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2 Z. YU AND D. SHI AND H. ZHU

1. I NTRODUCTION

The magnetohydrodynamic (MHD) equations is a system of the electrically conducting fluid
flow in which the electromagnetic forces can be of the same order or even greater than hydro-
dynamic ones. Its simplest form takes from [1]:

−k4u + a · ∇b = f in Ω,
−k4b + a · ∇u = g in Ω,
u = 0 on ∂Ω,
b = 0 on ∂ΓD,
∇b · n = 0, on ∂ΓN ,

(1.1)

whereΩ ⊂ R2 is a bounded convex polygonal domain with boundary∂Ω, the symbols∆ and
∇ stand for the Laplacian and gradient operators, respectively;u = u(x, y), b = b(x, y)are the
velocity and the induced magnetic field in the z-direction, respectively;0 < k = 1/M < 1is the
diffusivity coefficient andM = b0l(δ/µ)1/2 is the Hartmann number, whereb0 is the intensity
of the external magnetic field,l is the characteristic length of the duct,δ andµ are the electric
conductivity and coefficient of viscosity of the fluid respectively, and in industrial applications
one typically has102 ≤ M ≤ 106; a = (−sinα,−cosα)T , α is the angle between the externally
applied magnetic fieldb0 and thex-axis; f : Ω → R andg : Ω → R are given source terms;
∂Ω = ΓD ∪ ΓN , whereΓD has a positive measure andΓD ∩ ΓN = ∅; n is the outward unit
normal vector to∂Ω.

The MHD equations (1.1) are widely applied in fusion technology, novel submarine propul-
sion devices, the flow of liquid metals in magnetic pumps used to cool nuclear reactors. There-
fore, the researches for the system of equations are of the very important and actual meaning.

The stationary MHD problems are first initially analyzed and the format of first order error
estimate was derived in [2]. A different strategy to achieve convergence is realized in [3]. This
observation recently motivated the works [2, 3], for example, a recent summary of known results
for the MHD equations, including modeling, analysis, and numerics is [4]. However, these
methods all require that the combination of finite element subspaces should satisfy LBB stability
condition [5]. In order to circumvent this constraint, the stabilized finite element methods have
been motivated [6]. Recently, [7] showed that the stabilized finite element method using the
residual-free bubbles seems robust in MHD duct flow problems at high Hartmann numbers.
However, an apparent disadvantage of this approach for convection-dominated problems is that
the resulting linear system is not symmetric. Thus, some efficient and robust solvers for linear
systems such as the conjugate gradient method can not be applied directly.

As we know, the least-squares methods can circumvent above two constrains. In addition,
least-squares formulation satisfies a priori coercivity inequality and generates positive definite
algebraic system matrices, which can be solved using standard and robust iterative methods
such as conjugate gradient methods [8].

Thus the least-squares methods have become more and more frequently used to approximate
MHD equations [1, 8, 9]. However, all of the analysis in [1, 8, 9] are about the conforming
FEMs.

Recently, [10] proposed least-squares methods of NFEs for the second-order elliptic problem
on different meshes in a unified way and gave the convergence analysis and error estimates,
[11] studied the least-square Galerkin-Petrov method of NFE for the stationary conduction-
convection problem and obtained the corresponding optimal order error estimates, [12, 13] pro-
posed a family of low order nonconforming mixed FEMs to approximate MHD equations and
obtained the corresponding optimal order error estimates based onH1-conforming elements
andH(curl)-conforming (edge) elements to approximate the magnetic field, respectively.
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As a continuous work, the main aim of this paper is to propose and analyze a low order
least-squares NFE method for MHD equations by choosing suitable FE spaces:EQrot

1 element
[14]and zero-order Raviart -Thomas element. At the same time, through typical interpolations
properties of the above two elements (see Lemma 2.2 and Remarks 2.3-2.4 below), we prove
the existence and uniqueness of the discrete solutions and derive the corresponding variables
optimal order error estimates. we mention that the method provided in this paper is also valid
for some other very popular elements such asQrot

1 NFE space discussed in [17]on the square
meshes, the constrainedQrot

1 NFE andP1 NFE spaces proposed in [18] and [19] on the rec-
tangular meshes etc, but not valid for the Crouzeix-Raviart type linear triangular element [20],
Wilson element [21] and quasi-Wilson element [22], etc. So it is not a easy thing to choose a
appropriate space pair and derive optimal order error estimates. Furthermore, it remains open
to extend the results obtained in this paper to arbitrary quadrilateral meshes.

