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ABSTRACT. A low order least-squares nonconforming finite element(NFE) method is proposed
for magnetohydrodynamic equations wihQ’°* element and zero-order Raviart-Thomas ele-
ment. Based on the above element’s typical interpolations properties, the existence and unique-
ness of the approximate solutions are proved and the optimal order error estimates for the corre-
sponding variables are derived.
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2 Z.YU AND D. SHI AND H. ZHU

1. INTRODUCTION

The magnetohydrodynamic (MHD) equations is a system of the electrically conducting fluid
flow in which the electromagnetic forces can be of the same order or even greater than hydro-
dynamic ones. Its simplest form takes frdm [1]:

—kAu+a-Vb=f in Q,
—kAb+a-Vu=g in

(1.2) u=>0 on 0,
b=0 on JI'p,
Vb-n=0, on Jl'y,

where{) C R? is a bounded convex polygonal domain with bounday the symbols\ and

V stand for the Laplacian and gradient operators, respectivelyu(z,y),b = b(x, y)are the
velocity and the induced magnetic field in the z-direction, respectivelyt = 1/M < lis the
diffusivity coefficient andM = byl(5/u)'/? is the Hartmann number, whebg is the intensity

of the external magnetic field,is the characteristic length of the duétand. are the electric
conductivity and coefficient of viscosity of the fluid respectively, and in industrial applications
one typically had 0> < M < 10% a = (—sina, —cosa)T, a is the angle between the externally
applied magnetic field, and thez-axis; f : 2 — R andg : 2 — R are given source terms;
01 = I'p UT'y, wherel', has a positive measure ahgy N I'y = @; n is the outward unit
normal vector t@).

The MHD equations (1.1) are widely applied in fusion technology, novel submarine propul-
sion devices, the flow of liquid metals in magnetic pumps used to cool nuclear reactors. There-
fore, the researches for the system of equations are of the very important and actual meaning.

The stationary MHD problems are first initially analyzed and the format of first order error
estimate was derived inl[2]. A different strategy to achieve convergence is realized in [3]. This
observation recently motivated the works[R2, 3], for example, a recent summary of known results
for the MHD equations, including modeling, analysis, and numerics!is [4]. However, these
methods all require that the combination of finite element subspaces should satisfy LBB stability
condition [5]. In order to circumvent this constraint, the stabilized finite element methods have
been motivated |6]. Recently,![7] showed that the stabilized finite element method using the
residual-free bubbles seems robust in MHD duct flow problems at high Hartmann numbers.
However, an apparent disadvantage of this approach for convection-dominated problems is that
the resulting linear system is not symmetric. Thus, some efficient and robust solvers for linear
systems such as the conjugate gradient method can not be applied directly.

As we know, the least-squares methods can circumvent above two constrains. In addition,
least-squares formulation satisfies a priori coercivity inequality and generates positive definite
algebraic system matrices, which can be solved using standard and robust iterative methods
such as conjugate gradient methads [8].

Thus the least-squares methods have become more and more frequently used to approximate
MHD equations|[1] 8,19]. However, all of the analysis(in([1] 8, 9] are about the conforming
FEMs.

Recently,[10] proposed least-squares methods of NFEs for the second-order elliptic problem
on different meshes in a unified way and gave the convergence analysis and error estimates,
[11] studied the least-square Galerkin-Petrov method of NFE for the stationary conduction-
convection problem and obtained the corresponding optimal order error estimates| [12, 13] pro-
posed a family of low order nonconforming mixed FEMs to approximate MHD equations and
obtained the corresponding optimal order error estimates baséfi @onforming elements
and H (curl)-conforming (edge) elements to approximate the magnetic field, respectively.
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As a continuous work, the main aim of this paper is to propose and analyze a low order
least-squares NFE method for MHD equations by choosing suitable FE sga@é&$:element
[14]and zero-order Raviart -Thomas element. At the same time, through typical interpolations
properties of the above two elements (see Lemma 2.2 and Remarks 2.3-2.4 below), we prove
the existence and uniqueness of the discrete solutions and derive the corresponding variables
optimal order error estimates. we mention that the method provided in this paper is also valid
for some other very popular elements suchd$ NFE space discussed in [17]on the square
meshes, the constrainé€gl”® NFE andP; NFE spaces proposed in [18] and[19] on the rec-
tangular meshes etc, but not valid for the Crouzeix-Raviart type linear triangular elément [20],
Wilson element([2[1] and quasi-Wilson element![22], etc. So it is not a easy thing to choose a
appropriate space pair and derive optimal order error estimates. Furthermore, it remains open
to extend the results obtained in this paper to arbitrary quadrilateral meshes.

