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ABSTRACT. In this paper, we introduce a new three steps iterative process called Jungck-AM
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points of Jungck-contractive type mappings and Jungck-Suzuki type mappings. In addition, we
establish some strong addconvergence results for the approximation of fixed points of Jungck-
Suzuki type mappings in the frame work of uniformly convex hyperbolic space. Furthermore,
we show that the newly proposed iterative process has a better rate of convergence compare to
the Jungck-Noor, Jungck-SP, Jungck-CR and some existing iterative processes in the literature.
Finally, stability, data dependency results for Jungck-AM iterative process is established and we
present an analytical proof and numerical examples to validate our claim.
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2 AKINDELE ADEBAYO MEBAWONDU AND OLUWATOSIN TEMITOPE MEWOMO

1. INTRODUCTION

Some of the physical problems in engineering, physics, economics and so on are usually for-
mulated into a fixed point problem: Finde X such that

(1.1) Tx =,

whereT is a nonlinear mapping (self or nonself) of an arbitrary space,)salfor the past

50 years researchers have paid a very good attention to finding an analytical solutiof to (1.1),
but this have been almost practically impossible. In view of this, iterative method has been

adopted in finding an approximate solution ffo [1.1). A good number of iterative processes

(explicit, implicit, Jungck-type and so on) have been introduced and studied by many authors,

(seel[1/2[ 11,12, 13, 14, 17,118,123) 24} [25,27,/30/ 31, 32, 33, 34] and the reference there
in). However, a good and reliable fixed point iterative process is required to posses at least the
following attributes:

(1) it should converge to a fixed point of an operator;

(2) it should ber-stable;

(3) it should be fast compare to other existing iteration in literature;

(4) it should show data dependence result.
In [15], Jungck introduced and studied an iterative process which involves the use of two map-
pings. This iterative process is very useful in the approximation of common fixed point of
these mappings. The likes of Olatinwo and Postolache [29], Sahin and Basair [37], Razani
and Begherboum [35], Khan, Kumar and Hussain [17] and so on, have introduced and stud-
ied different types of Jungck-type iterative processes in the frame work of Banach and metric
spaces.
Let X be a convex metric spac¥, an arbitrary nonempty set arfi7 : Y — X such that
T(Y) C S(Y). Singh, Bhatnagar and Mishra [38] defined the Jungck-Mann iterative process as
follows:

(1.2) St =W (Sz,, Trp, ) neN,
where{a,} is a sequence if0, 1). They introduced and studied the stability of Jungck and

Jungck-Mann iterative processes for the mappisigsnd 7" satisfying the Jungck-Osilike type
and the Jungck-contraction conditions

d(Tz,Ty) < dd(Sz,Sy), d€][0,1)
and
d(Txz,Ty) < dd(Sz,Sy) + Ld(Sz,Tx), 06 €[0,1),L >0,

respectively. Jungck and Hussain(inl[16] also used the iterative process (1.2) to approximate the
common fixed point of the mappingsandT satisfying the Jungck-contraction condition.

Olatinwo introduced and studied the Jungck-Ishikawa [25, 28] and Jungck-Noor [27] iterative
processes defined as follows:

Stpi1 = W(Szp, Tyn, ),
Sy, = W(Sz,, Tz, 3,), neN
and
Sty = W(Sup, Tv,, ),
(1.3) Sv, = W(Suy, Tw,, B,,),
Sw,, = W(Sup, Tu,,7,), neN,
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where{«,}, {7, } and{5,} are sequences if®, 1). He established some qualitative features
such as convergence and stability using a Jungck-Zamfirescu operator fof & figirsatisfy-
ing the following conditions: for alk, y € Y at least one of the following is true:

(1) d(Tz,Ty) < ad(Sz, Sy),

(2) d(Tz,Ty) < bld(Sz,Tx) + d(Sy, Ty)],

(3) d(Tz,Ty) < c[d(Sz,Ty) + d(Sy, Tz)],
wherea € [0,1],b > 0 ande < 1.
Olatinwo [25] proved stability and strong convergence results for some iterative processes using
a more general Jungck-type mapping called Jungck-contractive like mapping.

Definition 1.1. The pair of nonself mappings, 7" : Y — X is said to be Jungck-contractive
like if there existsy € [0,1) and a monotone increasing functien: [0,c0) — [0, 00) with
¢(0) = 0, and for allz, y € Y, such that

(1.4) d(Txz,Ty) < dd(Sz,Sy) + ¢(d(Sz, Tx)).
In [6], Chugh and Kumar defined the Jungck-SP iterative process as follows;

Sanrl = W(San an, Oén)a
(15) SQH = W(Srny Trn’ 6n)7
Sry, = W(Spn, Tpn,7v,), nEN,
where{w, }, {3, } and{~, } are sequences {0, 1). They proved strong convergence as well as
stability results for a pair of nonself mappings.
In [10], Hussain, Kumar and Kutbi defined the Jungck-CR iterative process as follows;
San+1 = W<Sbna Tbn7 an)a
(16) Sby, = W<Tana Tey, ﬁn)a
Sc, =W(Sa,, Ta,,,), neN,
where{a,},{3,,} and{v,} are sequences iff), 1). They proved its strong convergence to a

common fixed point of the paitS, T") using the fact thab, 7" are weakly compatible and that
Y =X.

Definition 1.2. [45] Let C' be a nonempty subset of a convex metric sp&cand7 be a self
mapping orC. ThenT is said to be Suzuki generalized nonexpansive mapping if far ale C'

1.7) %d(:p,Tx) <d(z,y) = d(Tz,Ty) < d(x,y).

Singh and Mishrd [39] introduced and studied the Jungck-Suzuki type nonexpansive mappings
more general than Suzuki generalized nonexpansive mapping introduced and studied in [45] for
a pair of mapping$s, T') satisfying the following: for alk:,y € Y,

1
(1.8) Ed(Tx, Sz) < d(Sz,Sy) = d(Tz,Ty) < d(Sx,Sy).

Clearly, if Sx = x, we obtain the Suzuki generalized nonexpansive mapping. They established
some results on coincidence and fixed point theorems of mappings satisfying corjditjon (1.8).
Furthermore, they gave examples of mappings that satisfies confitipn (1.8), but does not satisfy
condition [1.7).

In what follows, we also present an example of a pair of operéi@r that satisfy condition

(1.8), butS does not satisfy condition (1.7).
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Example 1.1.Let X =Y = [0,3] andd(z,y) = max{z,y} for all z,y € X. Clearly, (X, d)
is a metric space. Let, T : X — X be defined by

T$:{0 if ze(0,1)

= if zell,3]

and

Gy — 3z if .xG[O,l)
4—z if zell,3].

Then the pairS, T" satisfy condition[(1]8) bu$ does not satisfy conditiofi (1.7).

