
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 16, Issue 1, Article 15, pp. 1-20, 2019

SOME CONVERGENCE RESULTS FOR JUNGCK-AM ITERATIVE PROCESS IN
HYPERBOLIC SPACES

AKINDELE ADEBAYO MEBAWONDU AND OLUWATOSIN TEMITOPE MEWOMO

Received 14 June, 2018; accepted 8 January, 2019; published 27 May, 2019.

SCHOOL OFMATHEMATICS, STATISTICS AND COMPUTERSCIENCE, UNIVERSITY OF KWAZULU-NATAL ,
DURBAN, SOUTH AFRICA.

216028272@stu.ukzn.ac.za
mewomoo@ukzn.ac.za.

ABSTRACT. In this paper, we introduce a new three steps iterative process called Jungck-AM
iterative process and show that the proposed iterative process can be used to approximate fixed
points of Jungck-contractive type mappings and Jungck-Suzuki type mappings. In addition, we
establish some strong and∆-convergence results for the approximation of fixed points of Jungck-
Suzuki type mappings in the frame work of uniformly convex hyperbolic space. Furthermore,
we show that the newly proposed iterative process has a better rate of convergence compare to
the Jungck-Noor, Jungck-SP, Jungck-CR and some existing iterative processes in the literature.
Finally, stability, data dependency results for Jungck-AM iterative process is established and we
present an analytical proof and numerical examples to validate our claim.
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1. I NTRODUCTION

Some of the physical problems in engineering, physics, economics and so on are usually for-
mulated into a fixed point problem: Findx ∈ X such that

Tx = x,(1.1)

whereT is a nonlinear mapping (self or nonself) of an arbitrary space, sayX. For the past
50 years researchers have paid a very good attention to finding an analytical solution to (1.1),
but this have been almost practically impossible. In view of this, iterative method has been
adopted in finding an approximate solution to (1.1). A good number of iterative processes
(explicit, implicit, Jungck-type and so on) have been introduced and studied by many authors,
(see [1, 2, 11, 12, 13, 14, 17, 18, 23, 24, 25, 27, 30, 31, 32, 33, 34] and the reference there
in). However, a good and reliable fixed point iterative process is required to posses at least the
following attributes:

(1) it should converge to a fixed point of an operator;
(2) it should beT -stable;
(3) it should be fast compare to other existing iteration in literature;
(4) it should show data dependence result.

In [15], Jungck introduced and studied an iterative process which involves the use of two map-
pings. This iterative process is very useful in the approximation of common fixed point of
these mappings. The likes of Olatinwo and Postolache [29], Sahin and Basair [37], Razani
and Begherboum [35], Khan, Kumar and Hussain [17] and so on, have introduced and stud-
ied different types of Jungck-type iterative processes in the frame work of Banach and metric
spaces.
Let X be a convex metric space,Y an arbitrary nonempty set andS, T : Y → X such that
T (Y ) ⊆ S(Y ). Singh, Bhatnagar and Mishra [38] defined the Jungck-Mann iterative process as
follows:

Sxn+1 = W (Sxn, Txn, αn) n ∈ N,(1.2)

where{αn} is a sequence in(0, 1). They introduced and studied the stability of Jungck and
Jungck-Mann iterative processes for the mappingsS andT satisfying the Jungck-Osilike type
and the Jungck-contraction conditions

d(Tx, Ty) ≤ δd(Sx, Sy), δ ∈ [0, 1)

and

d(Tx, Ty) ≤ δd(Sx, Sy) + Ld(Sx, Tx), δ ∈ [0, 1), L ≥ 0,

respectively. Jungck and Hussain in [16] also used the iterative process (1.2) to approximate the
common fixed point of the mappingsS andT satisfying the Jungck-contraction condition.
Olatinwo introduced and studied the Jungck-Ishikawa [25, 28] and Jungck-Noor [27] iterative
processes defined as follows:

Sxn+1 = W (Sxn, T yn, αn),

Syn = W (Sxn, Txn, βn), n ∈ N

and

Sun+1 = W (Sun, T vn, αn),

Svn = W (Sun, Twn, βn),(1.3)

Swn = W (Sun, Tun, γn), n ∈ N,
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where{αn}, {γn} and{βn} are sequences in(0, 1). He established some qualitative features
such as convergence and stability using a Jungck-Zamfirescu operator for a pair(S, T ), satisfy-
ing the following conditions: for allx, y ∈ Y at least one of the following is true:

(1) d(Tx, Ty) ≤ ad(Sx, Sy),
(2) d(Tx, Ty) ≤ b[d(Sx, Tx) + d(Sy, Ty)],
(3) d(Tx, Ty) ≤ c[d(Sx, Ty) + d(Sy, Tx)],

wherea ∈ [0, 1], b ≥ 0 andc ≤ 1
2
.

Olatinwo [25] proved stability and strong convergence results for some iterative processes using
a more general Jungck-type mapping called Jungck-contractive like mapping.

Definition 1.1. The pair of nonself mappingsS, T : Y → X is said to be Jungck-contractive
like if there existsδ ∈ [0, 1) and a monotone increasing functionφ : [0,∞) → [0,∞) with
φ(0) = 0, and for allx, y ∈ Y, such that

d(Tx, Ty) ≤ δd(Sx, Sy) + φ(d(Sx, Tx)).(1.4)

In [6], Chugh and Kumar defined the Jungck-SP iterative process as follows;

Spn+1 = W (Sqn, T qn, αn),

Sqn = W (Srn, T rn, βn),(1.5)

Srn = W (Spn, Tpn, γn), n ∈ N,

where{αn}, {βn} and{γn} are sequences in(0, 1). They proved strong convergence as well as
stability results for a pair of nonself mappings.
In [10], Hussain, Kumar and Kutbi defined the Jungck-CR iterative process as follows;

San+1 = W (Sbn, T bn, αn),

Sbn = W (Tan, T cn, βn),(1.6)

Scn = W (San, Tan, γn), n ∈ N,

where{αn}, {βn} and{γn} are sequences in(0, 1). They proved its strong convergence to a
common fixed point of the pair(S, T ) using the fact thatS, T are weakly compatible and that
Y = X.

