∂

∂xj
〉 =

∂f

∂xi
〈dxi, ∂

∂xj
〉 =

∂f

∂xi
δij = 〈df, ∂

∂xj
〉.

Definition 3.2. (Gradient). For any smooth functionf onM, its gradient∇gf at a pointx ∈M
is defined by

(∇gf)(x) = g−1(x)df(x)

whereg−1(x) := gij(x) is the inverse ofg. If we let ξ = ∇gf(x) then for anyη ∈ TxM one
writes

〈∇gf, η〉g = 〈df, η〉 =
∂f

∂η

which is another way of defining the gradient. In local coordinates,

(∇gf)i = gij
∂f

∂xj
.

If f1 onM is another smooth function, setη = ∇f1 then,

〈∇gf,∇gf1〉 = 〈df,∇gf1〉 = gij
∂f

∂xi
∂f1

∂xj
.

At this point, we may recall again that the Riemannian measure (volume form)dVg(x) on
(M, g) can be represented in local coordinates as√

|g|dx1 ∧ · · · ∧ dxn where|g| = det(gij).

Theorem 3.4. (Divergence theorem). Letv be any smooth vector field onM and dV a Rie-
mannian measure. Then, there exists a unique smooth function onM called divergence and
denoted bydivv such that the following identity holds:

(3.11)
∫
M

(divv)fdV = −
∫
M

〈v,∇gf〉dV ∀f ∈ C∞
0 (M).

In local coordinates,

(3.12) divv =
1√
|g|

∂

∂xj
(√

|g| vj
)
.

Note also that for any continuous functionf onM if∫
M

fψdV = 0 ∀ψ ∈ C∞
0 (M)

thenf ≡ 0. For proof, one may see e.g. [12].
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Theorem 3.5. ([12]). Let (M, g) be a Riemannian manifold without boundary. Then for every
smooth vector fieldv onM, ∫

M

divv dVg = 0;

wheredVg is the volume form onM induced by the metricg.

The Laplacian on smooth functions on(M, g) is the operator

(3.13) ∆g : C∞(M) → C∞(M)

defined in local coordinates by

(3.14) ∆g = − div(grad) = − 1√
|g|

∑
i,j

∂

∂xi
(√

|g|gij ∂

∂xj
)

wheregij are the components of the dual metric on the cotangent bundleT ∗pM.
The operator∆g extends to a self-adjoint operator on

L2(M) ⊃ H2(M) → L2(M)

with compact resolvent. This implies that there exists an orthonormal basis{fk} ∈ L2(M)
consisting of eigenfunctions such that

∆gfk = λkfk

where the eigenvalues are listed with multiplicities

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · ↗ ∞;

see for example, [22], [12], [24], [23], [10], [25] and [20]. The Laplacian∆g thus, has one-
dimensional null space consisting precisely of constant functions.

4. DISCUSSION

A typical Riemannian manifold is then-dimensional unit sphere defined by

(4.1) Sn = {x ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n = 1}.

In particular, the 0-sphere, 1-sphere and the 2-sphere are respectively a pair of points on a line
segment, a circle on a plane and the ordinary sphere in 3-dimension.

Following [21, 3] and [1], we letf ∈ Sn be any function on the n-sphere and̃f be its
extension to an open neighbourhood ofSn that is constant along rays from the centre ofSn.
We say thatf ∈ C2(Sn) if f̃ is aC2 function of that neighbourhood. For such functions (not
containing{0}) onSn the Laplacian∆n equals

(4.2) ∆nf = ∆gf̃

where∆g on the right-hand side of (4.2) is the usual Laplacian inRn+1.
In Rn, n ≥ 2, every pointx 6= 0 can be represented in polar coordinates as a couple(r, θ)

wherer := |x| > 0 is the polar radius andθ := x
|x| ∈ Sn−1 is the polar angle. Note that the

metricgSn−1 is obtained by restricting the metricgRn to Sn−1. OnSn−1, the polar coordinate is
(θ1, · · · , θn−1) whilst r = 1 anddr = 0. Indeed, for any

ξ ∈ TxSn−1, 〈dr, ξ〉 = ξ(r) = ξ(r|Sn−1) = ξ(1) = 0.