2. L EAST-SQUARES METHOD OF NFES

In order to apply the least-square finite element method to approximate the solution of prob-
lem (1.1). We introduce two additional variablesΦ andj by

Φ = −k∇u on Ω̄,

j = −k∇b, on Ω̄.

Then we can rewrite (1.1) in the following first order system:

(2.1)



∇ · Φ + a · ∇b = f in Ω,
∇ · j + a · ∇u = g in Ω,
Φ + k∇u = 0 in Ω,
j + k∇b = 0 in Ω,
u = 0 on ∂Ω,
b = 0 on ∂ΓD,
j · n = 0 on ∂ΓN .

We define the following four function spaces:
U = H1

0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0},
C = {c : c ∈ H1(Ω), c|∂ΓD

= 0},
W = H(div; Ω) = {Ψ ∈ [L2(Ω)]2,∇ ·Ψ ∈ L2(Ω)},
Q = {q : q ∈ H(div; Ω), q · n = 0 on ∂ΓN},

and forΨ ∈ H(div; Ω), we define the norm‖Ψ‖div = (‖Ψ‖2 + ‖∇ · Ψ‖2)
1
2 , where‖ · ‖ is the

L2-norm.
A least-squares variational problem for (2.1) is to find(u, b, Φ, j) ∈ U × C ×W × Q such

that

(2.2) B((u, b, Φ, j), (v, c, Ψ,q)) = L(v, c, Ψ,q), ∀(v, c, Ψ,q) ∈ U × C ×W ×Q,

where the bilinear formB(·; ·) and the linear formL(·, ·, ·, ·) are respectively defined as follows:

B((u, b, Φ, j), (v, c, Ψ,q)) = (∇ · Φ + a · ∇b,∇ ·Ψ + a · ∇c)

+(∇ · j + a · ∇u,∇ · q + a · ∇v)

+(Φ + k∇u, Ψ + k∇v)

+(j + k∇b,q + k∇c),(2.3)

(2.4) L(v, c, Ψ,q) = (f,∇ ·Ψ + a · ∇c) + (g,∇ · q + a · ∇v).

The following theorem can be found in [1].
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Theorem 2.1. There exist two positive constantsC1 andC2, both independent ofk such that
for all (v, c, Ψ,q) ∈ U × C ×W ×Q

B((v, c, Ψ,q); (v, c, Ψ,q)) ≤ C1(‖v‖2
1 + ‖c‖2

1 + ‖Ψ‖2
div + ‖q‖2

div),

B((v, c, Ψ,q); (v, c, Ψ,q)) ≥ C2k
2(‖v‖2

1 + ‖c‖2
1 + ‖Ψ‖2

div + ‖q‖2
div).

Thus, Lax-Milgram lemma guarantees that Problem (2.2) has a unique solution(u, b, Φ, j) ∈
U × C ×W ×Q.

Now we consider nonconforming finite element formulations of least-square method (2.2).
Let Γh = {K} be a regular rectangular partition ofΩ, K = {xK − hx, xK + hx} × {yK −

hy, yK + hy}, hK = diam{K} andh = max
K∈Γh

{hK}. We take theEQrot
1 NFE spaceUh (see

[14, 15]) and zero order R-T element spaceWh to approximateU andW, respectively.
Define the FE spacesUh, Ch andWh by

Uh = {vh ∈ L2(Ω); vh|K ∈ P, ∀K ∈ Γh,

∫
l

[vh]ds = 0, l ⊂ ∂K},

Ch = {vh ∈ L2(Ω); vh|K ∈ P, ∀K ∈ Γh,

∫
l

[vh]ds = 0, l ⊂ ∂K ∩ ∂ΓD},

Wh = {w ∈ W ; w|K ∈ Q1,0(K)×Q0,1(K) = (a0 + a1x, b0 + a1y),∀K ∈ Γh},
Qh = {q ∈ Wh; q · n = 0, on ∂ΓN},

whereP = span{1, x, y, x2, y2}, [vh] denotes the jump ofvh across the boundaryl of K if l is
an internal edge, and[vh] = vh if l ⊂ ∂Ω.