Definition 1.2. [45] Let C be a nonempty subset of a convex metric spaceX andT be a self
mapping onC. ThenT is said to be Suzuki generalized nonexpansive mapping if for allx, y ∈ C

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).(1.7)

Singh and Mishra [39] introduced and studied the Jungck-Suzuki type nonexpansive mappings
more general than Suzuki generalized nonexpansive mapping introduced and studied in [45] for
a pair of mappings(S, T ) satisfying the following: for allx, y ∈ Y,

1

2
d(Tx, Sx) ≤ d(Sx, Sy) ⇒ d(Tx, Ty) ≤ d(Sx, Sy).(1.8)

Clearly, if Sx = x, we obtain the Suzuki generalized nonexpansive mapping. They established
some results on coincidence and fixed point theorems of mappings satisfying condition (1.8).
Furthermore, they gave examples of mappings that satisfies condition (1.8), but does not satisfy
condition (1.7).
In what follows, we also present an example of a pair of operatorS, T that satisfy condition
(1.8), butS does not satisfy condition (1.7).
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Example 1.1. Let X = Y = [0, 3] andd(x, y) = max{x, y} for all x, y ∈ X. Clearly, (X, d)
is a metric space. LetS, T : X → X be defined by

Tx =

{
0 if x ∈ [0, 1)
1
2x

if x ∈ [1, 3]

and

Sx =

{
3x if x ∈ [0, 1)

4− x if x ∈ [1, 3].

Then the pairS, T satisfy condition (1.8) butS does not satisfy condition (1.7).

Proof. Clearly,T (0) = S(0) = 0, else, we haveTx 6= Sx for all x ∈ X. We consider four
cases to show that the pair of mappingsS andT satisfied condition (1.8).

Case 1:Whenx, y ∈ [0, 1), we have

1

2
d(Sx, Tx) =

1

2
d(3x, 0) =

3x

2
≤ max{3x, 3y} = d(Sx, Sy)

⇒d(Tx, Ty) = d(0, 0) = 0 ≤ max{3x, 3y} = d(Sx, Sy).

Case 2:Whenx, y ∈ [1, 3], we have

1

2
d(Sx, Tx) =

1

2
d(4− x,

1

2x
) =

4− x

2
≤ max{4− x, 4− y} = d(Sx, Sy)

d(Tx, Ty) = d(
1

2x
,

1

2y
) = max{ 1

2x
,

1

2y
} ≤ max{4− x, 4− y} = d(Sx, Sy).

Case 3:Whenx ∈ [0, 1) andy ∈ [1, 3], we have

1

2
d(Sx, Tx) =

1

2
d(3x, 0) =

3x

2
≤ max{3x, 4− y} = d(Sx, Sy)

d(Tx, Ty) = d(0,
1

2y
) =

1

2y
≤ max{3x, 4− y} = d(Sx, Sy).

Case 4:Wheny ∈ [0, 1) andx ∈ [1, 3], we have

1

2
d(Sx, Tx) =

1

2
d(4− x,

1

2x
) =

4− x

2
≤ max{4− x, 3y} = d(Sx, Sy)

d(Tx, Ty) = d(
1

2x
, 0) = max{ 1

2x
, 0} =

1

2x
≤ max{4− x, 3y} = d(Sx, Sy).

Thus,S andT satisfy condition (1.8). Clearly,0 is the unique common fixed point ofS andT.
It is easy to see in the above example thatT satisfy the generalized Suzuki nonexpansive map-
ping defined in [45].
To show thatS does not satisfy the generalized Suzuki nonexpansive mapping defined in [45].
Let x = 0 andy = 1. Note that

1

2
d(x, Sx) =

1

2
d(0, 0) = 0 < 1 = max{0, 1} = d(x, y)

but

d(Sx, Sy) = d(0, 4− 1) = max{0, 3} = 3 > max{0, 1} = d(x, y).

This complete the proof.

Motivated by the above facts and the research in this direction, our aim in this work is to:
(1) introduce a new Jungck-type iterative process and study its qualitative features, such as

convergence, stability and data dependency for a Jungck-type contractive mappings;
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(2) prove that our newly introduced iterative process has a better rate of convergence and
more efficient as compared to some Jungck-type iterative processes in the literature;

(3) show some strong and∆-convergence results for a Jungck-type Suzuki mappings using
our newly proposed iterative process in the frame work of uniformly convex hyperbolic
spaces;

(4) apply our iterative process and some existing iterative processes in literature to solve
Legendre polynomial equation and quadratic equation.

2. PRELIMINARIES

Throughout this paper, we carry out all our study in the frame work of hyperbolic space intro-
duced by Kohlenbach [20].

Definition 2.1. A hyperbolic space(X, d, W ) is a metric space(X, d) together with a convex
mappingW : X2 × [0, 1] → X satisfying

(1) d(u, W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y);
(2) d(W (x, y, α), W (x, y, β)) = |α− β|d(x, y);
(3) W (x, y, α) = W (y, x, 1− α);
(4) d(W (x, z, α), W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w);

for all w, x, y, z ∈ X andα, β ∈ [0, 1].

Example 2.1. [44] LetX be a real Banach space which is equipped with norm||.||. Define the
function
d : X2 → [0,∞) by

d(x, y) = ||x− y||
as a metric onX. Then, we have that(X, d, W ) is a hyperbolic space with mappingW :
X2 × [0, 1] → X defined byW (x, y, α) = (1− α)x + αy.

It is well-known that Banach spaces are examples of hyperbolic spaces and some other impor-
tant examples are CAT(0) spaces, Hadamard manifords, Hilbert ball with the hyperbolic metric,
Catesian products of Hilbert balls andR-trees. The reader should please see [8, 9, 20, 36] for
more discussion and examples of hyperbolic spaces.

Definition 2.2. [44] Let X be a hyperbolic space with a mappingW : X2 × [0, 1] → X.

(i) A nonempty subsetC of X is said to be convex ifW (x, y, α) ∈ C for all x, y ∈ C and
α ∈ [0, 1].

(ii) X is said to be uniformly convex if for anyr > 0 andε ∈ (0, 2], there exists aδ ∈ (0, 1]
such that for allx, y, z ∈ X

d(W (x, y,
1

2
), z) ≤ (1− δ)r,

providedd(x, z) ≤ r, d(y, z) ≤ r andd(x, y) ≥ εr.
(iii) A map η : (0,∞)× (0, 2] → (0, 1] which provides such aδ = η(r, ε) for a givenr > 0

andε ∈ (0, 2] is known as a modulus of uniform convexity ofX. The mappingη is said
to be monotone, if it decreases withr (for a fixedε).

Definition 2.3. Let C be a nonempty subset of a metric spaceX and{xn} be any bounded
sequence inC. Forx ∈ X, let r(·, {xn}) : X → [0,∞) be a continuous functional defined by

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radiusr(C, {xn}) of {xn} with respect toC is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.
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A point x ∈ C is said to be an asymptotic center of the sequence{xn} with respect toC ⊆ X
if

r(x, {xn}) = inf{r(y, {xn}) : y ∈ C}.
The set of all asymptotic centers of{xn} with respect toC is denoted byA(C, {xn}). If the
asymptotic radius and the asymptotic center are taken with respect toX, then we simply denote
them byr({xn}) andA({xn}) respectively.
It is well-known that in uniformly convex Banach spaces and CAT(0) spaces, bounded se-
quences have unique asymptotic center with respect to closed convex subsets.