Consider now the polar coordinates onSn : (θ1, · · · , θn). Let p be the north pole andq be
the south pole ofSn, i.e (p = (0, 0, · · · , 0, 1)) andq = −p. For anyx ∈ Sn \ {p, q}, define
r ∈ (0, π) andθ ∈ Sn−1 by cos r = xn+1 andθ = x′

|x′| wherex′ is the projection ofx onto
Rn = {x ∈ Rn+1 : xn+1 = 0}. Clearly, the polar radius is the angle between the position
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vectorsx andp. The pointr can be regarded as the latitude of the pointx measured from the
pole. The polar angleθ can be regarded as the longitude of the pointx; see figure (5).

Figure 5: Polar coordinates onSn.

The canonical metricgSn onSn has the following representation in polar coordinates:

gSn = dr2 + sin2 rgSn−1 ;

see [12].
In the polar coordinates, the Riemannian measure onSn is given bydV = sinn−1 rdrdθ.
For the unitn-sphere, the Laplacian (4.2) in polar coordinates reduces to

(4.3) ∆n =
1

sinn−1 θ

∂

∂θ
{sinn−1 θ

∂

∂θ
}+

1

sin2 θ
∆n−1

where∆n−1 is the Laplacian onSn−1.
The Laplacian in polar coordinates(θ, φ) onS2 endowed with the round metric

gS2 = dθ2 + sin2 θdφ2 =

(
1 0
0 sin2 θ

)
using equation (3.14) is

∆2 =
1

sin θ

∂

∂θ
{sin θ ∂

∂θ
}+

1

sin2 θ
∆1

where∆1 = ∂2

∂θ2
is the Laplacian onS1.

OnS3, where the round metric is

gS3 = dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2 =

1 0 0
0 sin2 θ 0
0 0 sin2 θ sin2 φ


using equation (3.14) is

∆3 =
1

sin2 θ

∂

∂θ
{sin2 θ

∂

∂θ
}+

1

sin2 θ
∆2

where∆2 is the Laplacian onS2. Continuing this way, one arrives at (4.3).
The Legendre equation

(4.4) (1− x2)Pm(x)′′ − 2xPm(x)′ + (k(k + 1))Pm(x) = 0.
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is the usual equation on theSn which is solved by the Legendre polynomial function given by

(4.5) f(x) = Pm(x) =
1

2mm!

dm

dxm
(x2 − 1)m.

The Legendre polynomial function is generalised as follows.

Definition 4.1. The Gegenbauer polynomialP n
k (t) is given by

(4.6) P n
k (t) = k!Γ(

n− 1

2
)

[ k
2
]∑

j=0

(−1)j
(1− t2)jtk−2j

4jj!(k − 2j)!Γ(j + n−1
2

)
,

or given through the extended Rodrigues formula

(4.7) P n
k (t) = (−1)kRk,n(1− t2)

3−n
2
dk

dtk
(1− t2)k+

n−3
2 with n ≥ 2,

where the Rodrigues constantRk,n is given by

Rk,n =
Γ(n−1

2
)

2kΓ(k + n−1
2

)
.

Gegenbauer polynomials are relevant to the study of the heat and zeta kernels of the laplacian
on Riemannian manifolds because of the following result.

Lemma 4.1. (Addition formula, c.f: Morimoto[21]).
Let {ψk,j : 1 ≤ j ≤ dk(n)} be an orthonormal basis of the space ofn-dimensional spherical
harmonicsHk(S

n), that is,

(4.8)
∫
Sn

ψk,j(x)ψ̄k,l(x)dVg(x) = δjl; 1 ≤ j, l ≤ dk(n).

Then

(4.9)
dk(n)∑
j=1

ψk,j(x)ψ̄k,l(y) =
dk(n)

|Sn|
P

(n−1)
2

k (x · y)

where as before,P n
k (t) are the Gegenbauer polynomials of degreek in n dimensions.