Proof. Clearly, 7(0) = S(0) = 0, else, we havd'z # Sz for all z € X. We consider four
cases to show that the pair of mappirtgand? satisfied conditior] (1]8).
Case 1:Whenz,y € [0,1), we have
1 1 3
§d(Sx,Ta:) = 50[(335,0) = ; < max{3z, 3y} = d(Sz, Sy)
=d(Tz,Ty) = d(0,0) = 0 < max{3z,3y} = d(Sx, Sy).
Case 2:Whenz, y € [1, 3], we have

1 4 —
7%) = 23: < max{4 — z,4 —y} = d(Sz, Sy)

1 1
- — < — —yt = .
) = max{ 97 Qy} max{4 — z,4 — y} = d(Sz, Sy)

1 1
§d(Sx, Tz) = §d(4 —x
1 1
22’ 2y
Case 3:Whenz € [0, 1) andy € [1, 3], we have

d(Tz, Ty) = d(

1 1
§d(5x,T:c) = §d(3x,0) = 3; < max{3z,4 — y} = d(Sz, Sy)

1 1
d(Tz, Ty) = d(0, 2y) 5y = max{3z,4 — y} = d(Sz, Sy)
Case 4:Wheny € [0,1) andz € [1, 3], we have
1 4—x

%d(Sz,Tx) = %d(4 —r,—) = —5 < max{4 — z,3y} = d(Sx, Sy)

2
1 1 1
d(Txz,Ty) = d(%,()) = max{%, 0} = o < max{4 — z,3y} = d(Sz, Sy).

Thus,S andT satisfy condition[(1J8). Clearly) is the unigue common fixed point 6fand7".
It is easy to see in the above example thatatisfy the generalized Suzuki nonexpansive map-
ping defined in[[45].
To show thatS does not satisfy the generalized Suzuki nonexpansive mapping defined in [45].
Letz = 0 andy = 1. Note that

1 1

50[(95,536) = §d(0,0) =0<1=max{0,1} =d(x,y)
but

d(Sz,Sy) = d(0,4 — 1) = max{0,3} = 3 > max{0,1} = d(z,y).

This complete the proof

Motivated by the above facts and the research in this direction, our aim in this work is to:

(1) introduce a new Jungck-type iterative process and study its qualitative features, such as
convergence, stability and data dependency for a Jungck-type contractive mappings;
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(2) prove that our newly introduced iterative process has a better rate of convergence and
more efficient as compared to some Jungck-type iterative processes in the literature;

(3) show some strong an-convergence results for a Jungck-type Suzuki mappings using
our newly proposed iterative process in the frame work of uniformly convex hyperbolic
spaces;

(4) apply our iterative process and some existing iterative processes in literature to solve
Legendre polynomial equation and quadratic equation.

2. PRELIMINARIES

Throughout this paper, we carry out all our study in the frame work of hyperbolic space intro-
duced by Kohlenbach [20].

Definition 2.1. A hyperbolic spacéX,d, W) is a metric spacé€X, d) together with a convex
mappinglV : X? x [0,1] — X satisfying
Q) d(u, W(z,y,a)) < ad(u,z) + (1 — a)d(u, y);
(2) d(W(z,y,a), W(z,y,0)) = |a = Bld(z, y);
(3) W((L’,y, a) = W(ya €, 1 - Cl{);
4) dW(z, z,a), W(y,w,)) < (1 —a)d(z,y) + ad(z, w);
forallw, z,y,z € X anda, 5 € [0,1].

Example 2.1.[44] Let X be a real Banach space which is equipped with ngrih Define the
function
d: X?—[0,00) by

d(z,y) = ||z —y|
as a metric onX. Then, we have thatX,d, W) is a hyperbolic space with mappind :
X2 x [0,1] — X defined byV (z,y, a) = (1 — a)x + ay.

It is well-known that Banach spaces are examples of hyperbolic spaces and some other impor-
tant examples are CAT(0) spaces, Hadamard manifords, Hilbert ball with the hyperbolic metric,
Catesian products of Hilbert balls afidtrees. The reader should please $é¢€[8, 9, 20, 36] for
more discussion and examples of hyperbolic spaces.

Definition 2.2. [44] Let X be a hyperbolic space with a mappiig: X2 x [0,1] — X.
(i) A nonempty subset’ of X is said to be convex iV (z,y,a) € C forall z,y € C' and

a € [0,1].

(i) X is said to be uniformly convex if for any > 0 ande € (0, 2|, there exists @ € (0, 1]
such that for alk,y,z € X

AWy, 5),2) < (1= )

providedd(z, z) < r,d(y, z) < randd(z,y) > er.

(i) Amap 7 : (0,00) x (0,2] — (0, 1] which provides such &= r(r, ¢) for a givenr > 0
ande € (0, 2] is known as a modulus of uniform convexity &f The mapping; is said
to be monotone, if it decreases witlffor a fixede).

Definition 2.3. Let C' be a nonempty subset of a metric spateand {x, } be any bounded
sequence it'. Forz € X, letr(-, {z,}) : X — [0, 00) be a continuous functional defined by

r(z,{x,}) = limsupd(x,, ).

n—oo

The asymptotic radius(C, {x, }) of {z,,} with respect ta”' is given by
r(C,{z,}) = inf{r(z,{z,}) : z € C}.
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A pointx € C'is said to be an asymptotic center of the sequgnge with respect ta” C X
if
r(z,{x,}) = nf{r(y,{z,}) : y € C}.

The set of all asymptotic centers &f,,} with respect toC' is denoted byA(C, {z,}). If the
asymptotic radius and the asymptotic center are taken with resp&ctthen we simply denote
them byr({x,}) andA({z,}) respectively.

It is well-known that in uniformly convex Banach spaces and CAT(0) spaces, bounded se-
guences have unique asymptotic center with respect to closed convex subsets.

Definition 2.4. [19]. A sequence{z,} in X is said toA-converge tor € X, if x is the
unigue asymptotic center ¢f:,,, } for every subsequende:,..} of {z,}. In this case, we write
A-lim x,, = x.

Remark 2.1. [21]. We note thatA\-convergence coincides with the usually weak convergence
known in Banach spaces with the usual Opial property.

Lemma 2.1.[22] Let X be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexity. Then every bounded sequeras } in X has a unique asymptotic
center with respect to any nonempty closed convex subeéfX .

Lemma 2.2. [5] Let X be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexity and let{z,} be a bounded sequence M with A({z,}) = {z}.
Suppos{z,, } is any subsequence of,, } with A({x,, }) = {x1} and{d(z,,x)} converges,
thenz = z;.

Lemma 2.3.[18] Let X be a complete uniformly convex hyperbolic space with monotone mod-
ulus of uniform convexity. Letz* € X and{¢, } be a sequence ija, b] for someu, b € (0, 1). If

{z,} and{y,} are sequences iX such thatlim sup,, . d(x,,z*) < ¢, limsup,,_, . d(y,, z*)

< candlim,_ .. d(W(xy, yn, tn), z*) = ¢, for somec > 0. Thenlim,, ., d(z,, y,) = 0.

Definition 2.5. [16] Let X be a nonempty setargi 7 : X — X be any two mappings.

(1) A pointz € X is called:

(a) coincidence point of andT' if Sx = Tz,

(b) common fixed point of andT' if x = Sz = Tx.
(2) If y = Sx = Tx for somex € X, theny is called the point of coincidence 6fandT.
(3) Apair(S,T) is said to be:

(@) commuting ifl’'Sz = STz forall x € X,

(b) weakly compatible if they commute at their coincidence points, thatlis =

TSz, wheneverSx = Tx.

The set of coincidence points 6fand7" is denoted byC'(S,7") and the set of common fixed
point of S andT" is denoted by (S, T').