Definition 2.4. [19]. A sequence{xn} in X is said to4-converge tox ∈ X, if x is the
unique asymptotic center of{xnk

} for every subsequence{xnk} of {xn}. In this case, we write
4- lim

n→∞
xn = x.

Remark 2.1. [21]. We note that4-convergence coincides with the usually weak convergence
known in Banach spaces with the usual Opial property.

Lemma 2.1. [22] LetX be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexityη. Then every bounded sequence{xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subsetC of X.

Lemma 2.2. [5] Let X be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexityη and let{xn} be a bounded sequence inX with A({xn}) = {x}.
Suppose{xnk

} is any subsequence of{xn} with A({xnk
}) = {x1} and{d(xn, x1)} converges,

thenx = x1.

Lemma 2.3. [18] LetX be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexityη. Letx∗ ∈ X and{tn} be a sequence in[a, b] for somea, b ∈ (0, 1). If
{xn} and{yn} are sequences inX such thatlim supn→∞ d(xn, x

∗) ≤ c, lim supn→∞ d(yn, x
∗)

≤ c and limn→∞ d(W (xn, yn, tn), x∗) = c, for somec > 0. Thenlimn→∞ d(xn, yn) = 0.

Definition 2.5. [16] Let X be a nonempty set andS, T : X → X be any two mappings.
(1) A pointx ∈ X is called:

(a) coincidence point ofS andT if Sx = Tx,
(b) common fixed point ofS andT if x = Sx = Tx.

(2) If y = Sx = Tx for somex ∈ X, theny is called the point of coincidence ofS andT.
(3) A pair (S, T ) is said to be:

(a) commuting ifTSx = STx for all x ∈ X,
(b) weakly compatible if they commute at their coincidence points, that isSTx =

TSx, wheneverSx = Tx.

The set of coincidence points ofS andT is denoted byC(S, T ) and the set of common fixed
point ofS andT is denoted byF (S, T ).

Definition 2.6. Let C be a subset of a normed spaceX. A mappingT : C → C is said to
satisfy condition(A), if there exists a nondecreasing functionf : [0,∞) → [0,∞) such that
f(0) = 0 andf(t) > 0 ∀ t ∈ (0,∞) and that‖x− Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C, where
d(x, F (T )) denotes distance fromx to F (T ).

Definition 2.7. Let C be a subset of a normed spaceX. The mappingsS, T : C → C is said to
satisfy condition(A∗), if there exists a nondecreasing functionf : [0,∞) → [0,∞) such that
f(0) = 0 andf(t) > 0 ∀ t ∈ (0,∞) and that‖Sx − Tx‖ ≥ f(d(Sx, F (S, T ))) for all x ∈ C,
whered(Sx, F (S, T )) denotes distance fromSx to F (S, T ).
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Definition 2.8. [4] Let {an} and{bn} be two sequences of real numbers converging toa andb

respectively. Iflimn→∞
|an−a|
|bn−b| = 0, then{an} converges faster than{bn}.

Definition 2.9 ([17]). Let (S, T ), (S, T ) : Y → X be nonself-mapping pairs on an arbitrary set
Y such thatT (Y ) ⊆ S(Y ) andT (Y ) ⊆ S(Y ). We say that the pair(S, T ) is an approximate
mapping pair of(S, T ) if for all x ∈ Y and for fixedε1 > 0 andε2 > 0, we have

d(Tx, Tx) ≤ ε1, d(Sx, Sx) ≤ ε2.

Definition 2.10. [38] Let S, T : Y → X be nonself-mapping for an arbitrary setY such that
T (Y ) ⊆ S(Y ) andx∗ a point of coincidence ofS andT. Let {Sxn} ⊂ X, be sequence gener-
ated by an iterative procedureSxn+1 = f(T, xn). Suppose{Sxn} converging tox∗, {Syn} ⊂ X
an arbitrary sequence and setεn = d(Syn, f(T, yn)), ∀ n ∈ N. Then, the iterative process is
said to be(S, T )− stable or stable if and only iflimn→∞ εn = 0 implies limn→∞ Syn = x∗.

Definition 2.11. [42] Let (S, T ) : Y → X be nonself-mapping pairs on an arbitrary setY such
thatT (Y ) ⊆ S(Y ) Two sequences say{Sxn} ⊂ X and{Syn} ⊂ X are said to be equivalence
if the limn→∞ d(Sxn, Syn) = 0.

Definition 2.12. [42] Let S, T be two mappings such thatT (Y ) ⊆ S(Y ) andx∗ a point of
coincidence ofS and T. Let {Sxn} ⊂ X be sequence generated by an iterative procedure
Sxn+1 = f(T, xn). Suppose{Sxn} converging tox∗. If for any equivalent sequence{Sxn}
and{Syn}

lim
n→∞

d(Syn+1, f(T, xn)) = 0 ⇒ lim
n→∞

Syn = x∗,

then the iteration process is weakw2- stable with respect of(S, T ).

Lemma 2.4. [43] Let {ηn} and {τn} be nonnegative real sequences satisfying the following
inequality:

ηn+1 ≤ (1− γn)ηn + τn,

whereγn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 γn = ∞ andlimn→∞
τn

γn
= 0, thenlimn→∞ ηn = 0.

Lemma 2.5. [41] Let {ηn} and {τn} be nonnegative real sequences satisfying the following
inequality:

ηn+1 ≤ (1− γn)ηn + τn,

whereγn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 γn = ∞, then

0 ≤ lim sup
n→∞

ηn ≤ lim sup
n→∞

τn.

3. RATE OF CONVERGENCE , STABILITY AND DATA DEPENDENCY

In this section, we introduce and study our newly proposed iterative process. LetX be a uni-
formly convex hyperbolic space,Y an arbitrary set andS, T : Y → X be mappings satisfying
condition (1.4) such thatT (Y ) ⊆ S(Y ). The sequence{Sxn} is define recursively as follows:

Sxn+1 = W (Syn, T yn, αn),

Syn = W (Tzn, 0, 0),(3.1)

Szn = W (Sxn, Txn, βn), n ∈ N,

where{αn} and{βn} are sequences in(0, 1).
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Theorem 3.1. Let X be an hyperbolic space andS, T : Y → X be nonself mappings on an
arbitrary setY satisfying (1.4) such thatT (Y ) ⊆ S(Y ) andS(Y ) is a complete subspace of
X. Let z ∈ C(S, T ) such thatSz = Tz = x∗ (say) and suppose{Sxn} is the iterative process
defined by (3.1) with

∑∞
n=1 αn = ∞. Then forx0 ∈ Y, the iterative process{Sxn} converges

strongly tox∗. In addition,x∗ is the unique common fixed point of the pair(S, T ) provided that
X = Y andS, T are weakly compatible.