Let Ih : H1(Ω) → Uh andΠh : (H1(Ω))2 → Wh be the associated interpolation operators
satisfyingIh|K = IK ,Πh|K = ΠK , then we have∫

K

(v − IKv)dxdy = 0,

∫
li

(v − IKv)ds = 0,

∫
li

(q−ΠKq) · nids = 0,

wherel1, l2, l3, l4 are four edges of∂K, ni is the unit outward normal vector toli(i = 1, 2, 3, 4).
On the other hand, we can prove the following conclusion:

Lemma 2.2. For (vh, ch, Ψh,qh) ∈ (Uh × Ch ×Wh ×Qh), there hold∑
K

∫
∂K

a · nKvhchds = 0,(2.5)

∑
K

∫
∂K

Ψh · nKvhds = 0,(2.6)

∑
K

∫
∂K

qh · nKchds = 0,(2.7)

wherenK = (n1, n2) is the unit outward normal vector to∂K.
Proof. It is not difficult to check that∑

K

∫
∂K

a · nKvhchds =
∑
K

∫
∂K

(a1 · n1 + a2 · n2)vhchds

=
∑
K

(

∫
l3

−
∫

l1

)a2(vh − P0,ivh)(ch − P0,ich)dx

+
∑
K

(

∫
l2

−
∫

l4

)a1(vh − P0,ivh)(ch − P0,ich)dy

= I1 + I2,(2.8)
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where

P0,iv =
1

|li|

∫
li

vds, (i = 1, 2, 3, 4),∀l ∈ L2(Li),

I1 = (

∫
l3

−
∫

l1

)a2(vh − P0,ivh)(ch − P0,ich)dx,

I2 = (

∫
l2

−
∫

l4

)a1(vh − P0,ivh)(ch − P0,ich)dy.

Since∂vh

∂x
= {1, x}, we know that

∂vh

∂x
(x, yK + hy) =

∂vh

∂x
(x, yK − hy).

So with the similar argument of [15], we have

(2.9) |I1| ≤
4h2

x

3
‖∂vh

∂x
‖0,K‖

∂2ch

∂x∂y
‖0,K .

Similarly, ∂vh

∂y
= {1, y}, we get

(2.10) |I2| ≤
4h2

y

3
‖∂vh

∂y
‖0,K‖

∂2ch

∂y∂x
‖0,K .

On the other hand, noting thatch ∈ Ch = span{1, x, y, x2, y2}, we have

(2.11)
∂2ch

∂y∂x
=

∂2ch

∂x∂y
= 0.

Thus ∑
K

∫
∂K

a · nKvhchds = 0.

Analogously, we can prove (2.6) and (2.7). The proof of Lemma 2.2 is completed. �
Also, it has been shown in [16] that

Lemma 2.3. For all vh ∈ Uh, there exists a positive constantC∗ such that

(2.12) ‖vh‖ ≤ C∗‖vh‖h.

The least-squares scheme for Problem (2.2) is to find(uh, bh, Φh, jh) ∈ (Uh×Ch×Wh×Qh)
such that for any(vh, ch, Ψh,qh) ∈ Uh × Ch ×Wh ×Qh

(2.13) Bh((uh, bh, Φh, jh), (vh, ch, Ψh,qh)) = Lh(vh, ch, Ψh,qh),

where the bilinear formBh(·; ·) and the linear formLh(·) are respectively defined as follows:

Bh((uh, bh, Φh, jh), (vh, ch, Ψh,qh))

= (∇h · Φh + a · ∇hbh,∇h ·Ψh + a · ∇hch)

+(∇h · jh + a · ∇huh,∇h · qh + a · ∇hvh)

+(Φh + k∇huh, Ψh + k∇hvh)

+(jh + k∇hbh,qh + k∇hch),(2.14)

(2.15) Lh(vh, ch, Ψh,qh) = (f,∇h ·Ψh + a · ∇hch) + (g,∇h · qh + a · ∇hvh).
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3. SOLVABILITY OF THE DISCRETE PROBLEM AND ERROR ESTIMATES

In this section, we will prove the solvability of Problem (2.13) and give error estimates. The
following theorem guarantees that Problem (2.13) has a unique solution.