Definition 2.6. Let C' be a subset of a normed spake A mappingT : C — (' is said to
satisfy condition(A), if there exists a nondecreasing functign [0,00) — [0, c0) such that
f(0)=0andf(t) >0Vt e (0,00) and that|z — Tz|| > f(d(z, F(T))) for all x € C, where
d(xz, F(T)) denotes distance fromto F'(T').

Definition 2.7. Let C be a subset of a normed spa¥eThe mappings,T : C' — C'is said to
satisfy condition(A*), if there exists a nondecreasing functipn [0, co) — [0, c0) such that
f(0) =0andf(t) >0Vte (0,00)andthat|Sx — T'z|| > f(d(Sx, F(S,T))) forall z € C,
whered(Sx, F'(S,T)) denotes distance froste to (S, T').
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Definition 2.8. [4] Let {a,, } and{b,,} be two sequences of real numbers convergingaadb

respectively. [flim,, . 'f;::g" = 0, then{a,,} converges faster thafib, }.

Definition 2.9 ([17]). Let (S,T),(S,T) : Y — X be nonself-mapping pairs on an arbitrary set
Y such thatf'(Y) € S(Y) andT(Y) C S(Y). We say that the paifS, T) is an approximate
mapping pair of S, T') if for all = € Y and for fixede; > 0 ande; > 0, we have

d(Tz,Tz) < €, d(Sz,S7r) < €.

Definition 2.10. [38] Let S,T : Y — X be nonself-mapping for an arbitrary sSétsuch that
T(Y) C S(Y) andz* a point of coincidence of andT. Let {Sz,} C X, be sequence gener-
ated by an iterative proceduse:,, .1 = f(7, x,). Suppose€ Sz, } converging tac*, {Sy,} C X
an arbitrary sequence and sgt= d(Sy., f(T,v,)), V n € N. Then, the iterative process is
said to be(S, T')— stable or stable if and only ifm,, ., ¢, = 0 implieslim,, .., Sy, = x*.

Definition 2.11. [42] Let (S, T') : Y — X be nonself-mapping pairs on an arbitrary ¥etuch
that7'(Y') C S(Y) Two sequences sgyvz,,} C X and{Sy,} C X are said to be equivalence
if the lim,, .. d(Sz,, Sy,) = 0.

Definition 2.12. [42] Let S, T be two mappings such thdt(Y) € S(Y) andz* a point of
coincidence ofS andT. Let {Sz,} C X be sequence generated by an iterative procedure
Stn1 = f(T,z,). Suppose{Sz,} converging toz*. If for any equivalent sequencgSz,, }
and{Sy,}

then the iteration process is weak- stable with respect fS, 7).
Lemma 2.4. [43] Let {n,,} and {7, } be nonnegative real sequences satisfying the following
inequality:
Mna1 < (1 - ’yn)nn + Tn,
wherey, € (0,1) foralln € N, 3777 ; v, = oo andlim,.oc 2> = 0, thenlim,, . n,, = 0.
Lemma 2.5. [41] Let {n,,} and {7,,} be nonnegative real sequences satisfying the following
inequality:
M1 < (1= 70) + T,
wherey, € (0,1) foralln € N, ">, = oo, then

0 <limsupn, < limsup7,.

n—oo n—oo

3. RATE OF CONVERGENCE, STABILITY AND DATA DEPENDENCY

In this section, we introduce and study our newly proposed iterative procesx heta uni-
formly convex hyperbolic spacé&; an arbitrary setand, 7" : Y — X be mappings satisfying
condition [1.4) such that'(Y") C S(Y'). The sequencéSz,, } is define recursively as follows:

anJrl = W(’Syn;TynaOén)a
(3.1) Sy, = W(Tz,,0,0),
Szy = W(Sl'anxmﬁn)a n €N,

where{«,, } and{j, } are sequences i, 1).
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Theorem 3.1. Let X be an hyperbolic space andd 7' : Y — X be nonself mappings on an
arbitrary setY” satisfying [(1.4) such thaf'(Y) C S(Y) and S(Y') is a complete subspace of
X. Letz € C(S,T) such thatSz = Tz = x* (say) and supposg Sz, } is the iterative process
defined by[(3]1) witfy~" , a,, = oco. Then forz, € Y, the iterative proces§Sxz, } converges
strongly toz*. In addition,z* is the unique common fixed point of the pgit 7") provided that
X =Y andS, T are weakly compatible.

Proof. Using [3.1) and[(1]4), we have
d(Szp,x*) = W(d(Sx,, Tz, B, ),x*)

< (1=B)d(S2p, %) + B,d(Txn, z7)
= (1—8,)d(Sz,, z*) + ﬁ d(Tz,Tx,)
(3.2) < (1—B,)d(Szp, x*) + 3,0d(Sz, Sx,) + B, 0(d(Sz,Tz))
= (1—8,)d(Sz,, z*) + 8,0d(Sx,, ¥)
= (1= (1-0)8,)d(Sz,, ")
< d(Sxy,x").

Using (3.1),[(3.R) and (1}4), we obtain

d(Syn, ")

Il
o,
~

w

xS

o
o
:_/

&
*

(3.3)

IAIA A
SN S
A
N
N
G
H*

Using (3.1),[(3.B) and (1}4), we get

d(Stn1,27) = d(W (Syn, Tyn, o), %)
( d(Syn, ) + and(Tyn, x7)
= (1 — ay,)d(Syn, ") + 0, d(T'2, Tx,,)
(3.4) < (1 — ay)d(Syn, ") + @, 0d(Sz, Syy)
= (1 — ay,)d(SYn, ") + 0, 0d(SYn, ")

= (1= (1 = d)an)d(Syn, z7)

< (1= (1= d)ay)d(Sxp, z¥).

From (3.4), we have

<60(1— (1 —0)ay)d(Sx,,x")

d(Szp, ") <6(1 — (1 —6)apy—1)d(Szp_1,x¥)

(3.5) d(Szy,2") < 6(1 — (1 — )ag)d(Szo, z¥).
From [3.5), we have that

n

(3.6) d(Sxpi1,27) < d(Swo,x*)8" T T (1= (1= 8)vm).

m=0
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Since{a,, }isin (0,1) andd in [0,1), we have(l — (1 —6)a,) € (0, 1). We recall the inequality
1—z <eforallz € [0,1], thus from [3.5), we have

5n+1d<Sl’0, *)
e(1=0) > —gam

Taking the limit of both sides of the above inequalities, we Hawe_. ., d(Sz,,z*) = 0.

In what follows, we now show that* is the unique common fixed point ¢f and 7', when
Y = X andS, T are weakly compatible.

Suppose there exists another point of coincideyicef the pair(.S,T). It follows that we can
find sayz* € C(S,T) such thatSz* = T'z* = y*. By definition, we obtain

dz*,y") =d(Tz,Tz") < 6d(Sz,52") + ¢(d(Sz,Tz)) = dd(Sz,Sz") < d(z*,y").