Proof. Using (3.1) and (1.4), we have

d(Szn, x
∗) = W (d(Sxn, Txn, βn), x∗)

≤ (1− βn)d(Sxn, x
∗) + βnd(Txn, x

∗)

= (1− βn)d(Sxn, x
∗) + βnd(Tz, Txn)

≤ (1− βn)d(Sxn, x
∗) + βnδd(Sz, Sxn) + βnφ(d(Sz, Tz))(3.2)

= (1− βn)d(Sxn, x
∗) + βnδd(Sxn, x

∗)

= (1− (1− δ)βn)d(Sxn, x
∗)

≤ d(Sxn, x
∗).

Using (3.1), (3.2) and (1.4), we obtain

d(Syn, x
∗) = d(W (Tzn, 0, 0), x∗)

≤ d(Tzn, x
∗)

≤ δd(Szn, x
∗)(3.3)

≤ δd(Sxn, x
∗).

Using (3.1), (3.3) and (1.4), we get

d(Sxn+1, x
∗) = d(W (Syn, T yn, αn), x∗)

≤ (1− αn)d(Syn, x
∗) + αnd(Tyn, x

∗)

= (1− αn)d(Syn, x
∗) + αnd(Tz, Txn)

≤ (1− αn)d(Syn, x
∗) + αnδd(Sz, Syn)(3.4)

= (1− αn)d(Syn, x
∗) + αnδd(Syn, x

∗)

= (1− (1− δ)αn)d(Syn, x
∗)

≤ δ(1− (1− δ)αn)d(Sxn, x
∗).

From (3.4), we have

d(Sxn+1, x
∗) ≤ δ(1− (1− δ)αn)d(Sxn, x

∗)

d(Sxn, x
∗) ≤ δ(1− (1− δ)αn−1)d(Sxn−1, x

∗)

...

d(Sx1, x
∗) ≤ δ(1− (1− δ)α0)d(Sx0, x

∗).(3.5)

From (3.5), we have that

d(Sxn+1, x
∗) ≤ d(Sx0, x

∗)δn+1
n∏

m=0

(1− (1− δ)αm).(3.6)
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Since{αn} is in (0, 1) andδ in [0, 1), we have(1− (1−δ)αn) ∈ (0, 1). We recall the inequality
1− x ≤ e−x for all x ∈ [0, 1], thus from (3.6), we have

d(Sxn+1, x
∗) ≤ δn+1d(Sx0, x

∗)

e(1−δ)
Pn

m=0 αm
.

Taking the limit of both sides of the above inequalities, we havelimn→∞ d(Sxn, x
∗) = 0.

In what follows, we now show thatx∗ is the unique common fixed point ofS andT, when
Y = X andS, T are weakly compatible.
Suppose there exists another point of coincidencey∗ of the pair(S, T ). It follows that we can
find sayz∗ ∈ C(S, T ) such thatSz∗ = Tz∗ = y∗. By definition, we obtain

d(x∗, y∗) = d(Tz, Tz∗) ≤ δd(Sz, Sz∗) + φ(d(Sz, Tz)) = δd(Sz, Sz∗) ≤ d(x∗, y∗).

Clearly, we have thatd(x∗, y∗) = d(x∗, y∗), if not we get a contradictiond(x∗, y∗) < d(x∗, y∗).
Hence, we have thatx∗ = y∗. Since,S andT are weakly compatible andx∗ = Tz = Sz, then
Tx∗ = TTz = TSz = STz = Sx∗. Thus,Tx∗ is a point of coincidence ofS andT, the point
of coincidence is unique, we then havex∗ = Tx∗. Hence,Tx∗ = Sx∗ = x∗ and thereforex∗ is
unique common fixed point of S and T.

Theorem 3.2. Let X be an hyperbolic space andS, T : Y → X be nonself mappings on an
arbitrary setY satisfying (1.4) such thatT (Y ) ⊆ S(Y ) andS(Y ) is a complete subspace of
X. Let z ∈ C(S, T ) such thatSz = Tz = x∗ (say) and suppose{Sun}, {Spn} and {San}
are the iterative processes defined by (1.3), (1.5) and (1.6) respectively with

∑∞
n=1 αn = ∞

and
∑∞

n=1 αnβn = ∞. Then foru0, p0 anda0 in Y, the iterative processes{Sun}, {Spn} and
{San} converges strongly tox∗. In addition,x∗ is the unique common fixed point of the pair
(S, T ) provided thatX = Y andS, T are weakly compatible.

Proof. The proof follows the same line of argument as in Theorem 3.1.

Theorem 3.3. Let X be an hyperbolic space andS, T : Y → X be nonself mappings on an
arbitrary setY satisfying (1.4) such thatT (Y ) ⊆ S(Y ) andS(Y ) is a complete subspace of
X. Let z ∈ C(S, T ) such thatSz = Tz = x∗(say), and suppose{Sxn} is the iterative process
defined by (3.1) with

∑∞
n=1 αn = ∞ which converges strongly tox∗. Then, forx0 ∈ Y, the

iterative process{Sxn} is (S, T )- stable.

Proof. Let {Spn} ⊂ X be an arbitrary sequence and suppose that
εn = d(Spn+1, W (Sqn, T qn, αn)), whereSqn = W (Trn, 0, 0) andSrn = W (Spn, Tpn, βn).
Let limn→∞ εn = 0, using condition (1.4) and triangle inequality , we have

d(Spn+1, x
∗) ≤ d(Spn+1, W (Sqn, T qn, αn)) + d(W (Sqn, T qn, αn), x∗)

≤ εn + (1− αn)d(Sqn, x
∗) + αnd(Tqn, x

∗)

≤ εn + (1− αn)d(Sqn, x
∗) + αnδd(Sqn, x

∗)

= εn + (1− (1− δ)αn)d(Sqn, x
∗)

= εn + (1− (1− δ)αn)d(W (Trn, 0, 0), x∗)(3.7)

≤ εn + (1− (1− δ)αn)d(Trn, x
∗)

≤ εn + (1− (1− δ)αn)δd(Srn, x
∗)

= εn + (1− (1− δ)αn)δd(W (Spn, Tpn, βn), x∗)

≤ εn + (1− (1− δ)αn)δ[(1− (1− δ)βn)d(Spn, x
∗)]

≤ εn + (1− (1− δ)αn)d(Spn, x
∗).
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Since{αn} is in (0, 1) andδ is in [0, 1), we have(1− (1− δ)αn) ∈ (0, 1). Hence, using Lemma
2.4, we obtainlimn→∞ Spn = x∗.
Conversely, letlimn→∞ Spn = x∗. Then using triangle inequality and condition (1.4), we obtain

εn = d(Spn+1, W (Sqn, T qn, αn))

≤ d(Spn+1, x
∗) + d(W (Sqn, T qn, αn), x∗)

≤ d(Spn+1, x
∗) + δ(1− (1− δ)αn)d(Spn, x

∗)

≤ d(Spn+1, x
∗) + (1− (1− δ)αn)d(Spn, x

∗).