2. LEAST-SQUARES METHOD OF NFES

In order to apply the least-square finite element method to approximate the solution of prob-
lem (I.1). We introduce two additional variablésandj by

d = —kVuonQ,
j=—kVb, on Q.
Then we can rewritg (I].1) in the following first order system:
(V-®+a-Vb= fin(),

V-j+a-Vu=ginQQ,
d+kVu=0inQ,

(2.1) Jj+kEVbO=01inQ,
u = 0 on 012,
b=0ondlp,

Lj-n=0o0ndly.

We define the following four function spaces:
U = H&(Q) = {U € HI(Q), U’ag = O},
C={c:ce H(Q), clsr, =0},
W =H(div; Q) = {V¥ € [L* ()], V- V¥ € L?(Q)},
Q={q:q€H(div;Q), q-n=00n 'y},

and for¥ e H(div; ©2), we define the normj ||, = (| |2 + ||V - ¥||2)z, where| - || is the
L?-norm.

A least-squares variational problem fpr (2.1) is to filadb, @, j) € U x C x W x Q such
that

(2.2) B((u, b, ®,j), (v,¢,¥,q)) = L(v,c,V,q), V(v,¢,¥,q) € U xC x W x Q,
where the bilinear fornB(-; -) and the linear forni.(-, -, -, -) are respectively defined as follows:
B((u,b,,j), (v,c,V,q)) = (V- @+a-Vb,V-U+a-Vc)
+(V-j+a-Vu,V-q+a- Vo)
+(® + kVu, U + kVv)
(2.3) +(j + kVb,q+ kVe),

(2.4) L(v,e,V,q)=(f,V-¥+a-Ve)+(9,V-q+a- Vo).
The following theorem can be found in [1].
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Theorem 2.1. There exist two positive constarnts and (5, both independent df such that
forall (v,c,V,q) e U xCxW x Q

B((v, ¢, 0, q); (v,¢,2,q)) < Ci([Jollf + llellf + P[], + llall %)
B((v, ¢, ¥, q); (v, ¢,0,q)) > Cok?*([[v]|F + [le]l} + [1P1%, + llallZ.)-

Thus, Lax-Milgram lemma guarantees that Problem| (2.2) has a unique sdlutio®, j) €
UxCxWxQ.

Now we consider nonconforming finite element formulations of least-square méthpd (2.2).

LetI', = {K} be aregular rectangular partition Qf K = {xx — hy, xx + h.} X {yx —
hy,yx + hy}, hg = diam{K} andh = Ir?arx{hK}. We take theEQ7** NFE spacdJ, (see

ely

[14,15]) and zero order R-T element spatk to approximaté/ andV, respectively.
Define the FE spac€$,, C, andW, by

Uy, = {v, € L*(Q);v4|x € P,YK € Fh,/[vh]ds =0,l C 0K},
!

Cn = {Uh € LQ(Q);Uh‘K < P,VK € Fh,/[vh]ds = O,l C 0K N GFD},
l

Wi ={w € Wiw|x € Q10(K) X Qo1(K) = (ap + a1x,by + a1y), VK € I'},
Qn={q €Wh;jq-n=0,0n0l'y},
whereP = span{1,z,y,z% y*}, [vs] denotes the jump af, across the boundatyof K if [ is
an internal edge, and;| = v, if [ C 99.
Let I, : H'(Q) — U, andIl, : (H'(Q))?> — W, be the associated interpolation operators
satisfyingl},|x = Ik, ;| x = Ik, then we have

/ (v — Igv)dxdy = O,/(U — Igv)ds =0, /(q —IIxq) - n;ds =0,

K l; li

wherely, Iy, 13, [, are four edges AP K, n; is the unit outward normal vector tgi = 1,2, 3,4).
On the other hand, we can prove the following conclusion:

Lemma 2.2. For (vp, cp, Vi, dqn) € (Up x Cp, x Wy, x Qp,), there hold

(25) Z/ a- IIKUhChdS = 0,
K JOK

(26) Z/ \I/h . IIKUhdS = O,
K JOK

(2.7) Z/ qn - ngcpds =0,
K JOK

whereny = (ny, ny) is the unit outward normal vector k.
Proof. It is not difficult to check that

Z/ a-nxvycpds = Z/ (a1 - my + ag - na)vpepds
=~ Jok ~ Jox
= Z(/ - / Jag(vn — Poivn)(cn — Poicn)dz

~ Jiu Ju

+ Z(/ — /)al(vh — P07¢Uh)(ch - PO,ich)dy
K lo lg
(2.8) =hL+1D,
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where
1
PO,iU = m / UdS, (Z = 1,2,3,4),Vl € LQ(L,L),
il Ji;

L = (/ — [ )as(vi, — Py vn)(cn — Pocp)dx,
ls

1

IQ = (/ — /)al(vh — P(],ﬂ)h)(ch — P071'Ch)dy.
lo la
Since%2 = {1, z}, we know that

ov ov
a—;(l’,yK + hy) = a—xh(flf,yK — hy).