Clearly, we have thaf(z*, y*) = d(z*, y*), if not we get a contradiction(z*, y*) < d(z*, y*).
Hence, we have that* = y*. Since,S andT are weakly compatible and = Tz = Sz, then
Tax* =TTz =TSz = STz = Sz*. Thus,Tz* is a point of coincidence o$ andT’ the point
of coincidence is unique, we then have= T'x*. Hence,I'xz* = Sx* = z* and therefore:* is
unigue common fixed point of S and .

d(an-‘rl) l'*) S

Theorem 3.2. Let X be an hyperbolic space angl 7" : Y — X be nonself mappings on an
arbitrary setY” satisfying [(1.4) such thaf'(Y) C S(Y) and S(Y') is a complete subspace of
X. Letz € C(S,T) such thatSz = Tz = z* (say) and suppos€ Su,},{Sp,} and{Sa,}
are the iterative processes defined py |(1.8),](1.5) (1.6) respectivelpWith o, = oo
and> | «a,f, = co. Then foruy, py anda, in Y, the iterative processesSu, }, {Sp,} and
{Sa,} converges strongly ta@*. In addition, z* is the unique common fixed point of the pair
(S,T) provided thatX = Y and.S, T are weakly compatible.

Proof. The proof follows the same line of argument as in ThedrenB. 1.

Theorem 3.3.Let X be an hyperbolic space anel 7" : Y — X be nonself mappings on an
arbitrary setY” satisfying [(1.4) such thaf'(Y) C S(Y)) and S(Y') is a complete subspace of
X. Letz € C(S,T) such thatSz = Tz = x*(say), and supposg Sz, } is the iterative process
defined byl) withh > o, = oo which converges strongly te*. Then, forz, € Y, the
iterative procesg Sz, } is (S, T)- stable.

Proof. Let {Sp,} C X be an arbitrary sequence and suppose that
€n = d(Spns1, W(Sqn, Tqn, v,)), WhereSq, = W(Tr,,0,0) andSr, = W(Spn, Tpn, 3,,)-
Letlim, .« €, = 0, using condition[(1}4) and triangle inequality , we have
d<Spn+17 ZL’*) S d<Spn+17 W(SQm TQm an)) + d(W(SQm TQm Oén), l‘*)
<e€p+ (1 —an)d(Sqn, x*) + and(Tq,, x¥)
<ént+ (1= 0a,)d(Sqn, 2°) + a,0d(Sgn, =7)

(
en + (1= (1 = d)an)d(Sqn, z7)
(3.7) =€, + (1 —(1—=908)a,)d(W(Tr,,0,0),z%)

<e,+ (1 —(1=9)a,)d(Tr,,x")

<eée,+ (1 —(1—=0)a,)dd(Sry, x¥)

=€, + (1 — (1 =8)a,)dd(W(Spn, Tpn, B,,), ")
<ent+ (1= (1=0)an)d[(1 = (1—=0)5,)d(Spy,z")]
<ée,+ (11— (1 =9)a,)d(Sp,, x").
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Since{a,, }isin (0,1) anddisin [0, 1), we have(l — (1 —d)a,,) € (0,1). Hence, using Lemma
[2.4, we obtaifim,, ..., Sp, = z*.
Conversely, letim,,_.., Sp, = z*. Then using triangle inequality and conditipn (1.4), we obtain

= d(Spnt1, W(San, Tqn, o))
S d(Spn+1,2") + AW (Sqn, T'qn, ), 27)
< d(spn—&-l, *) ( (1 - 5)an)d(5pm J}*)
< d(Sppt1,2") + (1 = (1 = 6)a)d(Spn, 7).

Thus,lim,, ., €, = 0. Then, the iterative schen{&z,, } is (S, T')- stable.n

Theorem 3.4.Let X be an hyperbolic space angl 7" : Y — X be nonself mappings on an
arbitrary setY” satisfying [(1.4) such thaf'(Y) C S(Y) and S(Y') is a complete subspace of
X. Letz € C(S,T) such thatSz = Tz = z*(say), and supposé Sz, } is the iterative scheme
defined by.l) WltrE _, a,, = oo Which converges strongly to*. Then, forz, € Y, the
iterative procesg Sz, } is weakw?-stable with respect t6S, T').

Proof. Let {Sp,} C X be an equivalent sequence ffz,} and suppose that thaj, =
d(Spn + 1, W(Sq,, Tq,, ,)), whereSq,, = W(Tr,,0,0) andSr, = W(Sp,, Tpn, 3,). Let
lim, . €, = 0, using condition[(1}4) and triangle inequality, we have
d(Spni1, ")
<d(Spny1, STny1) + d(STpi1, ")
<d(Spn+1, W(San, Tgn, o)) + d(W (Sqn, T, atn ), W(SYn, Ty, atn))
+d(Szpiq,x")
<éen + (1 — a)d(Sqn, Syn) + and(Tyn, T'qn) + d(STpi1, ™)
<én + (1 — a,)d(SYn, Sqn) + ndd(Syn, S¢n) + and(d(Syn, Tyn))
+d(Szpiq,x")
=€ + (1= (1 = 6)on)d(Syn, San) + and(d(Syn, Tyn)) + d(STni1, 77)
<én,+ (1= (1 =96)a,)d(W(T2,,0,0), W(Tr,,0,0)) + and(d(Syn, Tyn))
+ d(Sxpiq,x")
<én+ (1 — (1= 90)a,)dd(Szn, Tz,) + (1 — (1 — 0)ay)p(d(Sz,, Tz))
+ 0 d(d(SYn, Tyn)) + d(Sps1,27)
=en + (1 = (1 = 6)0n)0d(W(Sn, Twn, 8,), W(Spn, Tpn, 5,))
(3.8) + (1 —(1—=0)an)0d(d(Szn, Tzp)) + and(d(Syn, Tyn)) + d(S2ni1, %)
<en + (1= (1= 0)an)d[(1 = (1 = 6)B,)d(Szn, Spn) + B,0(d(S2n, Tws))]
+ (1= (1 =0)an)0e(d(Szn, Tz)) + and(d(SYn, Tyn)) + d(Sxpyi1, ")
—(1 = (1= §)a)3(1 = (1 = 8)8,)d(Sxn, Spa) + (1 = (1 = 6)a)38,$(d(S 0, T,))
+ (1= (1= 0)an)0(d(Szn, Tz)) + and(d(SYn, Tyn)) + d(Sxpi1, ") + €.
Since{Sx,} and{Sp,} are equivalent sequences, 1&@,, .., d(Sx,, Sp,) = 0. Also, since
{Sx,} converges ta*, clearly,{Sx,1} converges ta:*. In addition, observe that
d(Szp, Tx,) < d(Sty, 2") + d(Tx,,x")
< (1+0)d(Szy,z*) -0 as n — oc.
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Using similar argument, it is easy to obtdim,, ... d(Sz,,Tz,) = lim, ., d(Sy,, Ty,) = 0.
Clearly, we have thaim,, ... d(Sy,, Ty,) = ¢(lim,_.. d(Sy,, Ty,)) = 0, which also holds
for others.

Thuslim,, .., d(Spns1,2*) = 0, consequentifim,, .., d(Sp,,z*) = 0. Then, the iterative
scheme( Sz, } is weakw?-stable with respect t0S, T'). i

Theorem 3.5. Let X be an hyperbolic space anel 7" : Y — X be nonself operators on an
arbitrary setY” satisfying [(1.4) such thaT(Y) C S(Y)and S(Y) is a complete subspace of
X. Letz* € F(S,T) thatisSz* = Ta* = x*, and forzg = ug = py = ag € Y, the sequences

{Sz,}, {Sun},{Sa,} and{Sp,} defined by.l).B)- | (1.5) and (]1.6) such that «, <
LafB <a,fB, <1lwithe,5>0foralln e Nand) >~ o, => 2 B, =Y 0 o, = 00.
Then the iterative procesE@ 1) converges faster tthan [1.3), [(1.p) and (1]6).