Thus,limn→∞ εn = 0. Then, the iterative scheme{Sxn} is (S, T )- stable.

Theorem 3.4. Let X be an hyperbolic space andS, T : Y → X be nonself mappings on an
arbitrary setY satisfying (1.4) such thatT (Y ) ⊆ S(Y ) andS(Y ) is a complete subspace of
X. Let z ∈ C(S, T ) such thatSz = Tz = x∗(say), and suppose{Sxn} is the iterative scheme
defined by (3.1) with

∑∞
n=1 αn = ∞ which converges strongly tox∗. Then, forx0 ∈ Y, the

iterative process{Sxn} is weakw2-stable with respect to(S, T ).

Proof. Let {Spn} ⊂ X be an equivalent sequence of{Sxn} and suppose that thatεn =
d(Spn + 1, W (Sqn, T qn, αn)), whereSqn = W (Trn, 0, 0) andSrn = W (Spn, Tpn, βn). Let
limn→∞ εn = 0, using condition (1.4) and triangle inequality, we have

d(Spn+1, x
∗)

≤d(Spn+1, Sxn+1) + d(Sxn+1, x
∗)

≤d(Spn+1, W (Sqn, T qn, αn)) + d(W (Sqn, T qn, αn), W (Syn, T yn, αn))

+ d(Sxn+1, x
∗)

≤εn + (1− αn)d(Sqn, Syn) + αnd(Tyn, T qn) + d(Sxn+1, x
∗)

≤εn + (1− αn)d(Syn, Sqn) + αnδd(Syn, Sqn) + αnφ(d(Syn, T yn))

+ d(Sxn+1, x
∗)

=εn + (1− (1− δ)αn)d(Syn, Sqn) + αnφ(d(Syn, T yn)) + d(Sxn+1, x
∗)

≤εn + (1− (1− δ)αn)d(W (Tzn, 0, 0), W (Trn, 0, 0)) + αnφ(d(Syn, T yn))

+ d(Sxn+1, x
∗)

≤εn + (1− (1− δ)αn)δd(Szn, T zn) + (1− (1− δ)αn)φ(d(Szn, T zn))

+ αnφ(d(Syn, T yn)) + d(Sxn+1, x
∗)

=εn + (1− (1− δ)αn)δd(W (Sxn, Txn, βn), W (Spn, Tpn, βn))

+ (1− (1− δ)αn)δφ(d(Szn, T zn)) + αnφ(d(Syn, T yn)) + d(Sxn+1, x
∗)(3.8)

≤εn + (1− (1− δ)αn)δ[(1− (1− δ)βn)d(Sxn, Spn) + βnφ(d(Sxn, Txn))]

+ (1− (1− δ)αn)δφ(d(Szn, T zn)) + αnφ(d(Syn, T yn)) + d(Sxn+1, x
∗)

=(1− (1− δ)αn)δ(1− (1− δ)βn)d(Sxn, Spn) + (1− (1− δ)αn)δβnφ(d(Sxn, Txn))

+ (1− (1− δ)αn)δφ(d(Szn, T zn)) + αnφ(d(Syn, T yn)) + d(Sxn+1, x
∗) + εn.

Since{Sxn} and{Spn} are equivalent sequences, solimn→∞ d(Sxn, Spn) = 0. Also, since
{Sxn} converges tox∗, clearly,{Sxn+1} converges tox∗. In addition, observe that

d(Sxn, Txn) ≤ d(Sxn, x
∗) + d(Txn, x

∗)

≤ (1 + δ)d(Sxn, x
∗) → 0 as n →∞.
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Using similar argument, it is easy to obtainlimn→∞ d(Szn, T zn) = limn→∞ d(Syn, T yn) = 0.
Clearly, we have thatlimn→∞ d(Syn, T yn) = φ(limn→∞ d(Syn, T yn)) = 0, which also holds
for others.
Thus limn→∞ d(Spn+1, x

∗) = 0, consequentlylimn→∞ d(Spn, x
∗) = 0. Then, the iterative

scheme{Sxn} is weakw2-stable with respect to(S, T ).

Theorem 3.5. Let X be an hyperbolic space andS, T : Y → X be nonself operators on an
arbitrary setY satisfying (1.4) such thatT (Y ) ⊆ S(Y ) andS(Y ) is a complete subspace of
X. Letx∗ ∈ F (S, T ) that isSx∗ = Tx∗ = x∗, and forx0 = u0 = p0 = a0 ∈ Y, the sequences
{Sxn}, {Sun}, {San} and{Spn} defined by (3.1), (1.3), (1.5) and (1.6) such thatα ≤ αn ≤
1, αβ ≤ αnβn ≤ 1 with α, β > 0 for all n ∈ N and

∑∞
n=1 αn =

∑∞
n=1 βnαn =

∑∞
n=1 αn = ∞.

Then, the iterative process (3.1) converges faster tox∗ than (1.3), (1.5) and (1.6).

Proof. From (3.6) in Theorem 3.1, and using our assumption, we have that

d(Sxn+1, x
∗) ≤ d(Sx0, x

∗)δn+1
n∏

m=0

(1− (1− δ)αm)

= d(Sx0, x
∗)δn+1[1− (1− δ)αm]n+1

≤ d(Sx0, x
∗)δn+1[1− (1− δ)α]n+1.

Using similar argument as in Theorem 3.1 and our assumption, we have the Jungck-Noor itera-
tion (1.3) takes the form

d(Sun+1, x
∗) ≤ d(Su0, x

∗)[1− (1− δ)α]n+1.

Using similar argument as in Theorem 3.1 and our assumption, we have the Jungck-SP iteration
(1.5) takes the form

d(Spn+1, x
∗) ≤ d(Sp0, x

∗)[1− (1− δ)α]n+1.

Using similar argument as in Theorem 3.1 and our assumption, we have the Jungck-CR iteration
(1.6) takes the form

d(San+1, x
∗) ≤ d(Sa0, x

∗)δn+11− (1− δ)αβ]n+1.