So with the similar argument df [15], we have
4h2 th (920h

2.9 L < == )
(2.9) 1Ll = —Fll57 HO’KHaxayHO’K
Similarly, %L; = {1,y}, we get

4h2 0vh 82Ch
2.10 L <2 .
(2.10) 12| < 5 I 3y HO’KHGyaxHO’K

On the other hand, noting that € C;, = span{1,z,y,x? 3}, we have
82Ch 826h

@11 Dyor — Owdy "

Z/ a-nguvpcpds = 0.

Analogously, we can prové (2.6) anid (2.7). The proof of Lernmp 2.2 is completed. O
Also, it has been shown in [16] that

Thus

Lemma 2.3. For all v, € U}, there exists a positive constafif such that
(2.12) [onll < Cillvalla-

The least-squares scheme for Problem| (2.2) is to(findby,, @1, jn) € (Un X Ch x W, X Qp)
such that for anyuy,, ¢, Up,qpn) € Uy X Cr, X Wy, X Q)

(2.13) By ((un, br, ®ns jn)s (Vns hy Wiy dn)) = Li(vn, cny Wn, Q)
where the bilinear fornB,,(+; -) and the linear fornd, (-) are respectively defined as follows:

By, ((un, b, @ jn), (Vns cny Wi, dn))
= (Vh-CIDh+a-Vhbh,Vh . \Ifh+a-thh)
h

+(Vh “jnta-Vyur, Vy-qn+a-Vyo )

+(@p + EVpup, ¥y + Vi)

(2.14) +(in + kVibn, an + EVicn),
(2.15) Ly(vp, ey Vn,an) = (f, Vi - Up+a-Vien) + (9, Vi -qn +a- V).
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3. SOLVABILITY OF THE DISCRETE PROBLEM AND ERROR ESTIMATES

In this section, we will prove the solvability of Problem (2.13) and give error estimates. The
following theorem guarantees that Problgm (2.13) has a unique solution.

Theorem 3.1.For (v, cp, Yy, qn) € Uy X Cp, x W), x Qp, there exist two positive constarits
andC}, both independent df and / such that

(3-1) Bu((vhs cny Pn an); (Vs cny Wadn)) < Callvally + llenlly + 194115 + lanll?),
(3-2)B1((vn, cns Py ) (Vi cny Un an)) > Cabk?(Jonlli + llenlli + 11all3 + llanll2),
where|| - |2 = || - [I5, + IVa - 5.4, Vi is the gradient operator defined element by element,

|- [ln= /> |3« is anorm overJ, andC,.
K

Proof. The first inequality[(3]1) is obvious. We proceed to show the second ineqiiality (3.2).
Let o be a positive constant that will be determined later, utilizing](Z.5)-(2.7) and Lemma
[2.3, then, we have

Bi((vn, chy Ui,y dn); (Vns chy Wiy qn))
= |V U, +a- Ve, —avy|g ), + 20(Vy - ¥y + a- Viep, o) — &2lunlg
Vi - an +a- Vo, —acallgy, +2a(Vi - qn +a- Vo, en) — o?|lenlls
+|| Uy, + EVpop — avhvhHah + 2a(Wy, + Vo, Viog) — a2||thhHg,h
+llan + kVien — aVien|g, + 20(an + kVipen, Vien) — o[ Vienl5 5
>2a(Vy -V, +a- Ve, ) — 042thH37h
+2a(Vy - qn+a- Vyo, cp) — oz2||ch||(2)7h
+2a(Vy, + kEVyop, Vi) — azHthhHah
+2a(qy + kVien, Vien) — oz2||thh||§’h
> —a?||olg, — a®llenlld  + 20k Vonlls , — [ Vavnllg
+20k(Vaenll§ ) — @[ Vienlls
(3.3) > a2k — a1+ CH)([[Vaonlls s + [V aenll5 5)-
Takinga = k/(1 + C?), we get
(3.4) Bi((vns chy Py dn); (Vhs ey Way an)) 2> (2/ (14 C2))([[vallf, + lleall7)-
On the other hand, it is not difficult to check that
1CRlZ = 19all5 5 + VA - Callo
=[O+ kVion = kVaunllg, + IVa - On +a- Ve, —a- Vienlls,
< 2(/[ Wy + EVaonllg, + K2 Vavnlls
(3.5) + Vi Un+a- Va5, + lla- Vacall3,)
< 2(Bn(vn, ch, Ui, an); (Vn, cny Vi, dn)
+ (1 + C2)Bi(vn, chy Uiy an); (Vi chy Uiy an))
= 2(2 4 C7)Bu(vh, ¢y Ui, an); (Vn, chy Yy an),