Theorem 3.1.For (vh, ch, Ψh,qh) ∈ Uh×Ch×Wh×Qh, there exist two positive constantsC3

andC4, both independent ofk andh such that

Bh((vh, ch, Ψh,qh); (vh, ch, Ψh,qh)) ≤ C3(‖vh‖2
h + ‖ch‖2

h + ‖Ψh‖2
∗ + ‖qh‖2

∗),(3.1)

Bh((vh, ch, Ψh,qh); (vh, ch, Ψh,qh)) ≥ C4k
2(‖vh‖2

h + ‖ch‖2
h + ‖Ψh‖2

∗ + ‖qh‖2
∗),(3.2)

where‖ · ‖2
∗ = ‖ · ‖2

0,h + ‖∇h · ‖2
0,h, ∇h is the gradient operator defined element by element,

‖ · ‖h =
√∑

K

| · |21,K is a norm overUh andCh.

Proof. The first inequality (3.1) is obvious. We proceed to show the second inequality (3.2).
Let α be a positive constant that will be determined later, utilizing (2.5)-(2.7) and Lemma

2.3, then, we have

Bh((vh, ch, Ψh,qh); (vh, ch, Ψh,qh))

= ‖∇ ·Ψh + a · ∇hch − αvh‖2
0,h + 2α(∇h ·Ψh + a · ∇hch, vh)− α2‖vh‖2

0,h

+‖∇h · qh + a · ∇hvh − αch‖2
0,h + 2α(∇h · qh + a · ∇hvh, ch)− α2‖ch‖2

0,h

+‖Ψh + k∇hvh − α∇hvh‖2
0,h + 2α(Ψh + k∇hvh,∇hvh)− α2‖∇hvh‖2

0,h

+‖qh + k∇hch − α∇hch‖2
0,h + 2α(qh + k∇hch,∇hch)− α2‖∇hch‖2

0,h

≥ 2α(∇h ·Ψh + a · ∇hch, vh)− α2‖vh‖2
0,h

+2α(∇h · qh + a · ∇hvh, ch)− α2‖ch‖2
0,h

+2α(Ψh + k∇hvh,∇hvh)− α2‖∇hvh‖2
0,h

+2α(qh + k∇hch,∇hch)− α2‖∇hch‖2
0,h

≥ −α2‖vh‖2
0,h − α2‖ch‖2

0,h + 2αk‖∇vh‖2
0,h − α2‖∇hvh‖2

0,h

+2αk‖∇hch‖2
0,h − α2‖∇hch‖2

0,h

≥ α(2k − α(1 + C2
∗))(‖∇hvh‖2

0,h + ‖∇hch‖2
0,h).(3.3)

Takingα = k/(1 + C2
?), we get

(3.4) Bh((vh, ch, Ψh,qh); (vh, ch, Ψh,qh)) ≥ (k2/(1 + C2
?))(‖vh‖2

h + ‖ch‖2
h).

On the other hand, it is not difficult to check that

(3.5)

‖Ψh‖2
∗ = ‖Ψh‖2

0,h + ‖∇h ·Ψh‖2
0,h

= ‖Ψ + k∇hvh − k∇hvh‖2
0,h + ‖∇h ·Ψh + a · ∇hch − a · ∇hch‖2

0,h

≤ 2(‖Ψh + k∇hvh‖2
0,h + k2‖∇hvh‖2

0,h

+ ‖∇h ·Ψh + a · ∇hch‖2
0,h + ‖a · ∇hch‖2

0,h)

≤ 2(Bh(vh, ch, Ψh,qh); (vh, ch, Ψh,qh)

+ (1 + C2
?)Bh(vh, ch, Ψh,qh); (vh, ch, Ψh,qh))

= 2(2 + C2
?)Bh(vh, ch, Ψh,qh); (vh, ch, Ψh,qh),

(3.6) ‖qh‖2
∗ ≤ (C/k2)Bh(vh, ch, Ψh,qh); (vh, ch, Ψh,qh).