Now, let

an = d(Sx0, x
∗)δn+1[1− (1− δ)α]n+1

bn = d(Su0, x
∗)[1− (1− δ)α]n+1

cn = d(Sp0, x
∗)[1− (1− δ)α]n+1

dn = d(Sa0, x
∗)δn+1[1− (1− δ)αβ]n+1

and

Φn =
an

bn

=
d(Sx0, x

∗)δn+1[1− (1− δ)α]n+1

d(Su0, x∗)[1− (1− δ)α]n+1
→∞ as n → 0,

Ψn =
an

cn

=
d(Sx0, x

∗)δn+1[1− (1− δ)α]n+1

d(Sp0, x∗)[1− (1− δ)α]n+1
→∞ as n → 0,

Γn =
an

bn

=
d(Sx0, x

∗)δn+1[1− (1− δ)α]n+1

d(Sa0, x∗)δ
n+1[1− (1− δ)αβ]n+1

→∞ as n → 0.

It is easy to see that
1− (1− δ)α

1− (1− δ)αβ
< 1.
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Thus, the proof is complete.

One of the interesting area of research in fixed point theory is data dependence. Some times,
researchers find it challenging or maybe impossible to find the fixed point of some nonlinear
mappings. When faced with such situations, instead of trying to find the fixed point of such
mappings, we look for another nonlinear mapping which is an approximation of the nonlinear
mapping we intend to find the fixed point, more so the fixed point of the approximating nonlinear
mapping must be known. Having such an approximate nonlinear mapping, we can find the
approximate location of the fixed point of the nonlinear mapping that is proofing difficult to
get. For this reason the concept of data dependency is of great importance in both theoretical
and application point of view. For further details about data dependency, the reader should (see
Brinde [3], Espinola and Petrusel [7], Olatinwo [26] Soltuz [40], Soltuz and Grosan [41] and
the references there in).

Theorem 3.6.LetX be an hyperbolic space and(S, T ), (S, T ) : Y → X be nonself-mappings
on an arbitrary setY with (S, T ) satisfying condition (1.4) such thatd(Tx, Tx) ≤ ε1 and
d(Sx, Sx) ≤ ε2. SupposeT (Y ) ⊆ S(Y ), T (Y ) ⊆ S(Y ), whereS(Y ) andS(Y ) are complete
subspaces ofX with Sz = Tz = x∗ andSz = Tz = x∗. Let {Sxn} be the iterative sequence
generated by (3.1) and define an iterative process{Sxn} as follows

Szn = W (Sxn, Txn, βn),

Syn = W (Tzn, 0, 0),

Sxn+1 = W (Syn, T yn, αn) n ≥ 1,

(3.9)

where{αn} and{βn} are sequences in(0, 1) and 1
2
≤ αn for all n ∈ N such that

∑∞
n=0 αn =

∞. Suppose{Sxn} and{Sxn} converges tox∗ andx∗ respectively. Then, we have

d(x∗, x∗) ≤ 5(ε2 + ε1)

1− δ
.

Proof. Using (3.1) and (3.9), we have

d(Sn+1, Sxn+1) = d(W (Syn, T yn, αn), W (Syn, T yn, αn))

≤ (1− αn)d(Syn, Syn) + αnd(Tyn, T yn)

≤ (1− αn)d(Syn, Syn) + αnd(Tyn, T yn) + αnd(Tyn, T yn)

≤ (1− αn)d(Syn, Syn) + αnδd(Syn, Syn) + αnφ(d(Syn, T yn)) + αnεn(3.10)

≤ (1− αn)d(Syn, Syn) + αnδd(Syn, Syn) + αnδd(Syn, Syn)

+ αnφ(d(Syn, T yn)) + αnεn(1− (1− δ)αn)d(Syn, Syn) + αnφ(d(Syn, T yn))

+ αnεn + αnδε2.

Using (3.1) and (3.9), we have

d(Syn, Syn) = d(Tzn, T zn)

≤ d(Tzn, T zn) + d(Tzn, T zn)

≤ δd(Szn, Szn) + φ(d(Szn, T zn)) + ε1

≤ δd(Szn, Szn) + δd(Szn, Szn) + φ(d(Szn, T zn)) + ε1

≤ δd(Szn, Szn) + φ(d(Szn, T zn)) + δε2 + ε1.(3.11)
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Using (3.1) and (3.9), we obtain

d(Szn, Szn) = d(W (Sxn, Txn, βn), W (Sxn, Txn, βn))

≤ (1− βn)d(Sxn, Sxn) + βnd(Txn, Txn)

≤ (1− βn)d(Sxn, Sxn) + βnd(Txn, Txn) + βnd(Txn, Txn)

≤ (1− βn)d(Sxn, Sxn) + βnδd(Sxn, Sxn) + βnφ(d(Sxn, Txn)) + βnε1(3.12)

≤ (1− βn)d(Sxn, Sxn) + βnδd(Sxn, Sxn) + βnd(Sxn, Sxn)

+ βnφ(d(Sxn, Txn)) + βnε1

≤ (1− (1− δ)βn)d(Sxn, Sxn) + φ(d(Sxn, Txn)) + ε1 + ε2.

Substituting (3.12) into (3.11) and then (3.11) into (3.10), we obtain

d(Sxn+1, Sxn+1) ≤ δ(1− (1− δ)αn)d(Sxn, Sxn) + (1− (1− δ)αn)δφ(d(Sxn, Txn))

+ (1− (1− δ)αn)φ(d(Szn, T zn)) + αnφ(‖Syn − Tyn‖)
+ (1− (1− δ)αn)δ2ε2

+ (1− (1− δ)αn) δε1 + (1− (1− δ)αn)δε2

+ (1− (1− δ)αn)ε1 + αnδε2 + αnε1.

Sinceδ, δ2 < 1, {αn} in (0, 1) and our assumption that1
2
≤ αn, we have

1− αn ≤ αn

1− αn + δαn ≤ 1− αn + αn ≤ αn + αn = 2αn.

Therefore, we have that

d(Sxn+1, Sxn+1)

≤(1− (1− δ)αn)d(Sxn, Sxn) + 2αnφ(d(Sxn, Txn)) + 2αnφ(d(Szn, T zn))

+αnφ(d(Syn, T yn)) + 5αn(ε2 + ε1)

=(1− (1− δ)αn)d(Sxn, Sxn)

+(1− δ)αn
2φ(d(Szn, T zn)) + 2φ(d(Sxn, Txn)) + φ(d(Syn, T yn)) + 5(ε2 + ε1)

1− δ
.

Letηn = d(Sxn, Sxn), γn = (1−δ)αn andτn = 2φ(d(Szn,T zn))+2φ(d(Sxn,Txn))+φ(d(Syn,Tyn))+5(ε2+ε1)
1−δ

.
From Theorem 3.1, we have thatlimn→∞ d(Sxn, x

∗) = 0. Also, observe that

d(Sxn, Txn) ≤ d(Sxn, x
∗) + d(Tx∗, Txn)

≤ (1 + δ)d(Sxn, x
∗) → 0 as n →∞.