Proof. From (3.6) in Theorern 3|1, and using our assumption, we have that

n

d(Sxy41, %) < d(Sxo, 2*)6"H! H (1= (1=9)am)

m=0
= d(Szo, )01 — (1 — 6)ay," ™
< d(Swg, v*)0" 1 — (1 — &)™t

Using similar argument as in Theor¢m|3.1 and our assumption, we have the Jungck-Noor itera-
tion (1.3) takes the form

d(Stupi1, %) < d(Sug, z*)[1 — (1 — 8)a]* .

Using similar argument as in Theor¢m|3.1 and our assumption, we have the Jungck-SP iteration
(1.5) takes the form

d(Spns1, %) < d(Spo, z*)[1 — (1 — §)a]™™.

Using similar argument as in Theoré¢m|3.1 and our assumption, we have the Jungck-CR iteration
(1.8) takes the form

d(Sany1, ") < d(Sag, z*)6" 1 — (1 — §)af)™ ™.

Now, let
an = d(Sxg, z*)0" 1 — (1 — §)a]™ ™!
b, = d(Sug, z*)[1 — (1 — 8)a]™ ™!
cn = d(Spo, 2*)[1 — (1 — 6)a]" !
d, = d(Sag, z*)6" 1 — (1 — §)ap]"
and
an _ d(Sxo,x*)8" 1 = (1 = §)a]H!
P, = —= —
T A - (G- dap 8T
n+1 n+1
\I]n:an_d(S:c ,x®)0" 1 — (1 (5;04] s as n—0,

¢ d(Spo,a*)[1 — (1 — &)t
an  d(Sxg,x*)6" 1 — (1 — )]
b d(Sag,x*)0" L — (1 — 0)af]"!
It is easy to see that

r, = — o0 as n —0.

1-—(1-90)

= (=3 ~ "
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Thus, the proof is completq.

One of the interesting area of research in fixed point theory is data dependence. Some times,
researchers find it challenging or maybe impossible to find the fixed point of some nonlinear
mappings. When faced with such situations, instead of trying to find the fixed point of such
mappings, we look for another nonlinear mapping which is an approximation of the nonlinear
mapping we intend to find the fixed point, more so the fixed point of the approximating nonlinear
mapping must be known. Having such an approximate nonlinear mapping, we can find the
approximate location of the fixed point of the nonlinear mapping that is proofing difficult to
get. For this reason the concept of data dependency is of great importance in both theoretical
and application point of view. For further details about data dependency, the reader should (see
Brinde [3], Espinola and Petruseél [7], Olatinwo [26] Soltuz![40], Soltuz and Grasan [41] and
the references there in).

Theorem 3.6.Let X be an hyperbolic space ai@#, 7)), (S,T) : Y — X be nonself-mappings
on an arbitrary setY” with (5, 7') satisfying cond|t|0n4) such thal(7'z, Tx) < ¢ and
d(Sz,Sx) < €. Supposd(Y) C S(Y),T(Y) C S(Y ) whereS(Y) and S(Y) are complete
subspaces ok with Sz = Tz = * and Sz = Tz = 7*. Let{Sz,} be the iterative sequence
generated b 1) and define an iterative procgss, } as follows

ggn = W<§fn7 Tfm 671)7
(3.9) Sy, = W(Tz,,0,0),

gfn-i—l = W(gyngna an) n Z 17
where{a, } and{s,} are sequences ifd,1) and} < «, forall n € N such that}_>> o, =
. Supposq Sz, } and{Sz, } converges ta* andz* respectively. Then, we have

5(ea + €1)

d *—*<
(.T,LU)_ 1_5

Proof. Using (3.1) and[(3]9), we have
d(Sn+17 gfn—&—l) - d(W(Syna T?/m an) W(gynv Tyna an))

< (1= a)d(SYn, SY,) + nd(Ty,, T7,,)
< (1= )d(Syn, SY,) + @nd(Tyn, T,) + cnd(T7,, TF,,)

(3.10) < (1 = an)d(Syn, ST,,) + ndd(Syn, SY,,) + nd(d(Syn, Tyn)) + nén
< (1 — ay)d(Syn, ST,)) + andd(Syn, ST,,) + a,éd(S7,,, ST,

+ and(d(Syn, Tyn)) + anen(l = (1 = 0)n)d(Syn, ST,,) + nd(d(Syn, Tyn))
+ a6, + e,
Using (3.1) and[(319), we have
d(Syn, ST,) = d(Tz,, TZ,)
<d(Tz,,Tz,) +d(Tz,,TZz,)
< 0d(Szn, SZp) + ¢(d(Szn, T2n)) + €
< 0d(S2p, S7Zn) + 0d(SZ,, SZn) + d(d(Szn, T2,)) + €1
(3.11) < 0d(S2, SZn) + &(d(Szn, T2,)) + Sea + €.
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Using (3.1) and[(3]9), we obtain
d(Sz,, Szn) = AW (S, T2y, B,), W (ST, TT0, 3,))

< (1= B,)d(Szn, STp) + B, d(Txp, TT)
< (1-8,)d(Sz,, ST,) + B,d(Tx,, TTy) + B,d(TT,, TZ,)

(3.12) < (1 - B,)d(Szy, STy,) + 3,0d(Sx,, STp) + B,0(d(Sx,, Txy)) + B,€1
< (1-8,)d(Sz,, ST,) + B,0d(Sxy, STy) + B3,d(STp, STy)

+ B,6(d(Sxp, Txy)) + 6,61
< (1—(1-10)8,)d(Szpn, STp) + ¢(d(Sx,, Txy)) + €1 + €.
Substituting[(3.12) intd (3.11) and thén (3.11) irjto (8.10), we obtain

d(STp i1, STny1) < 6(1 — (1 = 8)ay)d(Sx,, ST,) + (1 — (1 — 6)ay,)0p(d(Sx,, Txy))

+ (1= (1= 0)an)d(d(S2n, T2n)) + and([[Syn — Tynll)
+ (1= (1= 8)an)d%e
)
(

d
+ (1= (1 =9)ay) der + (1 — (1 — 0)ay,)der
+ (1= (1 —=0)ay)er + aydes + aye.
Sinces, 6% < 1, {a,} in (0,1) and our assumption thgt< «,, we have
l1—0a, <a,
1—a, +da, <1—a,+a, <a,+a, =2q,.
Therefore, we have that
d(STpi1, STny1)
<(1— (1 = 68)a,)d(Sxp, STh) + 20,0(d( Sy, T)) + 200,0(d(S 20, T2y))
+a, d(d(SYn, Tyn)) + Davy (€2 + €1)
=(1 — (1 = 6)a,)d(Sxy, STy)
20(d(Szn, Tz2,)) + 2¢(d(Sxp, Txy)) + ¢(d(Syn, Tyn)) + 5(e2 + €1)
1-9 '
Letn, = d(Szn, ST0), 7, = (1—8)a, andr, = 2¢(d(Szn,Tzn))+2¢(d(Szn, Tmn))Jr(b(d(Syn Tyn))+5(e2ter)
From Theorel, we have that,, .., d(Sz,,z*) = 0. Also, observe that
d(Szy, Tr,) < d(Sxp, ") +d(Tx", Tx,)
<(1+46)d(Szy,z") -0 as n — oo.