Combining (3.3)-(3.6) yields the desired result(3.2). The proof is completed. �
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Remark 3.1. We can see that the following typical features are essential in the proof of Lemma
2.2, i.e.,

(I)For all vh ∈ Uh, ∂vh

∂x
and ∂vh

∂y
should be independent ofy andx respectively;

(II)For all vh ∈ Uh,
∫

F
[vh]ds = 0, F ⊂ ∂K;

Remark 3.2. We can check that Lemma 2.2 is also valid ifUh andCh are taken asQrot
1 NFE

space discussed in [17] on the square meshes, the constrainedQrot
1 NFE andP1 NFE spaces

proposed in [18] and [19] on the rectangular meshes, orCh is Q1 FE space,Wh andQh are the
zero order R-T element space, respectively, however, not valid for other popular nonconforming
FEs, such as Crouzeix-Raviart type linear triangular element [20], Wilson element [21] and
quasi-Wilson element [22], etc.

Remark 3.3. It can be checked that ifUh is not changed in this paper but we replace the
FE spaceCh with the spaces used in [17, 18, 19] andWh = Qh with that of nonconforming
elements used in [23, 24], then the above results of Lemma 2.2 are still valid.

Theorem 3.2. Let (u, b, Φ, j) ∈ (U ∩ H2(Ω)) × (C ∩ H2(Ω)) × (W ∩ H1(div; Ω)) × (Q ∩
H1(div; Ω)) and(uh, bh, Φh, jh) ∈ Uh × Ch ×Wh ×Qh be the solutions of Problems (2.2) and
(2.13), respectively. Then

‖u− uh‖h + ‖b− bh‖h + ‖Φ− Φh‖∗ + ‖j− jh‖∗
≤ Ch{|u|2 + |b|2 + |Φ|1 + |∇ · Φ|1 + |j|1 + |∇ · j|1}.(3.7)

Proof. For (vh, ch, Ψh,qh) ∈ Uh × Ch ×Wh ×Qh, we have

(3.8)

‖vh − uh‖2
h + ‖ch − bh‖2

h + ‖Ψh − Φh‖2
∗ + ‖qh − jh‖2

∗

≤ Bh((vh − uh, ch − bh, Ψh − Φh,qh − jh); (vh − uh, ch − bh, Ψh − Φh,qh − jh))

≤ Bh((vh − u, ch − b, Ψh − Φ,qh − j); (vh − uh, ch − bh, Ψh − Φh,qh − jh))

+ Bh((u− uh, b− bh, Φ− Φh, j− jh); (vh − uh, ch − bh, Ψh − Φh,qh − jh)).

From (2.2)-(2.4) and (2.13)-(2.15), we find

(3.9) Bh((u− uh, b− bh, Φ− Φh, j− jh); (vh − uh, ch − bh, Ψh − Φh,qh − jh)) = 0.

Therefore,

(3.10) ‖u− uh‖h + ‖Φ− Φh‖∗ ≤ C{‖u− Ihu‖h + ‖Φ−ΠhΦ‖∗}.
On the other hand, for eachK ∈ Γh

(3.11)
∇ ·ΠhΦ|K =

1

|K|

∫
K

∇ ·ΠhΦdxdy =
1

|K|

∫
∂K

ΠhΦ · nKds

=
1

|K|

∫
∂K

Φ · nKds =
1

|K|

∫
K

∇ · Φdxdy.

Thus we have∇ ·Πh|K = P0∇ · |K , whereP0 is the localL2 projection satisfying

(3.12) ‖∇ · (Φ−ΠhΦ)‖0,K = ‖∇ · Φ− P0∇ · Φ‖0,K ≤ Ch|∇ · Φ|1,K .

Substituting (3.12) into (3.10) and applying the interpolation theory, we have

(3.13) ‖u− uh‖h + ‖Φ− Φh‖∗ ≤ Ch{|u|2 + |Φ|1 + |∇ · Φ|1}.
Similarly, we obtain

(3.14) ‖b− bh‖h + ‖j− jh‖∗ ≤ Ch{|b|2 + |j|1 + |∇ · j|1}.
The proof is completed. �
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Remark 3.4. We point out that (2.5)-(2.7) are the key conditions leading to the optimal order
error estimates in this present work. So it is not a easy thing for one to choose a appropriate
space pair to derive Lemma 2.2. On the other hand, the investigation of this paper is carried out
for rectangular meshes, how to extend it to arbitrary quadrilateral cases [25, 26] still remains
open.
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