Using similar approach, we have thatlimn→∞ d(Syn, T yn) = limn→∞ d(Szn, T zn) = 0.
More so, we have that

lim
n→∞

φ(d(Syn, T yn)) = φ( lim
n→∞

d(Syn, T yn)) = 0.

The same argument holds for others. Using Lemma 2.5, we have that

0 ≤ lim sup
n→∞

d(Sxn, Sxn) ≤ lim sup
n→∞

5(ε2 + ε1)

1− δ
.(3.13)

Using our hypothesis thatlimn→∞ Sxn = x∗, (3.13) and from Theorem 3.1, we conclude that

d(x∗, x∗) ≤ 5(ε2 + ε1)

1− δ
.
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Hence, the proof is complete.

4. STRONG AND ∆-CONVERGENCE THEOREMS

In this section, we establish some strong and∆-convergence results for mappings satisfying
condition (1.8) using the iterative process (3.1). In achieving this results, we suppose that
X = Y andS, T are weakly compatible.

Lemma 4.1. Let C be a nonempty closed and convex subset of an Hyperbolic spaceX. Let
S, T : C → C be mappings satisfying (1.8) andF (S, T ) 6= ∅. Suppose that{Sxn} is defined
by (3.1), where{αn}, {βn} are sequences in(0, 1), then thelimn→∞ d(Sxn, x

∗) exists for all
x∗ ∈ F (S, T ).

Proof. Let x∗ ∈ F (S, T ), that isSx∗ = Tx∗ = x∗, we have

1

2
d(Sx∗, Tx∗) =

1

2
d(x∗, x∗) ≤ d(Sx∗, Sxn),

1

2
d(Sx∗, Tx∗) =

1

2
d(x∗, x∗) ≤ d(Sx∗, Syn)

and
1

2
d(Sx∗, Tx∗) =

1

2
d(x∗, x∗) ≤ d(Sx∗, Szn).

Which now implies that

d(Tzn, Tx∗) ≤ d(Szn, Sx∗) = d(Szn, x
∗),

d(Txn, Tx∗) ≤ d(Sxn, Sx∗) = d(Sxn, x
∗)

and

d(Tyn, Tx∗) ≤ d(Syn, Sx∗) = d(Syn, x
∗).

Using (3.1), we have

d(Szn, x
∗) = d(W (Sxn, Txn, βn), x∗)

≤ (1− βn)d(Sxn, x
∗) + βnd(Txn, x

∗)(4.1)

≤ (1− βn)d(Sxn, x
∗) + βnd(Sxn, x

∗)

= d(Sxn, x
∗).

Using (3.1) and (4.1), we have

d(Syn, x
∗) = d(W (Tzn, 0, 0), x∗)

≤ d(Tzn, x
∗)

≤ d(Szn, x
∗)(4.2)

≤ d(Sxn, x
∗).

Using (3.1) and (4.2), we have

d(Sxn+1, x
∗) = d(W (Syn, T yn, αn), x∗)

≤ (1− αn)d(Syn, x
∗) + αnd(Tyn, x

∗)

≤ (1− αn)d(Syn, x
∗) + αnd(Syn, x

∗)

= d(Syn, x
∗)(4.3)

≤ d(Sxn, x
∗).
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This shows that{d(Sxn, x
∗)} is decreasing and bounded for allx∗ ∈ F (S, T ). Thus,

limn→∞ d(Sxn, x
∗) exists.

Lemma 4.2. Let C be a nonempty closed and convex subset of an hyperbolic spaceX. Let
S, T : C → C be mappings satisfying (1.8) andF (S, T ) 6= ∅. Suppose that{Sxn} is defined
by (3.1), where{αn} and{βn} are sequences in(0, 1), thenlimn→∞ d(Sxn, Txn) = 0.

Proof. SinceF (S, T ) 6= 0, let x∗ ∈ F (S, T ). We have shown in Lemma 4.1 that{Sxn} is
bounded andlimn→∞ d(Sxn, x

∗) exists. Suppose thatlimn→∞ d(Sxn, x
∗) = c. If we take c = 0,

then we are done. Thus, we consider the case wherec > 0.
From (4.1), we haved(Szn, x

∗) ≤ d(Sxn, x
∗), it then follows that

lim sup
n→∞

d(Szn, x
∗) ≤ c.(4.4)

Also, we haved(Txn, x
∗) ≤ d(Sxn, x

∗), it then follows that

lim sup
n→∞

d(Txn, x
∗) ≤ c.(4.5)

Using (4.2) and (4.3), we have

d(Sxn+1, x
∗) ≤ d(Syn, x

∗)

≤ d(Szn, x
∗).

Taking thelim infn→∞ of both sides, we get

c ≤ lim inf
n→∞

d(Szn, x
∗).(4.6)

From (4.4) and (4.6), we obtain thatlimn→∞ d(Szn, x
∗) = c. That is,

lim
n→∞

d(W (Sxn, Txn, βn), x∗) = c.

Thus, by Lemma 2.3, we have
lim

n→∞
d(Sxn, Txn) = 0.

Theorem 4.3. Let C be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityτ . Let S, T : C → C be mappings satisfying
condition (1.8) andF (S, T ) 6= ∅. Let I − S and I − T be demiclosed at zero and suppsoe
that {Sxn} is defined by (3.1), where{αn} and {βn} are sequences in(0, 1). Then{Sxn}
∆-converges to the common fixed point ofS andT.

Proof. Let W∆({Sxn}) := ∪A({Sun}), where the union is taken over all subsequence{Sun}
of {Sxn}. We now show thatW∆(Sxn) ⊂ F (S, T ) and thatW∆(Sxn) contains exactly one
point.
Let u ∈ W∆({Sxn}), then by Lemma 4.1, there exists a subsequence{Sun} of {Sxn} such
thatA({Sun}) = {u}. This implies from Lemma 2.1 that we can find a subsequence{Svn}
of {Sun} such that∆ − limn→∞ Svn = v, for somev ∈ C. By Lemma 4.2, we have that
limn→∞ d(Svn, T vn) = 0, which together with our hypothesis thatI − T demiclosed at zero
(that isv ∈ F (T ) ) andI − S demiclosed at zero (that isv ∈ F (T )), which follow thatv ∈
F (S, T ). Therefore,{d(Sun, v)} converges and by Lemma 2.2, we have thatv = u ∈ F (S, T ).
Hence,W∆(Sxn) ⊂ F (T ).
Next, we show thatW∆(Sxn) contains only one point. LetA({Sxn}) = {x} and {Sun}
be arbitrary subsequence of{Sxn} such thatA({Sun}) = {u}. Then by Lemma 4.1, we
have that{d(Sxn, u)} converges, sinceu ∈ F (S, T ). Thus, by Lemma 2.2, we have that
u = x ∈ F (S, T ). Hence,W∆(Sxn) = {x}. Therefore,{Sxn} 4-converges to a common
fixed point of(S, T ).
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Theorem 4.4. Let C be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityτ . Let S, T : C → C be mappings satisfying
condition (1.8) andF (S, T ) 6= ∅. Suppose that{Sxn} is defined by (3.1), where{αn} and
{βn} are sequences in(0, 1). Then{Sxn} converges strongly to a point ofF (S, T ) if and only
if lim infn→∞ d(Sxn, F (S, T )) = 0.