+(1 —0)ay,

Using similar approach, we have that,, ., d(Sy,, Ty,) = lim,_. d(Sz,,Tz,) = 0.
More so, we have that

Tim ¢(d(Syn, Tyn)) = ¢(lim d(Syn, Tyn)) = 0.
The same argument holds for others. Using Lernmja 2.5, we have that
(3.13) 0 < limsup d(Sz,, ST,) < limsup M

Using our hypothesis théitn,, ... SZ, = z*, (3.13) and from Theore@.l, we conclude that

5(62 + 61)

d *—*<
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Hence, the proof is completg.

4. STRONG AND A-CONVERGENCE THEOREMS

In this section, we establish some strong axatonvergence results for mappings satisfying
condition [I1.8) using the iterative proce$s [3.1). In achieving this results, we suppose that
X =Y andS, T are weakly compatible.

Lemma 4.1. Let C' be a nonempty closed and convex subset of an Hyperbolic spatet
S,T : C — C be mappings satisfying (1.8) add S, T) # 0. Suppose tha{Sz,} is defined
by (3.1), where{a,. }, {3, } are sequences ifp, 1), then thelim,, ., d(Sx,,z*) exists for all
z* e F(S,T).

Proof. Letz* € F(S,T), thatisSz* = Tx* = z*, we have
1 1
§d(Sx*,Tx*) = éd(x*,x*) < d(Sz*,Sz,),

1 1

gd(Sx*,Tx*) = Ed(:v*,x*) < d(Sz*, Sy,)
and

1 1

Ed(Sx*,Tx*) = éd(a:*,x*) < d(Sx*,Szy).

Which now implies that

and

Using (3.1), we have

(4.1)

Using (3.1) and[(4]1), we have
d(Syn, ")

I
QU
=
~
N
3
=
@)
~—
&
*

(4.2)

VAR VAR VAN
S ST

Using (3.1) and[(4]2), we have

<

< (1= an)d(Syn, &%) + and(Syn, )
(4.3) = d(Syn, z")

< d(Sx,,x")
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This shows tha{d(Sx,,z*)} is decreasing and bounded for afl € F'(S,T). Thus,
lim,, . d(Sx,,z*) exists.n

Lemma 4.2. Let C be a nonempty closed and convex subset of an hyperbolic spatet
S,T : C — C be mappings satisfying (1.8) add( S, T') # 0. Suppose tha{Sx,} is defined
by (3.1), wherg«,, } and {3, } are sequences if0), 1), thenlim,, ... d(Sz,, Txz,) = 0.

Proof. Since F(S,T) # 0, let z* € F(S,T). We have shown in Lemnja 4.1 théfz,} is
bounded andim,, .., d(Sz,,z*) exists. Suppose théin,, .., d(Sz,,z*) = c. If we take c =0,
then we are done. Thus, we consider the case wheré.

From [4.1), we havé(Sz,, z*) < d(Sz,, z*), it then follows that

(4.4) limsup d(Sz,,z") < c.

n—oo

Also, we havel(T'z,,, z*) < d(Sx,,z*), it then follows that
(4.5) limsup d(Tx,, z*) < c.

Using (4.2) and[(4]3), we have

Taking thelim inf,, .., of both sides, we get
(4.6) ¢ <liminfd(Sz,,z").

n—oo

From (4.4) and[(4]6), we obtain thé,, .., d(Sz,,z*) = c. Thatis,
lim d(W(Sx,, Tz, 5,),x%) = c.

Thus, by Lemma 2|3, we have
lim d(Sz,,Tz,) = 0.

|

Theorem 4.3. Let C' be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityLet S, T : C' — C' be mappings satisfying
condition [1.8) andF'(S,T) # 0. LetI — S andI — T be demiclosed at zero and suppsoe
that {Sx,} is defined by[(3]1), wheréx,} and {3,} are sequences if0,1). Then{Sz,}
A-converges to the common fixed pointScdind 7.

Proof. Let Wa({Sxz,}) := UA({Su,}), where the union is taken over all subsequefite, }
of {Sz,}. We now show that¥Va(Sz,) C F(S,T) and thatiVa(Sz,) contains exactly one
point.

Letu € Wa({Sz,}), then by Lemma 4]1, there exists a subsequeseg,} of {Sz,} such
that A({Sw,}) = {u}. This implies from Lemma 2|1 that we can find a subsequdisag }
of {Su,} such thatA — lim,_.., Sv,, = v, for somev € C. By Lemma[ 4.2, we have that
lim,, . d(Sv,, Tv,) = 0, which together with our hypothesis that- 7" demiclosed at zero
(thatisv € F(T) ) andI — S demiclosed at zero (that is€ F'(T")), which follow thatv €
F(S,T). Therefore {d(Su,,v)} converges and by Lemra .2, we have thatu € F(S,T).
Hence Wa(Sz,) C F(T).

Next, we show thal¥/A(Sz,) contains only one point. Let({Sxz,}) = {z} and{Su,}
be arbitrary subsequence ¢fz,} such thatA({Sw,}) = {u}. Then by Lemma 4|1, we
have that{d(Sz,,u)} converges, since € F(S,T). Thus, by Lemma 2|2, we have that
u =2z € F(S,T). Hence,Wxa(Sxz,) = {z}. Therefore{Sz,} A-converges to a common
fixed point of (S, 7). n
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Theorem 4.4. Let C' be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityLet S, 7T : C' — C' be mappings satisfying
condition [1.8) andF(S,T) # 0. Suppose tha{Sz,} is defined by[(3]1), whergw,} and

{p,} are sequences if0, 1). Then{Sx, } converges strongly to a point &f(S, T') if and only

if liminf,, . d(Sz,, F(S,T)) = 0.

Proof. Suppose thafSz, } converges to a fixed point, say of (S,7"). Then
lim,, o d(Sx,, x*) = 0, and sincé < d(Sz,, F(T)) < d(Sz,,z*), it follows that
lim,, .o d(Sx,, F(S,T)) = 0. Thereforeliminf,,_.., d(Sz,, F(S,T)) = 0.
Conversely, suppose thht inf,,_.. d(Sz,, F(S,T)) = 0. From Lemmd 4]1, we have that
lim,, o d(Sx,, F'(S,T)) exists and so, it follows thadtm,, .., d(Sz,, F(S,T)) = 0. Suppose
that{Sz,, } is any arbitrary subsequence fz,,} and{p.} a sequence i#'(S,T) such that
foralln > 1,
1

d(Swp,, pr) < 5

From (4.3), we obtain that

1
d(sanrlapk’) S d(Sl'nkapk) <

2_k.
Thus,
d(pr+1, k) < d(Prt1, STns1) + d(STrt1, Pr)
1 1
< 9k+1 + ok
1
< o

This shows thafp, } is a Cauchy sequence (.S, T'). Also, by our hypothesis thdt(S,T") is
closed. Thus{p,} is a convergent sequence f{S,T") and say it converges ipc F(S,T).
Therefore, since

d(ank7 Q) S d(ank7pk) + d(pk’ Q) — 0asn — 00,

we havelim,,_,, d(Sz,,,q) = 0 and so{Sz,, } converges strongly tg € F(S,T). Since,
lim,, ., d(Sx,, q) exists, it follows thaf Sz, } converges strongly tg. n

Theorem 4.5. Let C' be a nonempty closed and convex subset of a complete hyperbolic space
X, with monotone modulus of uniform convexityLet S, 7" be mappings satisfying condition
(1.8), {Sx,} defined by[(3]1) and’(S,T) # 0. LetT, S satisfy conditionA*), then{Sx, }
converges strongly to a common fixed pointand 7.