For proof, one may see Morimoto [21]. Note in particular, this means thatP
(n−1)/2
k (x · y) is

a harmonic function onSn with eigenvalueλk = k(k + n− 1).
The Gegenbauer polynomials enable one to write the heat kernel onSn explicitly, namely,

for all t > 0, andx, y ∈ Sn:

K(t, x, y) :=
1

V

∞∑
k=0

dk(n)∑
j=1

e−k(k+n−1)tψk,j(x)ψ̄k,j(y)(4.10)

=
1

V

∞∑
k=0

e−k(k+n−1)t dk(n)

P
(n−1)

2
k (1)

P
(n−1)

2
k (x · y).(4.11)

whereV is the volume ofSn, anddk(n) is the dimension of theλk eigenspace. It is also known
that the zeta kernelζSn(s, x, y) onSn is explicitly given by

(4.12) ζSn(s, x, y) =
1

V

∞∑
k=1

dk(n)

(k(k + n− 1))s
· 1

P
(n−1)

2
k (1)

P
(n−1)

2
k (x · y)

(see e.g Wogu [30], Camporesi [9], Buser [8] and Morimoto [21]).
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Lemma 4.2. The multiplicitiesdk(n) of the eigenspace of the spectrum{λk} of the Laplacian
onSn can be expressed as

(4.13) dk(n) =
(2k + n− 1)(k + n− 2)!

k!(n− 1)!

wherek ∈ N0 and n ≥ 1 is the dimension of the manifold Sn.

Proof. It is clear that

dk(n) =

(
k + n
n

)
−

(
k + n− 2

n

)
=

(k + n)!

k!n!
− (k + n− 2)!

(k − 2)!n!

=
(k + n− 2)!

n!

[(k + n)(k + n− 1)

k!
− 1

(k − 2)!

]
which simplifies as

(k + n− 2)!

n!

[(k + n)(k + n− 1)

k!
− 1

(k − 2)!

]
=

(k + n− 2)!

n!(k − 2)!

[(k + n)(k + n− 1)

k(k − 1)
− 1

]
=

(k + n− 2)!

k!

n

n!
(2k + n− 1)

=
(2k + n− 1)(k + n− 2)!

k!(n− 1)!
.

We further illustrate the results with the following examples.

Example 4.1.Consider the systems of ordinary differential equations{
ẋ = y,
ẏ = −x

with x(0) = r ∈M andy(0) = 0 ∈M.
Clearly, the system is solved by{

x(t) = r cos t,
y(t) = −r sin t.

Taker = 1 for example, to have the integral curve onI = [−2, 2] as

The integral curve plotted on the associated vector field on the same interval is
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Example 4.2.Similarly, consider another systems of ordinary differential equations

{
ẋ = y,
ẏ = x+ y

with x(0) = 0 ∈M.
Solving, we have

{
x(t) = 2√

5
ce

t
2 sinh

√
5

2
t and

y(t) = − 1√
5
ce

t
2

[
− 5 cosh

√
5

2
t+

√
5 sinh

√
5

2
t
]

for some arbitrary constantc. For integer values ofc ∈ [0, 10] for example, we obtain a family
of the integral curves onI = [−2, 2] as

The family of the integral curves plotted on the associated vector field on the same interval is

So in both cases, the vector fields determine the direction of the flow of the integral curves.
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5. CONCLUSION

Global analysis has been systematically explained in this work as a bunch of theories on
geometrical and topological properties of differential equations on manifolds. We dwelt specif-
ically on the actions of vector fields on systems of ordinary differential equations on Riemannian
manifolds. A number of results emerged especially theorems relating what it means to defined
a differential equation on Riemannian manifolds and we proved that unique solutions of the
equations exist for the manifolds. The Laplace equation on the unitn-dimensional sphere is
also illustrated as a prototype case of partial differential equations on Riemannian manifolds.
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