Proof. Suppose that{Sxn} converges to a fixed point, sayx∗ of (S, T ). Then
limn→∞ d(Sxn, x

∗) = 0, and since0 ≤ d(Sxn, F (T )) ≤ d(Sxn, x
∗), it follows that

limn→∞ d(Sxn, F (S, T )) = 0. Therefore,lim infn→∞ d(Sxn, F (S, T )) = 0.
Conversely, suppose thatlim infn→∞ d(Sxn, F (S, T )) = 0. From Lemma 4.1, we have that
limn→∞ d(Sxn, F (S, T )) exists and so, it follows thatlimn→∞ d(Sxn, F (S, T )) = 0. Suppose
that{Sxnk

} is any arbitrary subsequence of{Sxn} and{pk} a sequence inF (S, T ) such that
for all n ≥ 1,

d(Sxnk
, pk) <

1

2k
.

From (4.3), we obtain that

d(Sxn+1, pk) ≤ d(Sxnk
, pk) <

1

2k
.

Thus,

d(pk+1, pk) ≤ d(pk+1, Sxn+1) + d(Sxn+1, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

This shows that{pk} is a Cauchy sequence inF (S, T ). Also, by our hypothesis thatF (S, T ) is
closed. Thus,{pk} is a convergent sequence inF (S, T ) and say it converges toq ∈ F (S, T ).
Therefore, since

d(Sxnk
, q) ≤ d(Sxnk

, pk) + d(pk, q) → 0 asn →∞,

we havelimn→∞ d(Sxnk
, q) = 0 and so{Sxnk

} converges strongly toq ∈ F (S, T ). Since,
limn→∞ d(Sxn, q) exists, it follows that{Sxn} converges strongly toq.

Theorem 4.5. Let C be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityτ . Let S, T be mappings satisfying condition
(1.8), {Sxn} defined by (3.1) andF (S, T ) 6= ∅. Let T, S satisfy condition(A∗), then{Sxn}
converges strongly to a common fixed point ofS andT.

Proof. From Lemma 4.1, we havelimn→∞ d(Sxn, F (S, T )) exist and by Lemma 4.2, we have
limn→∞ d(Sxn, Txn) = 0. Using the fact thatf(d(Sx, F (S, T )) ≤ d(Sx, Tx) for all x ∈ C,
we have thatlimn→∞ f(d(Sxn, F (S, T ))) = 0. Sincef is nondecreasing withf(0) = 0 and
f(t) > 0 for t ∈ (0,∞), it then follows thatlimn→∞ d(Sxn, F (T )) = 0. Hence, by Theorem
4.4{Sxn} converges strongly tox∗ ∈ F (S, T ).

5. NUMERICAL EXAMPLE

In this section, we apply the newly introduced Jungck-AM iterative process to find the solution
of a quadratic equation and a Legendre equation. We also show that the new iterative process
converges faster to the solution of a given quadratic equation and the Legendre equation as
compared to Jungck-Noor and Jungck-SP and Jungck-CR.
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Example 5.1. To find the roots of a Legendre equation63
8
x5 − 35

4
x3 + 15

8
x = 0, we write it

in the formSx = Tx, where the mappingsS, T : [0, 1] → [0, 70] are define asSx = 703x
and Tx = 63x5 + 15x. It is easy to see that forx∗ = 0.5384693, we haveT (0.5384693) =
S(0.5384693) = 10.9290. We takeγn = αn = βn = 1√

5n+1
andx0 = u0 = p0 = a0 = 0.4. The

comparison table for the iterative process is shown below.
Step Jungck-AM(xn+1) Jungck-CR(an+1) Jungck-SP(pn+1) Jungck-Noor(un+1)

0 0.4 0.4 0.4 0.4
1 0.4801090 0.4737563 0.4595051 0.4327705
2 0.5085783 0.5029036 0.4837408 0.4489964
3 0.5219236 0.5175876 0.4973600 0.4596309
4 0.5289282 0.5257728 0.5061551 0.4674490
5 0.5328290 0.5305856 0.5123018 0.4735725
...

...
...

...
...

31 0.5384693 0.5384692 0.5370272 0.5178034
...

...
...

...
...

38 0.5384693 0.5384693 0.5376059 0.5213762
39 0.5384693 0.5384693 0.5376637 0.5218054
40 0.5384693 0.5384693 0.5377170 0.5222178

Comparison shows that Jungck-AM iterative process converges faster.

Example 5.2. To find the roots of a quadratic equationx2 − 10x + 9 = 0, we write it in the
form Sx = Tx, where the mappingsS, T : [1, 5] → [1, 70] are define asSx = 10x and
Tx = x2 + 9. Clearly,x∗ = 1, we haveT (1) = S(1) = 10. We takeγn = αn = βn = 1√

5n+4

andx0 = u0 = p0 = a0 = 2. The comparison table for the iterative process is shown below.
Step Jungck-AM(xn+1) Jungck-CR(an+1) Jungck-SP(pn+1) Jungck-Noor(un+1)

0 2 2 2 2
1 1.157048 1.200959 1.437948 1.733949
2 1.020748 1.032742 1.220616 1.577680
3 1.002792 1.005204 1.121943 1.471947
4 1.000391 1.000844 1.071969 1.394932
5 1.000057 1.000140 1.044604 1.336186
6 1.000008 1.000024 1.028715 1.289920
7 1.000001 1.000004 1.019059 1.252610
8 1.000000 1.000001 1.012973 1.221964
9 1.000000 1.000000 1.009019 1.196419
10 1.000000 1.000000 1.006385 1.174866

Comparison shows that Jungck-AM iterative process converges faster.

6. CONCLUSION

We have shown that our newly proposed Jungck-type iterative process is more efficient and con-
verges faster than recently introduced Jungck-type iterative processes in literature. In addition,
it is clear from Section 5 that our newly proposed Jungck-type iterative process have a very
good potential for further applications.
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