Proof. From Lemm4d 41, we havén,, .., d(Sz,,, F(S,T)) exist and by Lemmpa 412, we have
lim,, .o d(Sx,, Tz,) = 0. Using the fact thaff (d(Sx, F(S,T)) < d(Sz,Tz) forall x € C,
we have thatim,, .., f(d(Sx,, F(S,T))) = 0. Sincef is nondecreasing witlf(0) = 0 and
f(t) > 0fort € (0,00), it then follows thatim,, ., d(Sz,, F(T)) = 0. Hence, by Theorem
[4.4{Sx,} converges strongly to* € F'(S,T). 1

5. NUMERICAL EXAMPLE

In this section, we apply the newly introduced Jungck-AM iterative process to find the solution
of a quadratic equation and a Legendre equation. We also show that the new iterative process
converges faster to the solution of a given quadratic equation and the Legendre equation as
compared to Jungck-Noor and Jungck-SP and Jungck-CR.
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Example 5.1. To find the roots of a Legendre equatigfu® — 222° + 2z = 0, we write it

in the formSz = Tz, where the mapping$,T : [0,1] — [0,70] are define asSz = 70%z
andTx = 63x° + 15z. It is easy to see that far* = 0.5384693, we havel'(0.5384693) =

$(0.5384693) = 10.9290. We takey, = a,, = 3, = ——= anda = uy = po = ap = 0.4. The

comparison table for the iterative process is shown below.

Step| Jungck-AM(z,,.1) | Jungck-CRa,,+1) | Jungck-SRp,.1) | Jungck-Noot(w,, 1)
0 0.4 0.4 0.4 0.4
1 0.4801090 0.4737563 0.4595051 0.4327705
2 0.5085783 0.5029036 0.4837408 0.4489964
3 0.5219236 0.5175876 0.4973600 0.4596309
4 0.5289282 0.5257728 0.5061551 0.4674490
5 0.5328290 0.5305856 0.5123018 0.4735725
31 0.5384693 0.5384692 0.5370272 0.5178034
38 0.5384693 0.5384693 0.5376059 0.5213762
39 0.5384693 0.5384693 0.5376637 0.5218054
40 0.5384693 0.5384693 0.5377170 0.5222178

Comparison shows that Jungck-AM iterative process converges faster.

Example 5.2. To find the roots of a quadratic equatioi — 10z + 9 = 0, we write it in the
form Sz = Tz, where the mappings,7" : [1,5] — [1,70] are define asSz = 10z and
Tz = 2° + 9. Clearly,z* = 1, we havel'(1) = S(1) = 10. We takey,, = a,, = 3, = ———

andz, = uy = pg = agp = 2. The comparison table for the iterative process is shown below.

Von+4

Step| Jungck-AM(z,,+1) | Jungck-CRa,,+1) | Jungck-SRp,, 1) | Jungck-Noor(w,, . 1)

0 2 2 2 2

1 1.157048 1.200959 1.437948 1.733949
2 1.020748 1.032742 1.220616 1.577680
3 1.002792 1.005204 1.121943 1.471947
4 1.000391 1.000844 1.071969 1.394932
5 1.000057 1.000140 1.044604 1.336186
6 1.000008 1.000024 1.028715 1.289920
7 1.000001 1.000004 1.019059 1.252610
8 1.000000 1.000001 1.012973 1.221964
9 1.000000 1.000000 1.009019 1.196419
10 1.000000 1.000000 1.006385 1.174866

Comparison shows that Jungck-AM iterative process converges faster.

6. CONCLUSION

We have shown that our newly proposed Jungck-type iterative process is more efficient and con-
verges faster than recently introduced Jungck-type iterative processes in literature. In addition,
it is clear from Sectiof]5 that our newly proposed Jungck-type iterative process have a very
good potential for further applications.

REFERENCES

[1] H. A. ABASS, F. U. OGBUISI and O. T. MEWOMO, Common solution of split equilibrium prob-
lem and fixed point problem with no prior knowledge of operator nd?alitehn. Univ. Bucharest
Sci. Bull. Ser.A Appl. Math. Phy$80(2018), No. 1, pp. 175-190.

AJMAA Vol. 16, No. 1, Art. 15, pp. 1-20, 2019 AIJMAA


http://ajmaa.org

18

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

AKINDELE ADEBAYO MEBAWONDU AND OLUWATOSIN TEMITOPE MEWOMO

K.O. AREMU, C. IZUCHUKWU, G. C. UGWUNNADI, O. T. MEWOMO, On the proximal point
algorithm and demimetric mappings in CAT(0) spad2smonstr. Math.51 (2018), pp. 277-294.

V. BERINDE, On the approximation of fixed points of weak contractive mappi@gspathian J.
Math., 19 (2003), No.1, pp. 7-22.

V. BERINDE, Picard iteration converges faster than Mann iteration for a class of quasicontractive
operatorsFixed Point Theory Appl (2004), No. 2, pp. 97-195.

S. S. CHANG, G. WANG, L. WANG, Y. K. TANG and Z. L. MAA-convergence theorems for
multi-valued nonexpansive mappings in hyperbolic spagpp). Math. Comput 249 (2014), pp.
535-540.

R. CHUGH and V. KUMAR, Stability of hybid fixed point iterative algorithms of Kirk-Noor type
in normed space for self and nonself operatbrs,J. Contemp. Math. Sgi7 (2012), pp. 21-24.

R. ESPINOLA and A. PETRUSEL, Existence and data dependence of fixed points for multivalued
operators on gauge spack#\ppl. Math. Anal. App]309(2005), No. 2, pp. 420-432.

K. GOEBEL and W. A. KIRK, Iteration processes for nonexpansive mappings, In Topological
Methods in Nonlinear Functional Analysis, S. P. Singh, S. Thomeier, and B.Watson, Eds., Vol. 21
of Amer. Math. Soc. Providenc2l (1983), RI, USA, pp. 115-123.

K. GOEBEL and S. REICH, Uniform convexitylyperbolic Geometry and Nonexpansive map-
pings Marcel Dekket, New York, (1984).

N. HUSSAIN, V. KUMAR and M. A. KUTBI, On rate of convergence of Jungck-type iterative
schemesin Abstract and Applied Analysi2013.

S. ISHIKAWA, Fixed points by new iteration methoBroc. Amer. Math. Soc44 (1974), No. 1,
pp. 147-150.

C. IZUCHUKWU, G. C. UGWUNNADI, O. T. MEWOMO, A. R. KHAN and M. ABBAS,
Proximal-type algorithms for split minimization problem in p-uniformly convex metric spake,
merical Algorithms (2018) (accepted, to appear), DOI: 10.1007/s11075-018-0633-9.

L. 0. JOLAOSO, F. U. OGBUISI and O. T. MEWOMO, An iterative method for solving minimiza-
tion, variational inequality and fixed point problems in reflexive Banach spaahs,Pure Appl.
Math., 9 (2017), No. 3, pp. 167-184.