(3.6) lanll? < (C/E*)Bu(vn, ch, Uny dn); (Un, ch, n, dn)-
Combining [3.8){(3.6) yields the desired resuli[3.2). The proof is completed. O
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Remark 3.1. We can see that the following typical features are essential in the proof of Lemma

2.2, i.e.,

()For all v, € Uy, %2 and% should be independent gfand respectively;
(INFor all vy, € Uy, [plvp]ds =0, F C OK;
Remark 3.2. We can check that Lem@.Z is also validjif andC,, are taken ag);” NFE
space discussed in [17] on the square meshes, the const@jffeFE and P, NFE spaces
proposed in[[18] and [19] on the rectangular meshes§,,as (), FE space)V,, andQ,, are the
zero order R-T element space, respectively, however, not valid for other popular nonconforming

FEs, such as Crouzeix-Raviart type linear triangular element [20], Wilson element [21] and
quasi-Wilson element [22], etc.

Remark 3.3. It can be checked that i/, is not changed in this paper but we replace the
FE space’;, with the spaces used in [17,118,/19] and, = Q; with that of nonconforming
elements used in [28, 24], then the above results of Lemma 2.2 are still valid.

Theorem 3.2.Let (u,b,®,j) € (UN H*Q)) x (CN H*NQ)) x (W N HY (div;Q)) x (N
H'(div; ) and (uy,, by, ., ji) € Un x C, x W), x Qy, be the solutions of Problenfs (2.2) and
(2.13), respectively. Then

lu = uplln + [1b = balln + [® = Pnlls + (1§ — Jull«

(3.7) < Ch{[ulz + [bla + [®]1 + [V - @[y + [jls + |V - j|1 }-

Proof. For (v, cn, Ui, qn) € Up x Cy X Wy, X Qp, We have
lon, = unli + llew = ballf + 1%n — @all? + llan — jall
< Bh((vh — Up, cp — bp, Ui — P, qp —jh); (Uh — Up, cp — bp, Ui — P, qp —jh))
< Bu((vn —u,cp — b, ¥y, — ®,q5 — j); (0n — up, e — bn, Vi — Pp, ap — ja))
+ Bu((u — up, b — by, @ — @4y j — ju); (v — uny cn — by, Wi — @y qn — jn)).
From (2.2){(2.4) and (2.13)-(2.]15), we find
(3.9) By((w —up, b= b, ® — Py, j — jn); (vn — un, cn — b, Vi, — P qp — jn)) = 0.
Therefore,
(3.10) = unlla + 119 = @4l < C{u — Lyully + @ — T2},
On the other hand, for eadki € I},

(3.8)

1 1
V- Hh(I)‘K = W/ V- th)dﬂfdy = W th) . HKdS
(3.11) K oK

1 1
= — ®-n ds:—/V-CDdxdy.
K] Jox " K] Sk
Thus we havéy - I1, | = P,V - |k, whereP, is the localL? projection satisfying
(3.12) [V (@ - IT,@)[lox = IV~ BV - ®lox < ChIV - P k.
Substituting[(3.12) intd (3.10) and applying the interpolation theory, we have
(3.13) [ = unl[p + [|® = Pul[ < Ch{Julz + [ + |V - |1}
Similarly, we obtain
(3.14) 16— bulln + 113 = Jnlls < CA{Ibl2 + ljl1 + |V - jl1}-
The proof is completed. O
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Remark 3.4. We point out that[(2]5)-(2] 7) are the key conditions leading to the optimal order
error estimates in this present work. So it is not a easy thing for one to choose a appropriate
space pair to derive Lemma 2.2. On the other hand, the investigation of this paper is carried out
for rectangular meshes, how to extend it to arbitrary quadrilateral dases [25, 26] still remains
open.
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