L. 0. JOLAOSO, K. O. OYEWOLE, C. C. OKEKE and O. T. MEWOMO, A unified algorithm for
solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in
Hilbert space,Demonstr. Math.51 (2018), pp. 211-232.

G. JUNGCK, Commuting mappings and fixed poimksner. Math. Monthly73 (1966), pp. 735—
738.

G. JUNGCK and N. HUSSAIN, Compatible maps and invariant approximatibn&ppl. Math.
Anal. Appl, 325(2007), No. 2, pp. 1003-1012.

A. KHAN, V. KUMAR and N. HUSSAIN, Analytical and numerical treatment of Jungck-type
iterative schemeg\ppl. Math. Comput231(2014), pp. 521-535.

A. R. KHAN, H. FUKHAR-UD-DIN and M. A. A. KHAN, An implicit algorithm for two finite
families of nonexpansive maps in hyperbolic spaé®sd Point Theory Appl542012, No. 1, pp.
1-15.

W. A. KIRK and B. PANYANAK, A concept of convergence in geodesic spabks)linear Anal,
68(2008), No. 12, pp. 3689-3696.

U. KOHLENBACH, Some logical metathorems with applications in functional analyisemns.
Amer. Math. So¢357(2005), No. 1, pp. 89-128.

AJMAA Vol. 16, No. 1, Art. 15, pp. 1-20, 2019 AJMAA


http://ajmaa.org

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

SOME CONVERGENCE RESULTS FOR JUNGCK-AM ITERATIVE PROCESS IN HYPERBOLIC SPACES 19

T. KUCZUMOW, An almost convergence and its applicatiomsn. Univ. Mariae Curie-
Sk?odowska Sect. 82 (1978), pp. 79-88.

L. LEUSTEAN, Nonexpansive iteration in uniformly convex W-hyperbolic spaces, In A.
Leizarowitz, B.S. Mordukhovich, I. Shafrir, A. Zaslavsionlinear Analysis and Optimization

I. Nonlinear analysis Contemporary Mathematics. Providence. RI Ramat Gan American Mathe-
matical Soc. Bar llan Universityp13(2010), pp. 193-210

O. T. MEWOMO and F. U. OGBUISI, Convergence analysis of iterative method for multiple set
split feasibility problems in certain Banach spad@saest. Math.41, (2018), No. 1, pp. 129-148.

M. A. NOOR, New approximation schemes for general variational inequalilieslath. Anal.
Appl., 251(2000), pp. 217-229.

M. O. OLATINWO, Some stability and strong convergence results for the Jungck-Ishikawa itera-
tion processCreating Math. Inf, 17 (2008), pp. 33—-42.

M. O. OLATINWO, Some results on the continuous dependence of the fixed points in normed
linear spacefixed Point Theory Appl10(2009), pp. 151-157.

M. O. OLATINWO, A generalization of some convergence results using the Jungck?Noor three-
step iteration process in an arbitrary Banach speasg. Math, 40 (2008), pp. 37—-43.

M. O. OLATINWO and C. O. IMORU, Some convergence results for the Jungck-Mann and the
Jungck-Ishikawa iteration processes in the class of generalized Zamfirescu opé&etarsac.
Natur. Univ. Comenian. Math77 (2008), No. 2, pp. 299-304.

M. O. OLATINWO and M. POSTOLACHE, Stability results for Jungck-type iterative processes in
convex metric spaceg\ppl. Math. Comput218(2012), No. 1, pp. 6727-6732.

F. U. OGBUISI, O. T. MEWOMO, On split generalized mixed equilibrium problems and fixed
point problems with no prior knowledge of operator notinkixed Point Theory Appl19 (2016),
No. 3, pp. 2109-2128.

F. U. OGBUISI, O. T. MEWOMO, lterative solution of split variational inclusion problem in real
Banach spacdfr. Mat., 28 (2017), No. -2, pp. 295-309.

F. U. OGBUISI, O. T. MEWOMO, Convergence analysis of common solution of certain nonlinear
problems Fixed Point Theory19(2018), No. 1, pp. 335-358.

C. C. OKEKE and O. T. MEWOMO, On split equilibrim problem, variational inequality prob-
lem and fixed point problem for multi-valued mappingsin. Acad. Rom. Sci. Ser. Math. Ap@l.
(2017), No. 2, pp. 255-280.

C. C. OKEKE, A. U. BELLO, C. IZUCHUKWU, O. T. MEWOMO, Split equality for monotone
inclusion problem and fixed point problem in real Banach spaéest. J. Math. Anal. Appll4
(2017), No. 2, Art. 13, 20 pp.

A. A. RAZANI and M. BAGHERBOUM, Convergence and stability of Jungck-type iterative pro-
cedures in convex b-metric spaces, Fixed Point Theory ApL(2013), pp. 1-17.

S. REICH and I. SHAFRIR, Nonexpansive iterations in hyperbolic spadeslinear Anal, 15
(1990), pp. 537-558.

A. SAHIN and M. BASARIR, Some convergence results for modified SP-iteration scheme in hy-
perbolic spaceg;ixed Point Theory Appl(2014), No. 133, pp. 1-11.

S. L. SINGH, C. BHATNAGAR and S. N. MISHRA, Stability of Jungck-type iterative procedures,
Int. J. Math. Math. Scj.(2005), No. 19, pp. 3035-3043.

S. L. SINGH and S. N. MISHRA, Remarks on recent fixed point theoreRiged Point Theory
Appl.,, (2010), Art. ID. 452905, pp. 1-18.

AJMAA \Vol. 16, No. 1, Art. 15, pp. 1-20, 2019 AIJMAA


http://ajmaa.org

20 AKINDELE ADEBAYO MEBAWONDU AND OLUWATOSIN TEMITOPE MEWOMO

[40] S. M. SOLTUZ, T. GROSAN, Data dependence for Ishikawa iteration when dealing with
contraction-like operatorg;ixed Point Theory Appl (2008), Art. ID. 242916, pp. 1-7.

[41] S. M. SOLTUZ, T. GROSAN, Data dependence for Ishikawa iteration when dealing with contrac-
tive like operatorskixed Point Theory Appldoi:10.1155/2008/242916.

[42] 1. TIMIS, On the weak stability of Picard iteration for some contractions type mappings and coin-
cidence theoremsnt. J. of Comp. App) 37(2012), No 4, pp. 9-13.

[43] X. WENG, Fixed point iteration for local strictly pseudocontractive mappiRgoc. Amer. Math.
Soc, 113(1991), pp. 727-731.

[44] C. SUANOOM, C. KLIN-EAM, Remark on fundamentally nonexpansive mappings in hyperbolic
spaces). Nonlinear Sci. App) 9 (2016), No. 5, pp. 1952-1956.

[45] T. SUZUKI, Fixed point theorems and convergence theorems for some generalized nonexpansive
mappings,. Math. Anal. Appl340(2008), pp. 1088-1095.

AJMAA Vol. 16, No. 1, Art. 15, pp. 1-20, 2019 AJMAA


http://ajmaa.org

	1. Introduction
	2. Preliminaries
	3. Rate of Convergence, Stability and Data Dependency
	4. Strong and -Convergence Theorems 
	5. Numerical example
	6. Conclusion
	References

